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Abstract 

We introduce a method to determine if a certain 

capability helps to achieve an accurate model of 

given data. We view labels as being generated 

from the inputs by a program composed of 

subroutines with different capabilities, and we 

posit that a subroutine is useful if and only if the 

minimal program that invokes it is shorter than 

the one that does not. Since minimum program 

length is uncomputable, we instead estimate 

the labels’ minimum description length (MDL) 

as a proxy, giving us a theoretically-grounded 

method for analyzing dataset characteristics. We 

call the method Rissanen Data Analysis (RDA) 

after the father of MDL, and we showcase its 

applicability on a wide variety of settings in NLP, 

ranging from evaluating the utility of generating 

subquestions before answering a question, to 

analyzing the value of rationales and explanations, 

to investigating the importance of different parts 

of speech, and uncovering dataset gender bias.1 

1. Introduction 

In many practical learning scenarios, it is useful to know 

what capabilities would help to achieve a good model of the 

data. According to Occam’s Razor, a good model is one that 

provides a simple explanation for the data (Blumer et al., 

1987), which means that the capability to perform a task 

is helpful when it enables us to find simpler explanations 

of the data. Kolmogorov complexity (Kolmogorov, 1968) 

formalizes the notion of simplicity as the length of the 

shortest program required to generate the labels of the data 

given the inputs. In this work, we estimate the Kolmogorov 

complexity of the data by approximately computing the 

1New York University 2Facebook AI Research 3CIFAR Fellow 
in Learning in Machines & Brains. Correspondence to: Ethan 
Perez <perez@nyu.edu>. 

Proceedings of the 38 th International Conference on Machine 
Learning, PMLR 139, 2021. Copyright 2021 by the author(s). 

1Code at https://github.com/ethanjperez/rda 
along with a script to conduct RDA on your own dataset. 

1 2 

Figure 1. A capability f is useful if it shortens the minimum 

program needed to perform a task, as measured by Minimum 

Description Lengths L1 and L2. To give a concrete example, if 

x is a question and y is an answer, then f can be an oracle that 

answers relevant subquestions. 

data’s Minimum Description Length (MDL; Rissanen, 

1978), and we examine how the data complexity changes as 

we add or remove different features from the input. We name 

our method Rissanen Data Analysis (RDA) after the father 

of the MDL principle, and we use it to examine several open 

questions about popular datasets, with a focus on NLP. 

We view a capability as a function f(x) that transforms x 

in some way (e.g., adding a feature), and we say that f is 

helpful if invoking it leads to a shorter minimum program 

for mapping x to the corresponding label in a dataset (see 

Fig. 1 for an illustration). Finding a short program is 

equivalent to finding a compressed version of the labels 

given the inputs, since the program can be run to generate 

the labels. Thus, we can measure the shortest program’s 

length by estimating the labels’ maximally compressed 

length, or Minimum Description Length (MDL; Rissanen, 

1978; Gr¨ While prior work in machineunwald, 2004). 

learning uses MDL for model optimization (Hinton & van 

Camp, 1993), selection (Yogatama et al., 2019), and model 

probing (Voita & Titov, 2020; Lovering et al., 2021), we use 

MDL for a very different end: to understand the data itself 

(“dataset probing”). 

RDA addresses empirical and theoretical inadequacies of 

prior data analysis methods. For example, two common 

approaches are to evaluate the performance of a model 

when the inputs are modified or ablated (1) at training 

and test time or (2) at test time only. Training time input 

modification has been used to evaluate the usefulness of the 
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capability to decompose a question into subquestions (Min 

et al., 2019b; Perez et al., 2020), to access the image for 

image-based question-answering (Antol et al., 2015; Zhang 

et al., 2016a), and to view the premise when detecting if 

it entails a hypothesis (Gururangan et al., 2018; Poliak 

et al., 2018; Tsuchiya, 2018). However, these works 

evaluate performance only on held-out dev examples, a 

fraction of the total examples in the dataset, which also 

are often drawn from a different distribution (e.g., in 

terms of quality). To understand what datasets teach our 

models, we must examine the entire dataset, which also 

gives us more examples for evaluation. Furthermore, a 

capability’s usefulness to a model in high-data regimes does 

not necessarily reflect its usefulness in low-data regimes, 

which have increasingly become of interest (Lake et al., 

2017; Guzman´ et al., 2019; Brown et al., 2020). Test time 

ablation has been used to evaluate the capability to view 

word order (Pham et al., 2020; Sinha et al., 2020; Gupta 

et al., 2021) or words of different types (Sugawara et al., 

2020), or to perform multi-hop reasoning (Jiang & Bansal, 

2019). However, it is hard to rule out factors that may 

explain poor performance (e.g., distribution shift) or good 

performance (e.g., other ways to solve a problem). In our 

work, we examine an intrinsic property of the dataset, MDL, 

and we provide a theoretical argument justifying why it is 

the correct measure to use. 

We use RDA to provide insights on a variety of datasets. 

First, we verify that description length is reduced when 

we invoke a capability f that is known to be helpful 

on a carefully-controlled synthetic task. Next, we 

examine HOTPOTQA (Yang et al., 2018), a benchmark for 

answering questions, where prior work has both claimed that 

decomposing questions into subquestions is helpful (Min 

et al., 2019b; Perez et al., 2020) and called such claims into 

question (Min et al., 2019a; Jiang & Bansal, 2019; Chen & 

Durrett, 2019). RDA shows that subquestions are indeed 

helpful and exposes how evaluation procedures in prior work 

may have caused the value of question decomposition to 

be underestimated. We then evaluate if explanations are 

useful for recognizing textual entailment using the e-SNLI 

dataset (Camburu et al., 2018). Both written explanations 

and decision-relevant keyword markings (“rationales”) are 

helpful, but rationales are more useful than explanations. 

Lastly, we examine a variety of popular NLP tasks, 

evaluating the extent to which they require relying on word 

order, different types of words, and gender bias. Overall, 

our results indicate that RDA can be used to answer a broad 

variety of questions about datasets. 

2. Rissanen Data Analysis 

How can we determine whether or not a certain capability 

f(x) is helpful for building a good model of the data? 

To answer this question, we view a dataset with inputs 

x1:N and labels y1:N as generated by a program that maps 

xn → yn. Let the length of the shortest such program 

P be L(y1:N |x1:N ), the data’s Kolmogorov complexity. 

We view a capability as a function f that maps xn to a 

possibly helpful output f(xn), with L(y1:N |x1:N , f) being 

the length of the shortest label-generating program when 

access to f is given. We say that f is helpful exactly when: 

L(y1:N |x1:N , f) < L(y1:N |x1:N ) (1) 

2.1. Minimum Description Length 

To use Eq. 1 in practice, we need to find the shortest 

program P , which is uncomputable in general. However, 

because P is a program that generates y1:N given x1:N , 

we can instead consider any compressed version of y1:N , 

along with an accompanying decompression algorithm 

that produces y1:N given x1:N and the compressed y1:N . 

To find L, then, we find the length of the maximally 

compressed y1:N , or Minimum Description Length (MDL; 

Rissanen, 1978). While MDL is not computable, just 

like Kolmogorov complexity, many methods have been 

proposed to estimate MDL by restricting the set of allowed 

compression algorithms (see Gr¨ 2004, anunwald, for 

overview). These methods are all compatible with RDA, and 

here, we use online (or prequential) coding (Rissanen, 1984; 

Dawid, 1984), an effective method for estimating MDL 

when used with deep learning (Blier & Ollivier, 2018). 

2.2. Online Coding 

To examine how much y1:N can be compressed, we look at 

the minimum number of bits (minimal codelength) needed 

by a sender Alice to transmit y1:N to a receiver Bob, when 

both share x1:N . Without loss of generality, we assume yn 
is an element from a finite set. In online coding, Alice first 

sends Bob the learning algorithm A, including the model 

architecture, trainable parameters �, optimization procedure, 

hyperparameter selection method, initialization scheme, 

random seed, and pseudo-random number generator. Alice 

and Bob each initialize a model p�1 using the random 

seed and pseudo-random number generator, such that both 

models are identical. 

Next, Alice sends each label yn one by one. Shannon (1948) 

showed that there exists a minimum code to send yn with 

− log2 p�n (yn|xn) bits when Alice and Bob share p�n and 

xn. After Alice sends yn, Alice and Bob use A to train a 

better model p�n+1 (y|x) on (x1:n, y1:n) to get shorter codes 

for future labels. The codelength for y1:N is then: 

N X 
Lp(y1:N |x1:N ) = − log2 p�n (yn|xn). (2) 

n=1 

Intuitively, Lp(y1:N |x1:N ) is the area under the “online” 
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learning curve that shows how the cross-entropy loss goes 

down as the training set size increases. 

Overall, Alice’s message consists of A plus the label 

encoding (Lp(y1:N |x1:N ) bits). When Alice and Bob share 

f , Alice’s message consists of A plus Lp(y1:N |x1:N , f) bits 

to encode the labels with a model p�(y|x, f). f is helpful 

when the message is shorter with f than without, i.e., when: 

Lp(y1:N |x1:N , f) < Lp(y1:N |x1:N ) 

2.3. Practical Implementation with Block-wise Coding 

The online code in Eq. 2 is expensive to compute. It has a 

computational complexity that is quadratic in N (assuming 

linear time learning), which is prohibitive for large N and 

compute-intensive A. Following Blier & Ollivier (2018), 

we upper bound online codelength by having Alice and Bob 

only train the model upon having sent 0 = t0 < t1 < · · · < 

tS = N labels. Alice thus sends all labels in a “block” 

yts+1:ts+1 at once using p�ts 
, giving codelength: 

S−1 ts+1 X X
L̄p(y1:N |x1:N ) = − log2 p�ts 

(yn|xn) 
s=0 n=ts+1 

Since �t0 has no training data, Alice sends Bob the first 

block using a uniform prior. 

Alleviating the sensitivity to learning algorithm To 

limit the effect of the choice of learning algorithm A, we 

may ensemble many model classes. To do so, we have Alice 

train M models of different classes and send the next block’s 

labels using the model that gives the shortest codelength. To 

tell Bob which model to use to decompress a block’s labels, 

Alice also sends log2 M bits per block s = 1, . . . , S − 1, 

adding (S − 1) log2 M to MDL. In this way, MDL relies 

less on the behavior of a single model class. 

2.4. Experimental Setup 

To evaluate MDL, we first randomly sort examples in the 

dataset. We use S = 9 blocks where t0 = 0 and t1 = 
64 < · · · < tS = N such that 

ts+1 is constant (log-uniform
ts 

spacing). To train a model on the first s blocks, we split 

the available examples into train (90%) and dev (10%) sets, 

choosing hyperparameters and early stopping epoch using 

dev loss (codelength). We otherwise follow each model’s 

training strategy and hyperparameter ranges as suggested 

by its original paper. We then evaluate the codelength of 

the (s + 1)-th block. As a baseline, we show H(y), the 

codelength with the label prior p(y) as p�. 

Various random factors impact MDL, such as the order 

of examples, model initialization, and randomness during 

training. Thus, we report the mean and std. error of MDL 

over 5 random seeds. For computational efficiency, we 

only sweep over hyperparameters for the first random seed 

and reuse the best hyperparameters for the remaining seeds. 

For all experiments, our code and reported codelengths are 

available at https://github.com/ethanjperez/rda, along with a 

script to conduct RDA with your own models and datasets. 

3. Validating Rissanen Data Analysis 

Having described our experimental setup, we now verify 
¯ ¯that Lp(y1:N |x1:N , f) < Lp(y1:N |x1:N ) holds in practice 

when we use an f that we know is helpful. To this end, 

we use CLEVR (Johnson et al., 2017), an image-based 

question-answering (QA) dataset. CLEVR is a synthetic 

dataset where many questions are designed to benefit from 

answering subquestions. For example, to answer the 

CLEVR question “Are there more cubes than spheres?” it 

helps to know the answer to the subquestions “How many 

cubes are there?” and “How many spheres are there?” We 

hypothesize that MDL decreases as we give a model answers 

to subquestions. 

We test our hypothesis on three types of CLEVR questions. 

“Integer Comparison” questions ask to compare the numbers 

of two kinds of objects and have two subquestions (example 

above). “Attribute Comparison” questions ask to compare 

the properties of two objects, i.e., “Is the metal object 

the same color as the rubber thing?”, where there are 

two subquestions which each ask about the property of 

a single object, i.e., “What color is the metal object?” 

and “What color is the rubber thing?” “Same Property 

As” questions ask whether or not one object has the 

same property as another object, i.e., “What material is 

the sphere with the same color as the rubber cylinder?”, 

where there is one subquestion that asks about a property 

of one object, i.e., “What color is the rubber cylinder?” 

Since CLEVR is synthetic, we obtain oracle answers to 

subquestions (“subanswers”) programmatically, using the 

ground-truth question programs given by CLEVR. We 

append subanswers to the question (in order), and we 

evaluate the utility of providing 0-2 subanswers. 

Model We use the FiLM model from Perez et al. (2018) 

which combines a convolutional network for the image with 

a GRU for the question (Cho et al., 2014). The model 

minimizes cross-entropy loss (27-way classification). We 

follow training strategy from Perez et al. (2018) using the 

public code, except we train for at most 20 epochs (not 80), 

since we only train on subsets of CLEVR. 

Results Fig. 2 shows codelengths (left) and MDL (right). 
¯ ¯For all question types, Lp(y1:N |x1:N , f) < Lp(y1:N |x1:N ) 

when all oracle subanswers are given, as expected. For 

“Integer Comparison” (top) and “Attribute Comparison” 

https://github.com/ethanjperez/rda
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Figure 2. Left: Answer codelengths for different CLEVR question 

types with/without adding oracle answers to subquestions 

(“subanswers”) to the input. Right: Subanswers reduce MDL. 

(middle), the reduction in MDL is larger than for “Same 

Property As” questions (bottom). For comparison questions, 

the subanswers can be used without the image to determine 

the answer, explaining the larger decreases in MDL. Our 

results align with our expectations about when answers to 

subquestions are helpful, empirically validating RDA. 

4. Examining Dataset Characteristics 

We now use MDL to determine what capabilities are helpful 

on popular datasets with pertinent open questions. 

4.1. Is it helpful to answer subquestions? 

Yang et al. (2018) proposed HOTPOTQA as a dataset that 

benefits from decomposing questions into subquestions, but 

recent work has called the benefit into doubt (Min et al., 

2019a; Jiang & Bansal, 2019; Chen & Durrett, 2019) while 

there is also evidence that decomposition helps (Min et al., 

2019b; Perez et al., 2020). We use RDA to determine if 

subquestions and their answers are useful. 

Dataset HOTPOTQA consists of crowdsourced questions 

(“Are Coldplay and Pierre Bouvier from the same 

country?”) whose answers are intended to rely on 

information from two Wikipedia paragraphs. The input 

consists of these two “supporting” paragraphs, 8 “distractor” 

paragraphs, and the question. Answers are either yes, no, 

or a text span in an input paragraph. 

Model We use the LONGFORMER (Beltagy et al., 2020), 

a transformer (Vaswani et al., 2017) modified to handle long 

inputs as in HOTPOTQA. We evaluate MDL for two models, 

the official LONGFORMERBASE initialized with pretrained 

weights trained on language modeling and another model 

with the same architecture that we train from scratch, which 

we refer to as TRANSFORMERBASE. We train the model to 

predict the span’s start token and end token by minimizing 

the negative log-likelihood for each prediction. We treat 

yes/no questions as span prediction as well by prepending 

yes and no to the input, following Perez et al. (2020). 

We use the implementation from Wolf et al. (2020). See 

Appendix §B.2 for hyperparameters. 

Providing subanswers We consider a subanswer to 

be a paragraph containing question-relevant information, 

because Perez et al. (2020) claimed that subquestions help 

by using a QA model to find question-relevant text. We 

indicate up to two subanswers to the model by prepending 

“>” to the first subanswer paragraph and “≫” to the second. 

Selecting subanswers We consider 5 methods for 

selecting subanswers. First, we use the two supporting 

paragraphs as oracle subanswers. Next, we consider 

the answers to subquestions generated by four different 

methods. Three are unsupervised methods from Perez 

et al. (2020): pseudo-decomposition (retrieval-based 

subquestions), seq2seq (subquestions from a sequence-

to-sequence model), and ONUS (One-to-N Unsupervised 

Sequence transduction). Last, we test the ability of a 

more recent, large language model (GPT3; Brown et al., 

2020) to generate subquestions using a few labeled question-

decomposition examples. Since generating with GPT3 is 

expensive, we use its generated subquestions as training data 

for a smaller T5 model (Raffel et al., 2020), a “Distilled 

Language Model” (DLM, see Appendix §B.1 for details). 

To answer generated subquestions, we use the same QA 

model from Perez et al. (2020), an ensemble of two 

ROBERTALARGE (Liu et al., 2019) models finetuned on 

SQuAD (Rajpurkar et al., 2016) to predict answer spans. 

We use the paragraphs containing predicted answer spans to 

subquestions as subanswers. 
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Figure 3. Left: Codelengths for HOTPOTQA when encoding 

labels with LONGFORMERBASE trained from scratch (top) or 

pretrained weights (bottom), with the answers to subquestions 

(subanswers) from various decomposition methods. (Plots on log-

log scale.) Right: MDL for decomposition methods when training 

from scratch (top) or pretrained weights (bottom). Subanswers help 

to compress the answers, especially when training from scratch, 

but with much room for improvement w.r.t. oracle subanswers. 

4.1.1. RESULTS 

Fig. 3 shows codelengths (left) and MDL (right). For 

TRANSFORMERBASE (top), decompositions consistently 

and significantly reduces codelength and MDL. 

Decomposition methods vary in how much they reduce 

MDL, ranked from worst to best as: no decomposition, 

Pseudo-Decomposition, Seq2Seq, ONUS, DLM, and oracle. 

Overall, the capability to answer subquestions reduces 

program length, especially when subquestions and their 

answers are of high quality. 

For LONGFORMERBASE (Fig. 3 bottom), all decomposition 

methods also reduce codelength and MDL, though 

to a lesser extent. To examine why, we plot the 

codelength reduction from decomposition against the 

original codelength for LONGFORMERBASE in Fig. 4 

(left). As the original codelength decreases, the benefit 

from decomposition increases, until the no-decomposition 

baseline reaches a certain loss, at which point the benefit 

from decomposition decreases. We hypothesize that a 

certain, minimum amount of task understanding is necessary 

before decompositions are useful (see Appendix §B.3 for 

similar findings with TRANSFORMERBASE). However, as 

loss decreases, the task-relevant capabilities can be learned 

from the data directly, without decomposition. 

Our finding suggests that decompositions help 

disproportionately in the high/mid- loss regimes rather 

than the low-loss regime, where QA systems are usually 

evaluated (i.e., when training on all examples). The limited 

value in low-loss regimes occurs because models approach 

the same, minimum loss H(y|x) in the limit of dataset size. 

Our observation partly explains why earlier work (Min 

et al., 2019a; Chen & Durrett, 2019), which only evaluated 

final performance, drew the conclusion that HOTPOTQA 

does not benefit much from multi-step reasoning or question 

decomposition. In contrast, MDL actually does capture 

differences in performance across data regimes, showing 

that RDA is the right approach going forward, especially 

given the growing interest in few-shot data regimes (Lake 

et al., 2017; Brown et al., 2020) 

4.2. Are Explanations and Rationales Useful? 

Recent work has proposed methods that give reasons 

for an answer before predicting the answer, to improve 

performance. Such reasons may come in the form of 

written explanations (Camburu et al., 2018; Rajani et al., 

2019; Wiegreffe et al., 2020) or locating task-relevant input 

words (Zhang et al., 2016b; Perez et al., 2019; Pruthi et al., 

2020). As a testbed, such work often uses natural language 

inference (NLI) – checking if a premise entails or contradicts 

(or neither) a hypothesis. To explore if this direction is 

promising, we use RDA to evaluate whether providing a 

reason is a useful capability, using NLI as a case study. 

Dataset We use the e-SNLI (Camburu et al., 2018) dataset, 

which annotated each example in SNLI (Bowman et al., 

2015) with two forms of reasons: an extractive rationale that 

marks entailment-relevant words and a written explanation 

of the right answer. We randomly sample 10k examples 

from e-SNLI to examine the usefulness of rationales and 

explanations. To illustrate, e-SNLI contains an example of 

contradiction where the premise is “A man and a woman 

are dancing in the crowd.” and the hypothesis is “A man 

and woman dance alone.” The rationale is bolded, and the 

explanation is “Being in a crowd means not alone.” 

Adding explanations and rationales We view 

rationales/explanations as generated by a function f 

executed on the input. To test if f reduces MDL, we add 

the rationale by surrounding each entailment-relevant word 

with asterisks, and we add the explanation before the 

hypothesis, separated by a special token. For comparison, 

we also evaluate MDL when including only the explanation 

as input and only the rationale patterns as input. For 

the latter, we include the rationale without the actual 

premise/hypothesis words by replacing each rationale word 

with “*” and other words with “ ”. 
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Figure 4. Left: On HOTPOTQA, the reduction in codelength over the no-decomposition baseline from using subanswers from various 

decomposition methods (mean and std. err. for LONGFORMERBASE). Middle: Codelengths for e-SNLI with/without extractive rationales 

or written explanations. Right: On e-SNLI, MDL reduces significantly when rationales and explanations are given alongside the input. 

Model We use an ensemble model composed of the 

following model classes: FastText Bag-of-Words (Joulin 

et al., 2017), transformers (Vaswani et al., 2017) trained 

from scratch (110M and 340M parameter versions), 

BARTBASE (encoder-decoder; Lewis et al., 2020), 

ALBERTBASE (encoder-only; Lan et al., 2020), 

ROBERTABASE and ROBERTALARGE (encoder-

only; Liu et al., 2019) and the distilled version 

DISTILROBERTA (Sanh et al., 2019), and GPT2 (decoder-

entropy loss and tune softmax temperature on dev 

only; Radford et al., 2019) and DISTILGPT2 (Sanh 

et al., 2019). For each model, we minimize cross-
2 

to alleviate overconfidence on unseen examples (Guo 

et al., 2017; Desai & Durrett, 2020). We follow each 

models’ official training strategy and hyperparameter 

sweeps (Appendix §B.4), using the FastText codebase3 

and HuggingFace Transformers (Wolf et al., 2020) with 

PyTorch Lightning (Falcon et al., 2019) for other models. 

4.2.1. RESULTS 

Fig. 4 shows codelengths (middle) and MDL (right). Adding 

rationales to the input greatly reduces MDL compared to 

using the normal input (“Input (I)”) or rationale markings 

without input words (“Rationale (R)”), suggesting that 

rationales complement the input. The reduction comes 

from focusing on rationale words specifically. We see 

almost as large MDL reductions when only including 

rationale-marked words and masking non-rationale words 

(“R Words” vs. “I+R”). In contrast, we see little 

improvement over rationale markings alone when using 

only non-rationale words with rationale words masked 

(“Rationale (R)” vs.“Non-R Words”). Our results show 

that for NLI, it is useful to first determine task-relevant 

words, suggesting directions for future work along the lines 

2Search over [10−1 , 102], 1000 log-uniformly spaced samples. 
3https://github.com/facebookresearch/fastText 

of Zhang et al. (2016b); Perez et al. (2019). 

Similarly, explanations greatly reduce MDL (Fig. 4 

right, rightmost two bars), especially when the input 

is also provided. This finding shows that explanations, 

like rationales, are also complementary to the input. 

Interestingly, adding rationales to the input reduces MDL 

more than adding explanations, suggesting that while 

explanations are useful, they are harder to use for label 

compression than rationales. 

4.3. Examining Text Datasets 

So far, we used RDA to determine when adding input 

features helps reduce label description lengths. Similarly, 

we evaluate when removing certain features increases 

description length, to determine what features help achieve 

a small MDL. Here, we view the “original” input as having 

certain features missing, and we evaluate the utility of a 

capability f that recovers the missing features to return 

the normal task input. If f reduces the label-generating 

program length, then it is useful to have access to f (the 

ablated features). To illustrate, we evaluate the usefulness 

of different kinds of words and of word order on the General 

Language Understanding Evaluation benchmark (GLUE; 

Wang et al., 2019), a central evaluation suite in NLP, as well 

as SNLI and Adversarial NLI (ANLI; Nie et al., 2020). 

Datasets GLUE consists of 9 tasks (8 classification, 

1 regression).4 CoLA and SST-2 are single-sentence 

classification tasks. MRPC, QQP, and STS-B involve 

determining if two sentences are similar or paraphrases 

of each other. QNLI, RTE, MNLI, and WNLI are NLI tasks 

(we omit WNLI due to its size, 634 training examples). 

ANLI consists of NLI data collected in three rounds, where 

annotators wrote hypotheses that fooled state-of-the-art 

4See Appendix §A.1 for details on GLUE and Appendix §B.3 
for details on regression. 

https://github.com/facebookresearch/fastText
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Figure 5. The importance of different POS words, given by 

MDL
−POS − MDL

−Random. 0 indicates that words of a given 

POS are as important as randomly-chosen words, while > 0 and 

< 0 indicate greater and lesser importance than randomly-chosen 

words, respectively. (*) indicates within std. error of 0. Color is 

normalized by column (dataset). 

NLI models trained on data from the previous round. We 

consider each round as a separate dataset, to examine how 

NLI datasets have evolved over time, from SNLI to MNLI 

to ANLI1, ANLI2, and ANLI3. 

Experimental setup We follow a similar setup as for e-

SNLI (§4.2), using the 10-model ensemble and evaluating 

MDL on up to 10k examples per task. 

4.3.1. THE USEFULNESS OF PART-OF-SPEECH WORDS 

We consider the original input to be the full input with 

words of a certain POS masked out (“ ”) and evaluate 

the utility of a capability f that fills in the masked words. 

To control for the number of words masked, we restrict 

f such that it returns a version of the input with the 

same proportion of words masked, chosen uniformly at 

random. If f is useful, then words of a given type are 

more useful for compression than randomly-chosen input 

words. In particular, we report the difference between 

MDL when (1) words of a given POS are masked and 

(2) the same fraction of words are masked uniformly at 

random: MDL 
−POS − MDL 

−Random. We evaluate nouns, 

verbs, adjectives, adverbs, and prepositions.5 

We show results in Figure 5. Adjectives are much more 

useful than other POS for SST-2, a sentiment analysis 

task where relevant terms are evidently descriptive words 

(e.g., “the service was terrible”). For CoLA, verbs play an 

important role in determining if a sentence is linguistically 

acceptable, likely due to the many examples evaluating verb 

5We use POS tags from spaCy’s large English model (Honnibal 
& Montani, 2017). For computational reasons, we omit other POS, 
as they occur less frequently and masking them did not greatly 
impact MDL in preliminary experiments. 

Figure 6. Gender Bias: MDL when masking masculine vs. 

feminine words (mean and std. err. over 5 random seeds). Values 

above zero (vs. below zero) indicate that male-gendered words 

(vs. female-gendered words) are more important for compressing 

labels. SST-2 shows the largest bias (male-favored). 

argument structure (e.g., “The toast burned.” vs. “The 

toast buttered.”). Other tasks (MRPC, RTE, and QNLI) do 

not rely significantly on any one POS, suggesting that they 

require reasoning over multiple POS in tandem. Nouns 

are consistently less useful on NLI tasks, suggesting that 

NLI datasets should be supplemented with knowledge-

intensive tasks like open-domain QA that rely on names 

and entities, in order to holistically evaluate language 

understanding. Prepositions are not important for any 

GLUE task, suggesting where GLUE can be complemented 

with other tasks (e.g., from Kim et al., 2019) and illustrating 

how RDA can be used to help form comprehensive 

benchmarks in the future. 

4.3.2. HOW USEFUL ARE OTHER WORD TYPES? 

Sugawara et al. (2020) hypothesized other word types that 

may be useful for NLP tasks. We use RDA to assess their 

usefulness as we did above (see Appendix §C for details). 

GLUE tasks vary in their reliance on “content” words. 

Logical words like not and every are particularly important 

for MNLI which involves detecting logical entailment. On 

the other hand, causal words (e.g., because, since, and 

therefore) are not particularly useful for GLUE. 

4.3.3. DO DATASETS SUFFER FROM GENDER BIAS? 

Gender bias in data is a prevalent issue in machine 

learning (Bolukbasi et al., 2016; Blodgett et al., 2020). For 

example, prior work found that machine learning systems 

are worse at classifying images of women (Phillips et al., 

2000; Buolamwini & Gebru, 2018), at speech recognition 

for women and speakers from Scotland (Tatman, 2017), and 

at POS tagging for African American vernacular (Jørgensen 

et al., 2015). RDA can be used to diagnose such biases. 

Here, we do so by masking male-gendered words and 
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reduces MDL on all tasks. 

evaluating the utility of an oracle function f that reveals 

male-gendered words while masking female-gendered 

words. If f is useful and MDL 
−Male − MDL 

−Female > 0, 

then masculine words are more useful than feminine words 

for the dataset (gender bias). We use male and female word 

lists from Dinan et al. (2020a;b). The two lists are similar in 

size (∼530 words each) and POS distribution (52% nouns, 

29% verbs, 18% adjectives), and the male- and female-

gendered words occur with similar frequency. See Appendix 

§C for experiments controlling for word frequency. 

Fig. 6 shows the results. Masculine words are more 

useful for SST-2 and MRPC while no GLUE datasets have 

feminine words as more useful. For SST-2, feminine words 

occur more frequently than masculine words (2.7% vs. 

2.2%, evenly distributed across class labels), suggesting 

that RDA uncovers a gender bias that word counts do 

not. This result highlights the practical value of RDA in 

uncovering where evaluation benchmarks under-evaluate 

the performance of NLP systems on text related to different 

demographic groups. 

4.3.4. HOW USEFUL IS WORD ORDER? 

Recent work claims that state-of-the-art NLP models do 

not use word order on GLUE (Pham et al., 2020; Sinha 

et al., 2020; Gupta et al., 2021). We use RDA to examine 

the utility of word order on GLUE by testing the value of 

unshuffling input words when they have been shuffled. 

Fig. 7 shows MDL with and without shuffling, normalized 

by the MDL of the label-only prior p(y) as a baseline. Word 

order helps to obtain smaller MDL on all tasks. For example, 

on MNLI, adding word order enables the labels to be 

compressed from 75% → 50% of the baseline compression 

rate. For CoLA, the linguistic acceptability task, input word 

order is necessary to compress labels at all. Prior work 

may have come to different conclusions about the utility of 

word order because they evaluate the behavior of trained 

models on out-of-distribution (word-shuffled) text, while 

RDA estimates an intrinsic property of the dataset. 

5. Related Work 

In addition to prior work on data analysis (§1), there has 

been much related work on model analysis (e.g., Shi et al., 

2016; Alain & Bengio, 2017; Conneau et al., 2018; Jia & 

Liang, 2017). This line of work sometimes uses similar 

techniques, such as input replacement (Perez et al., 2019; 

Jiang & Bansal, 2019; Pham et al., 2020; Sinha et al., 2020; 

Gupta et al., 2021) and estimating description length (Voita 

& Titov, 2020; Whitney et al., 2020; Lovering et al., 2021) or 

other information-theoretic measures (Pimentel et al., 2020), 

but for a very different end: to understand how models 

behave and what their representations encode. While model 

probing can uncover characteristics of the training data (e.g., 

race and gender bias; Caliskan et al., 2017), models also 

reflect other aspects of learning (Zhao et al., 2017), such 

as the optimization procedure, inductive bias of the model 

class and architecture, hyperparameters, and randomness 

during training. Instead of indirectly examining a dataset by 

probing models, we directly estimate a property intrinsic to 

the dataset. For further related work, see Appendix §D. 

6. Conclusion 

In this work, we proposed Rissanen Data Analysis (RDA), 

a method for examining the characteristics of a dataset. 

We began by viewing the labels of a dataset as being 

generated by a program over the inputs, then positing 

that a capability is helpful if it reduces the length of the 

shortest label-generating program. Instead of evaluating 

minimum program length directly, we use block-wise 

prequential coding to upper bound Minimum Description 

Length (MDL). While the choice of learning algorithm A 
influences absolute MDL values, we only interpret MDL 

relative to other MDL values estimated with the same A. 

In particular, we conduct RDA by comparing MDL with 

or without access to a subroutine with a certain capability, 

and we say that a capability is useful when invoking the 

subroutine reduces MDL. 

We then conducted an extensive empirical analyses of 

various datasets with RDA. First, we showed that RDA 

provides intuitive results on a carefully-controlled synthetic 

task. Next, we used RDA to evaluate the utility of generating 

and answering subquestions in answering a question, finding 

that subquestions are indeed useful. For NLI, we found 

it helpful to include rationales and explanations. Finally, 

we showcased the general nature of RDA by applying it 

on a variety of other NLP tasks, uncovering the value of 

word order across all tasks, as well as the most useful 
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parts of speech for different tasks, among other things. 

While we experimented on NLP tasks, RDA can be used 

in other domains as well, e.g. to determine the value 

of color in image recognition, temporal resolution in 

speech recognition, or different modalities for multimodal 

problems. Our work opens up ample opportunity for 

future work: automatically uncovering dataset biases when 

writing data statements (Gebru et al., 2018; Bender & 

Friedman, 2018), selecting the datasets to include in future 

benchmarks, discovering which capabilities are helpful for 

different tasks, and also expanding on RDA itself, e.g., by 

investigating the underlying data distribution rather than a 

particular dataset (Whitney et al., 2020). Overall, RDA is 

a theoretically-justified tool that is empirically useful for 

examining the characteristics of a wide variety of datasets. 

Acknowledgments 

We thank Paul Christiano, Sam Bowman, Tim Dettmers, 

Alex Warstadt, William Huang, Richard Pang, Yian 

Zhang, Tiago Pimentel, Patrick Lewis, and our anonymous 

reviewers for helpful feedback on the paper. We are grateful 

to OpenAI for providing access to GPT-3 via their API 

Academic Access Program. We also thank Will Whitney 

and Peter Hase for helpful discussions, Adina Williams for 

the list of gendered words, Shenglong Wang for cluster 

support, and Amanda Ngo for help with figure design. 

HOTPOTQA is licensed under CC BY-SA 4.0. KC is partly 

supported by Samsung Advanced Institute of Technology 

(Next Generation Deep Learning: from pattern recognition 

to AI). KC also thanks Naver, eBay, NVIDIA, and NSF 

Award 1922658 for support. EP is supported by the NSF 

Graduate Research Fellowship and the Open Philanthropy 

AI Fellowship. 

References 

Alain, G. and Bengio, Y. Understanding intermediate layers 

using linear classifier probes. In ICLR, 04 2017. URL 

https://arxiv.org/abs/1610.01644. 

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., 

Zitnick, C. L., and Parikh, D. VQA: Visual Question 

Answering. In ICCV, 2015. URL https://arxiv. 
org/abs/1505.00468. 

Baker, F. B. and Kim, S.-H. Item response theory: 

Parameter estimation techniques. CRC Press, 2004. URL 

https://www.jstor.org/stable/1435270. 

Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The 

long-document transformer. arXiv:2004.05150, 2020. 

URL https://arxiv.org/abs/2004.05150. 

Bender, E. M. and Friedman, B. Data statements for natural 

language processing: Toward mitigating system bias and 

enabling better science. Transactions of the ACL, 6:587– 

604, 2018. doi: 10.1162/tacl a 00041. URL https: 
//www.aclweb.org/anthology/Q18-1041. 

Bentivogli, L., Dagan, I., Dang, H. T., Giampiccolo, 

D., and Magnini, B. The fifth pascal recognizing 

textual entailment challenge. In In Proc Text 

Analysis Conference (TAC’09, 2009. URL 

http://citeseerx.ist.psu.edu/viewdoc/ 
summary?doi=10.1.1.232.1231. 

Blier, L. and Ollivier, Y. The description length of deep 

learning models. In Bengio, S., Wallach, H., Larochelle, 

H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.), 

NeurIPS, volume 31, pp. 2216–2226. Curran Associates, 

Inc., 2018. URL https://proceedings. 
neurips.cc/paper/2018/file/ 
3b712de48137572f3849aabd5666a4e3-Paper. 
pdf. 

Blodgett, S. L., Barocas, S., Daumé III, H., and Wallach, 
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