Rissanen Data Analysis

A. Task Details
A.1. GLUE

GLUE consists of 9 tasks. Two are single-sentence
classification; CoLA (Corpus of Linguistic Acceptability;
Warstadt et al., 2019) involves determining if a sentence
is linguistically acceptable or not, while SS7-2 (Stanford
Sentiment Treebank 2; Socher et al., 2013) involves
predicting if a sentence has positive or negative sentiment.
Three tasks involve determining if two sentences are similar
or paraphrases of each other: MRPC (Microsoft Research
Paragraph Corpus; Dolan & Brockett, 2005), QOP (Quora
Question Pairs)®, and STS-B (Semantic Textual Similarity
Benchmark; Cer et al., 2017). The rest are NLI tasks:
ONLI (Question NLI, derived from SQuAD; Rajpurkar et al.,
2016), RTE (Recognizing Textual Entailment; Bentivogli
et al., 2009), WNLI (Winograd NLI; Levesque et al., 2012),
and MNLI (Multi-genre NLI; Williams et al., 2018).

B. Model Training Details
B.1. Distilled Language Model Decompositions
B.1.1. LANGUAGE MODEL DECOMPOSITIONS

Large language models are highly effective at text
generation (Brown et al., 2020) but have not yet been
explored in the context of question decomposition. In
particular, one obstacle is the sheer computational and
monetary cost associated with such models. We thus use a
language model to generate question decompositions while
conditioning on a few labeled question-decomposition pairs,
and then we train a smaller, sequence-to-sequence model
on the generated question-decomposition pairs, which we
use to efficiently decompose many questions. Our approach,
which we call Distilled Language Model (DLM), leverages
the large language model to produce pseudo- training data
for a more efficient model.

As our language model, we use the 175B parameter,
pretrained GPT-3 model (Brown et al., 2020) via the
OpenAl APL” We label the maximum number of question-
decomposition pairs that fit in the context window of GPT-3
(2048 tokens or 46 question-decompositions). For labeling,
we sample questions randomly from HOTPOTQA'’s training
set. To condition the language model, we format question-
decomposition pairs as “[Question] = [Decomposition]”,
where the decomposition consists of several consecutive
subquestions. We concatenate the pairs, each on a new line,
with a new question on the final line to form a prompt. We
then generate from the LM, conditioned on the prompt. For
decoding, we found that GPT-3 copies the question as the

8data.quora.com/First-Quora-Dataset-Release-Question-Pairs
"https://beta.openai.com/

decomposition with greedy decoding. Therefore, we use
a sample-and-rank decoding strategy, to choose the best
decoding out of several possible candidates. We sample
16 decompositions with top-p sampling (Holtzman et al.,
2020) with p = 0.95, rank decompositions from highest to
lowest based their average token-level log probability, and
choose the highest-ranked decomposition which satisfies
the basic sanity checks for decomposition from Perez et al.
(2020). The sanity checks avoid the question-copying
failure mode by checking if a decomposition has (1) more
than one subquestion (question mark), (2) no subquestion
which contains all words in the multi-hop question, and
(3) no subquestion longer than the multi-hop question. We
generate decompositions for HOTPOTQA dev questions,
which we estimate costs $0.15 per example or $1.1k for
the 7405 dev examples via the OpenAl API. Decomposing
all 90447 training examples would roughly cost an extra
$13.3k, motivating distillation.

B.1.2. DISTILLING DECOMPOSITIONS

As our distilled, sequence-to-sequence model, we use the
3B parameter, pretrained TS5 model (Raffel et al., 2020) via
HuggingFace Transformers (Wolf et al., 2020). We finetune
TS5 on our question-decomposition examples and then use it
to generate subquestions for all training questions.

To finetune T5, we split our question-decomposition
examples into train (80%), dev (10%), and test (10%)
splits. We finetune TS5 with a learning rate of le — 4,
and we sweep over label smoothing € {0.1,0.2,0.4,0.6},
number of training epochs € {3, 5,10}, and batch size in €
{16, 32,64}, choosing the best hyperparmeters (0.1, 3, 64,
respectively) based on dev BLEU (Papineni et al., 2002).
We stop training early when dev BLEU does not increase
after one training epoch. We generate decompositions using
beam search of size 4 and length penalty of 0.6 as in Raffel
et al. (2020), achieving a test BLEU of 50.7. We then
finetune a new TS model using the best hyperparameters on
all question-decomposition examples except for a small set
of 200 examples used for early stopping.

B.2. LONGFORMER

Similar to Beltagy et al. (2020), we train LONGFORMER
models for up to 6 epochs, stopping training early if dev loss

doesn’t decrease after one epoch. We sweep over learning
rate € {3 x 107°,5 x 107°,1 x 1074},

B.3. Regression

STS-B is a regression task in GLUE where labels are
continuous values in [0, 5]. Here, we learn to minimize
mean-squared error, which is equivalent to minimizing

https://beta.openai.com/

Rissanen Data Analysis

Hyperparam LONGFORMER ROBERTA BART ALBERT GPT2
Learning Rate {3e-5, 5e-3, le-4} {le-5,2e-5,3e-5} {5e-6, le-5,2e-5} {2e-5, 3e-5,5e-5} {6.25¢-5,3.125¢-5, 1.25¢-4}
Batch Size 32 {16, 32} {32, 128} {32, 128} 32

Max Epochs 6 10 10 3 3

Weight Decay 0.01 0.1 0.01 0.01 0.01
Warmup Ratio 0.06 0.06 0.06 0.1 0.002
Adam f2 0.999 0.98 0.98 0.999 0.999
Adam € le-6 le-6 le-8 le-6 le-8

Grad. Clip Norm 00 00 00 1 1

Table 1. Training hyperparameters for all transformer models, based on those from each model’s original paper. Column names refer to
model types, including models of different sizes or trained from scratch with the same architecture.

log-likelihood and thus codelength.® We treat each scalar
prediction as the mean of a Gaussian distribution and
tune a single standard deviation parameter shared across
all predictions from a single model. We choose the
variance based on dev log-likelihood using grid search over
[1072:5,10%°] with 1000 log-uniformly spaced samples. To
send the first block of labels, Alice and Bob use a uniform
distribution over the interval [0, 5].

The FastText library only supports classification, so we turn
STS-B into a 26-way classification task by rounding label
values to the nearest 0.2, following T5 (Raffel et al., 2020).
We compute a real-valued, mean prediction by evaluating
the average class label value when marginalizing over class
probabilities. We then tune variance on dev as usual.

B.4. Ensemble Model
B.4.1. FASTTEXT

For the FastText classifier, we initialize with the 2M
pretrained, 300-dimensional word vectors trained on
Common Crawl (600B tokens).” We tune hyperparameters
using the official implementation of automatic
hyperparameter tuning, which we run for 2 hours,
which is generally sufficient for 20+ hyperparmeter
trials and convergence on dev accuracy. The tuning
implementation chooses the hyperparameters based on
dev accuracy instead of loss as we typically do, but our
procedure of tuning a softmax temperature parameter helps
FastText reach significantly below-baseline loss.

B.4.2. TRANSFORMER MODELS

The remaining models in our ensemble are transformer-
based models trained with HuggingFace Transformers (Wolf
et al., 2020). Table 1 shows the hyperparameter ranges used
for each model, which we chose based on those used in

8Cover & Thomas (2006) justifies the relationship between
log-likelihood and codelength for continuous random variables.
“https://fasttext.cc/docs/en/english-vectors.html

each model’s original paper for GLUE. For TRANSFORMER
models trained from scratch on e-SNLI and GLUE, we
use the ROBERTAgAsg and ROBERTA aArgE architecture
with the ROBERTA hyperparameters, except that we use a
larger batch size (€ {64, 128}) for the LARGE transformer,
which gave better results.

B.5. Training Hardware

We train FastText models on 1 CPU core (40GB of memory)
and FiLM models on GeForce GTX 1080ti 11GB GPUs
(10GB CPU memory). We train other models with “almost
floating point 16” mixed precision arithmetic (Micikevicius
etal., 2018) on 1 RTX-8000 48GB GPU (CPU memory of
100GB for HOTPOTQA and 30GB for e-SNLI and GLUE).

C. Additional Experiments
C.1. Is It Helpful to Answer Subquestions?

In §4.1, we found that decompositions increase in usefulness
as the original, no-decomposition model’s loss decreases,
up until some point after which decompositions decrease
in usefulness. To examine if the same trend holds for other
models, we show the same plot for TRANSFORMEREASE in
Fig. 9. Here, decompositions increase in usefulness as the
codelength (loss) of the original model decreases. However,
for most decomposition methods, we do not find a point
at which decompositions begin to decrease in usefulness,
which fits our hypothesis that, for decompositions to
become less useful, the model must have enough examples
to learn task-relevant capabilities directly from the data.
However, the slope of improvement decreases (i.e., the
second derivative is negative), suggesting that, given more
training data, decompositions will also peak in usefulness
for TRANSFORMEREBASE.

https://fasttext.cc/docs/en/english-vectors.html

Rissanen Data Analysis

& 1750 . 800 . 600
2 1500 3 s
2 £ 600 £ 400
-4
I 1250 T T
a a 400 nl =
Q 1000 Q Q 2007
= = =
7 U0 Lo SRR
: . Hm +
s "‘ b
S g o S 200
J S S
j > - m M J = *!-'-* .
Q o | —+ | I g -200 g—aoo—
= 50
O LR SEL LSOO N PUGR SIS e S G RN I RN POl ERFELL OSSP
T EE S PP T P& S TP T FFEE S EF P EITT

Figure 8. Difference between MDL (in bits) when we mask input words that are (1) of a given type and (2) randomly chosen with the
same frequency as (1). Mean and std. err. over 5 random seeds for content words (left), logical words (middle), and causal words (right).

HotpotQA (Transformergase)

S g —— No SubQ
os —— PseudoD
S '» 307 —— Seq2Seq
© ©
E(‘I:J g —— ONUS
DLM

o 4
5 O 20 Oracle
o
clCJ [a]
© 2104
-8 —
So S —8

>
<0 0

10.0 9.5 9.0 8.5

No Decomposition Codelength (bits)

Figure 9. The reduction in codelength over the no-decomposition
baseline from using subanswers from various decomposition
methods (mean and std. error for TRANSFORMERBASE).

C.2. Examining Text Datasets

Why are certain POS more useful for NLI? In §4.3.1,
we found that adjectives and adverbs were generally more
important that nouns and verbs for NLI. One possible
explanation of this finding is that annotators often form
hypotheses by modifying premises via adding adjectives or
adverbs instead of changing verbs and nouns. To test this
hypothesis, we examine the amount of overlap between the
premise and hypothesis for words of different POS tags. In
particular, we measure the F1 overlap between words of a
given POS in the premise vs. hypothesis (averaged across
all training examples). For reference, we also measure the
overlap between the first and second input for other two-
input tasks in GLUE. Fig. 10 shows the results.

For NLI tasks, premise-hypothesis word overlap is
consistently higher for nouns and verbs than for adjectives
and adverbs. For example, MNLI premise-hypothesis pairs
have a noun overlap of 43 F1 and verb overlap of 24 F1,
compared to an adjective overlap for 15 F1 and adverb
overlap of 7 F1. Our finding suggests that nouns and
verbs are not as important for NLI tasks due to the fact
that annotators often leave nouns and verbs unchanged
when writing hypotheses. Encouraging annotators to

F1 Word Overlap between Both Task Inputs

ST O R

15 16 24 23 21 19 14
12 11 9 16 10 8 9

2 2 1 7 3 3 4

33 21 24§21 25 20 17 16

&

O @
N &
& g

0(§ & OQQ (9@> Q\ev\ ?§\>x vev\w \$\>’)’

Figure 10. The average F1 word overlap between the two inputs
for examples in different GLUE and NLI datasets with two inputs.
For NLI, the overlap between premises and hypotheses is larger

for nouns and verbs compared to adjectives and adverbs, a possible
reason for why the latter are more important.

change nouns and verbs more often may thus increase the
importance of nouns and verbs in future NLI tasks.

How useful are content words? Sugawara et al. (2020)
hypothesized that “content” words are particularly useful
for NLP tasks, taking content words to be nouns, verbs,
adjectives, adverbs, or numbers. We test their utility
on GLUE, SNLI, and ANLI using RDA, by evaluating
MDL _content — MDL _Rrandom (Fig. 8 left). The value is
positive for SST-2, STS-B, QNLI, SNLI, and ANLI,
and negative for MRPC, MNLI, ANLI;, and ANLI3. In
particular, the value for SST-2 is very high (1732 bits),
indicating that content words are important for sentiment
classification, likely due to the importance of adjectives as
found in §4.3.1. For QNLI, content words are important,
despite earlier findings that each individual POS group
(nouns, verbs, adjectives, or adverbs) was not important
for QNLI (§4.3.1, Fig. 5), indicating that QNLI requires
reasoning over multiple POS in tandem.

How useful are “logical” words? Sugawara et al. (2020)
hypothesized that words that have to do with the logical
meaning of a sentence (e.g., quantifiers and logical

Rissanen Data Analysis

N
o
1]

|
NLAAS L |
N W

N
o
o

o

-400 4
Gender
1 EEE Female
Male

MDI——Gender - MDL—Random
1

e <b ‘</ \ UK

Figure 11. The difference between MDL (in bits) when (1)
masculine/feminine words are masked and (2) the same fraction of
input words are masked uniformly at random.

connectives) are useful for NLP tasks. Using GLUE, SNLI,
and ANLI, we test the usefulness of logical words, which
we take as: all, any, each, every, few, if, more, most,
no, nor, not, n’t, other, same, some, and than (following
Sugawara et al., 2020). As shown in Fig. 8 (middle),
MDL _yogicat — MDL _Random is positive for CoLA, SST-2,
MNLI, ANLI,, and ANLI3 and negative for STS-B and
QQP. Notably, MDL_p ogicat — MDL _gangom is large for
MNLI, ANLI5, and ANLI3, three entailment detection tasks,
where we would expect logical words to be important.

How useful are causal words? Another group of words
that Sugawara et al. (2020) hypothesized are useful are
words that express causal relationships: as, because, cause,
reason, since, therefore, and why. As shown in Fig. 8 (right),
MDL _causat — MDL _Random to be within std. error of O for
all tasks except SST-2, QNLI, SNLI, and ANLI5, where
MDL _causa — MDL _Random < 0. Thus, causal words do
not appear particularly useful for GLUE.

Do datasets suffer from gender bias, even when
controlling for word frequency? In §4.3.3, we assessed
if datasets rely more on male- or female- gendered words
by comparing MDL when masculine vs. feminine input
words are masked, looking at MDL _yg5e — MDL _pemate-
However, we may wish to focus on gender bias present
in datasets beyond easy-to-detect differences in male- and
female- gendered word frequency. To control for frequency,
we evaluate MDL _pae — MDL _Random and MDL _gerate —
MDL _Random, as we did for our word type experiments. We
show results in Fig. 11. For SST-2 and QNLI, masculine
words are more useful than randomly-chosen words, while
feminine words are less useful than randomly-chosen words,
a sign of male-favored gender bias. Most tasks, however, do
not show similar patterns of bias as SST-2 and QNLI do.

1.07 = Length Onl
—_ B Leng nly
5 Il Original
< 0.8
>
1e)
© 0.61
N
©
€ 0.4
S
c
- 0.2
[a)]
=

0.0-

Figure 12. MDL with length-only input compared to MDL with
original input, normalized by the MDL when encoding labels with
p(y) for reference. Length information reduces MDL over p(y)
on MRPC, STS-B, QQP, and SNLI, though not significantly.

How useful is input length? Input text length can be
highly predictive of the class label (see, e.g., Dixon et al.,
2018). RDA can be used to evaluate text datasets for such
length bias. We evaluate MDL when only providing the
input length, in terms of number of tokens (counted via
spaCy).!? As shown in Fig. 12, the labels in MRPC, STS-
B, QQP, and SNLI can be compressed using the input
length, though not to a large extent. Other tasks cannot be
compressed using length alone. Our results on SNLI agree
with Gururangan et al. (2018) who found that hypotheses
were generally shorter for entailment examples and longer
for neutral examples. Similarly, they also found that length
is less discriminative on MNLI compared to SNLI.

D. Additional Related Work

Recent work has raised increasing awareness of the
importance of characterizing the datasets we release, via
datasheets (Gebru et al., 2018) or data statements (Bender
& Friedman, 2018). A key motivation for datasheets is
to inform machine learning practitioners of (1) biases that
models may learn when trained on the data or (2) model
weaknesses that may not be caught by testing on biased data.
As we saw earlier, RDA is a useful tool for uncovering such
biases (e.g., gender bias) and thus for writing datasheets.

RDA shares high-level motivation with other data analysis
methods that aim to measure intrinsic properties of the data.
For example, on NLI, Gururangan et al. (2018) measure the
point-wise mutual information (PMI) between the label and
occurrence of different keywords to find heuristics for SNLI.
Similarly, Rudinger et al. (2017) measure PMI between
premise words and hypothesis words to uncover race, age,
and gender stereotypes in crowdsourced SNLI hypotheses.
On MNLI, McCoy et al. (2019) measure the accuracy

'"Masking all input tokens gave similar results.

Rissanen Data Analysis

of heuristics such as “Assume that a premise entails all
hypotheses constructed from words in the premise.” These
methods capture the relationship between output labels and
an input feature, considered in isolation, but some features
may only be useful when provided along with other features.
In such cases, RDA can still capture the utility of the feature.

Other work aims to analyze properties of individual
examples in a dataset. For instance, Koh & Liang (2017) use
influence functions to determine which training instances are
most responsible for a particular test-time prediction, e.g.,
for image classification. Brunet et al. (2019) use influence
functions to find the training documents most responsible for
producing gender-biased word embeddings. Item response
theory (Baker & Kim, 2004) has been used to find the
most challenging examples for current models (Hopkins
& May, 2013; Lalor et al., 2019; Martinez-Plumed et al.,
2019). Swayamdipta et al. (2020) look at the variability
and confidence of model predictions on individual examples
throughout training, to determine which ones are easy, hard,
or ambiguous. Instead of examining individual examples,
we examine general characteristics of the dataset as a whole.

