Supplementary Material

A. Megaverse: technical details
A.1. Interface

Megaverse platform provides a vectorized version of the OpenAl Gym interface (Brockman et al., 2016) for interacting
with the environments. This is a natural extension of the standard Gym interface for parallel simulators: since a single
Megaverse instance simulates experience for M agents in [V environments per step, the STEP() function accepts a vector
of N x M actions, and returns a vector of N x M observations, rewards, and episode termination flags. The only
difference with the original OpenAI Gym design is that Megaverse environments do not require RESET() calls, except right
after initialization. Individual simulated environments can have different episode durations, so we reset these individual
environments automatically instead of relying on external code to perform resets. This has an additional performance benefit:
we don’t have to synthesize the last observation in the episode which is never seen by the agents.

Although Megaverse core engine is written in C++, the high-level interface is also available through Python bindings (Jakob
etal., 2017).

A.2. Observation and action spaces

Megaverse provides mechanisms to configure custom observation and action spaces for individual scenarios, although all
Megaverse-8 scenarios use the same unified observation and action spaces to streamline and simplify the experimentation.
The observations are provided as 128 x 72 RGB images, and this is the only sensory input received by the agents. On top of
the synthesized views of the 3D world, the observations can also contain additional information about the environment. We
implement simple pixel-space GUI consisting of geometric primitives rendered in the agent’s field of view. These can play
the role of various bars and indicators, such as health bars, or team affiliation flags for team-based multi-agent scenarios. In
Megaverse-8 scenarios we only use this GUI to notify agents about the remaining time in the episode.

Table A.1 describes agent’s affordances. At each step the agents can independently choose walking and gaze directions, and
whether they choose to jump or interact with an object. OpenAl Gym represents this action space using a tuple of discrete
action spaces: TUPLE(DISCRETE(3), DISCRETE(3), DISCRETE(3), DISCRETE(3), DISCRETE(2), DISCRETE(2)). In our
implementation the policy networks outputs six distinct probability vectors, which we interpret as independent categorical
action distributions, although the action space can also be flattened into a single discrete action space with 324 options.

Action head Number of actions Comment
Moving 3 no-action / forward / backward
Strafing 3 no-action / left / right
Turning 3 no-action / turn left / turn right
Vertical gaze direction 3 no-action / look up / look down
Jumping 2 no-action / jump
Object interaction 2 no-action / interact

Total number of possible actions 324

Table A.1. Megaverse-8 action space.

B. Megaverse-8

Please refer to the project website for detailed videos demonstrating the environments: www.megaverse.info.

www.megaverse.info

Supplementary Material

B.1. Reward functions

Table B.1 describes the reward functions in Megaverse-8 scenarios, as seen by the learning algorithm. Besides the dense
rewards that facilitate learning and exploration, Megaverse-8 environments also provide a single sparse reward (true
objective) per episode that measures the real progress on the task. In all environments except TowerBuilding the true
objective takes the value +1 when the task is successfully completed and 0 otherwise. In the TowerBuilding scenario the
true objective is to maximize the height of the structure built during the episode.

In addition to task completion (true objective) results reported in the main paper, we also report dense rewards achieved by
the agents in our experiments, see Figures C.1 and C.2.

Scenario Dense reward True objective

+1 reached target location

ObstaclesFasy +0.5 collected a green diamond

+1 (success) all agents reached the target

ObstaclesHard 5 all agents reached the target 0 (failure) episode timed out
41 collecting green diamond

Collect —1 collecting red diamond +1 (success) collected all green diamonds

° +5 collected all green diamonds 0 (failure) episode timed out

—0.5 agent fell into the void

+1 moved box onto target
Sokoban —1 moved box from the target
410 moved all boxes to targets

+1 (success) moved all boxes to targets
0 (failure) episode timed out

+1 (success) found a pink diamond

HexExplore +5 found a pink diamond 0 (failure) episode timed out
HexMemor +1 collected a matching object +1 (success) collected all matching objects
exviemory —1 collected a non-matching object 0 (failure) episode timed out
R neement +1 moved object to a correct position +1 (success) all objects in correct positions
carrangeme +10 all objects in correct positions 0 (failure) episode timed out

+0.1 entered building zone with an object
TowerBuilding +0.05(h + 2™) placed an object in the building zone +hmaz Where huma. is the max height of the tower
h - height at which the object was placed

Table B.1. Megaverse-8 scenarios dense rewards and final objectives.

C. Experimental details
C.1. Performance analysis

Table C.1 provides information about hardware configuration of systems used for performance measurements. We focused
on commodity hardware commonly used for deep learning experimentation.

While in the main paper we report performance figures measured only in ObstaclesHard scenario, table C.2 provides
information about sampling throughput in all Megaverse-8 environments. Values represent the sampling throughput
averaged over three minutes. In order to conduct the measurements we used a number of parallel Megaverse processes
equal to the number of physical CPU cores with 64 environments simulated in parallel in each process. Performance varies
because different scenarios generate environments with different number of geometric primitives and interactive objects.
HexMemory and HexExplore environments are based on hexagonal mazes and therefore cannot benefit from the voxel grid
based optimizations that allow fast collision checking based on axis-aligned bounding boxes.

C.2. RL experiments: setup and parameters

In all experiments in the paper we used asynchronous PPO (APPO) implementation provided by Sample Factory (Petrenko
et al., 2020). Unless stated otherwise, all experiments use Action Conditional Contrastive Predictive Coding (CPCIA) (Guo
et al., 2018). For the policy network we use a small convnet model similar to VizDoom model in (Petrenko et al., 2020) with
a 2-layer GRU core (Cho et al., 2014). Table C.3 lists the learning algorithm hyperparameters.

Supplementary Material

System #1 System #2 System #3
Processor AMD Ryzen 9 3900X Intel Xeon Gold 6154 Intel Xeon Platinum 8280
Base frequency 3.8 GHz 3.0 GHz 2.7 GHz
Physical cores 12 36 48
Logical cores 24 72 96
RAM 64 GB 256 GB 320 GB
GPUs 1 x NVidia RTX3090 4 x NVidia RTX 2080Ti 8 x NVidia RTX 2080Ti
GPU memory 24GB GDDR6x 11GB GDDR6 11GB GDDR6
oS Arch (Jan 2021, Rolling) Ubuntu 18.04 64-bit Ubuntu 18.04 64-bit
GPU drivers NVidia 460.32.03 NVidia 440.95.01 NVidia 450.102.04

Table C.1. Hardware configurations used for performance measurements (training and sampling performance).

Scenario Simulation throughput, obs/sec
ObstaclesEasy 1.27 x 106
ObstaclesHard 1.15 x 10°
Collect 8.55 x 10°
Sokoban 1.16 x 108
HexExplore 6.5 x 10°
HexMemory 5.9 x 10°
Rearrange 1.28 x 10°
TowerBuilding 1.22 x 108

Table C.2. Sampling throughput in Megaverse-8 scenarios measured on System #3 (8-GPU node).

C.3. Additional RL experiments

To further investigate the training performance of RL agents on Megaverse-8 tasks we conduct a series of additional
experiments. First, we extended the training of the APPO+CPCIA agent in single-agent Megaverse-8 environments to 101°
environment steps (Figure C.3). Except in TowerBuilding, we did not see a significant increase in agent’s performance,
which suggests that Megaverse-8 remains a challenging benchmark even in virtually unlimited sample regime (note that
training for 10'° frames in Megaverse is equivalent to training for 4 x 10'° frames in DeepMind Lab or Atari due to
frameskip). Instead of insufficient data, the agents are limited by their exploration abilities and cognitive capacity of
relatively simple models. Thus Megaverse-8 environments can be a promising test bed for advanced exploration algorithms
and policy architectures.

We also evaluated a single APPO+CPCIA agent trained on all eight Megaverse-8 environments simultaneously (Figure C.4).
The agent was trained on a total of 2 x 10° frames of experience, which is equivalent to 2.5 x 108 frames on each of the
environments. The results demonstrate that positive transfer can be challenging due to the diversity of Megaverse-8 tasks,
although ultimately, combining experience from a diverse set of tasks and incorporating curricula can be instrumental in
training capable multipurpose intelligent agents.

Supplementary Material

Learning rate 1074
Action repeat (frameskip) 1 (no frameskip)
Framestack No
Discount v 0.997
Optimizer Adam (Kingma & Ba, 2015)
Optimizer settings B1=0.9, B2 =0.999, ¢ =106
Gradient norm clipping 1.0
Num parallel Megaverse processes 6
Num envs simulated per process 80
Total number of environments 480
Rollout length T° 32
Batch size, samples 2048
Number of training epochs 1
V-trace parameters p=c=1
PPO clipping range [1.171,1.1)
Exploration loss coefficient 0.001
Critic loss coefficient 0.5

Table C.3. Hyperparameters in Megaverse-8 experiments.

Without CPCIA With CPCIA
Obstacles (Easy) Collect HexExplore TowerBuilding
12.5 20
4 10.0 3
15
23 e 2 2
© © 7.5 © 2 ©
g z z 210
x 2 « 5.0 o« <
1
1 55 5 /_’__/f’
0 0.0 0 0
Rearrange Sokoban 10 HexMemory 10 Obstacles (Hard)
3 4 0.8 0.8
el kel el o
= , = 3 50.6 50.6
g 8 g 8
x &2 x 0.4 x 0.4
1 e S e
1 0.2 0.2
0 0 0.0 0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Experience (Steps in Billions) Experience (Steps in Billions) Experience (Steps in Billions) Experience (Steps in Billions)

Figure C.1. Total episodic reward achieved by the agents in single-agent scenarios (see reward shaping scheme in Table B.1). Here the
results are averaged over three random seeds.

Supplementary Material

2 Agents, No Team Spirit

2 Agents, Team Spirit = = = 4 Agents, No Team Spirit

4 Agents, Team Spirit = = =

Obstacles (Easy) Collect HexExplore TowerBuilding
4 2.0 12.5
6
3 o 10.0
° ° °
© G4 c 7.5
52 5 8
-4 < | | A T T e < 5.0
2
1 25
0 0 0.0
1.0 Rearrange HexMemory 10 Obstacles (Hard)
0.8 15 0.8
Zos Tos6
= H
204 204
0.2 0.2 se
0.0 0 0.0 - _ _
00 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Experience (Steps in Billions) Experience (Steps in Billions) Experience (Steps in Billions) Experience (Steps in Billions)

Figure C.2. Total episodic reward achieved by the agents in multi-agent scenarios (see reward shaping scheme in Table B.1). Here the
results are averaged over three random seeds.

1.0 Obstacles (Easy) 10 Collect 10 HexExplore 10 TowerBuilding
K 0.8 3 0.8 3 0.8 5 8
> 2 2 2
206 206 80.6 S 6
5 5 5 g
So04 So04 S04 E
3 3 3 ©
o2 £0.2 02 =

0.0 0.0 0.0 0

1.0 Rearrange 10 Sokoban 10 HexMemory 1.0 Obstacles (Hard)
2 0.8 2 0.8 b 0.8 3 0.8
2 2 2 2
K06 306 {06 {06
c c f=4 =4
204 204 204 204
F= F= = =1
] 3 3 @
202 £o0.2 /___,_,_______- Lo.2 Lo.2

0.0[7 0.0 0.0 0.0

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Experience (Steps in Billions) Experience (Steps in Billions) Experience (Steps in Billions) Experience (Steps in Billions)
Obstacles (Easy) Collect HexExplore TowerBuilding
12.5 25
4 10.0 ?
! 20
2 B 2 2
53 5 7.5 G2 815
3 5 3 3
o2 < 5.0 4 « 19
1

1 2.5 5

0 0.0 0 0

4 Rearrange Sokoban 1.0 HexMemory 1.0 Obstacles (Hard)

4

3 0.8 0.8
B B3 Tos6 Tos6
22 = = =
2 22 2oa 2oas ’w_///_———-—-——

! 1 0.2 L 0.2

0 0 0.0 alSinh. i 0.0

0 4 6 8 10 0 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

2
Experience (Steps in Billions)

2
Experience (Steps in Billions) Experience (Steps in Billions)

Experience (Steps in Billions)

Figure C.3. Single agent with CPCIA training sessions extended to 10'° frames. Both task completion (true objective) and episodic
rewards are reported. Here the results are averaged over three random seeds.

Supplement

ary Material

10 Obstacles (Easy) 10 Collect 10 HexExplore 10 TowerBuilding
g 0.8 E 0.8 g 0.8 5 8
= 2 2 2
806 806 806 g6
5 s s K]
S04 S04 S04 & 4
@ 3 3 ©
F0.2 02 F02 u//-’\"’_ = ’_/—f—d_—
0.0 0.0 0.0 0
1.0 Rearrange 10 Sokoban 10 HexMemory 10 Obstacles (Hard)
3 0.8 2 0.8 3 0.8 3 0.8
2 2 2 2
g 0.6 8 0.6 l% 0.6 8 0.6
= c c =
204 204 204 204
=1 =1 =1 F=
[} o) o) o)
202 202 202 202
0.0 0.0 0.0 0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
Experience (Steps in Billions) Experience (Steps in Billions) Experience (Steps in Billions) Experience (Steps in Billions)
Obstacles (Easy) Collect HexExplore 3 TowerBuilding
10
3 1.
s 5
kel kel kel e 2
o o o S
©2 c 6 © 1.0 ©
2 2 2 2
[[[Q
-4 < 4 -4 <
1 0.5
2
0 0 0.0 0
10 Rearrange Sokoban 10 HexMemory 1.0 Obstacles (Hard)
2.0
0.8 0.8 0.8
-zEu 0.6 ,“f—, v -r% 0.6 g 0.6
= 2 1.0 2 2
2oa 2 2oa 2oa
0.2 0.5 0.2 0.2
o0 LS o | TENgpe—
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0

Experience (Steps in Billions)

Experience (Steps in Billions)

Experience (Steps in Billions)

Experience (Steps in Billions)

Figure C.4. Performance of a single agent trained on all eight Megaverse-8 tasks. Both task completion (true objective) and episodic
rewards are reported. Here the results are averaged over five random seeds.

Supplementary Material

References

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. OpenAl Gym.
arXiv:1606.01540, 2016.

Cho, K., van Merrienboer, B., Giilcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. Learning phrase
representations using RNN encoder-decoder for statistical machine translation. In EMNLP, 2014.

Guo, Z. D., Azar, M. G., Piot, B., Pires, B. A., and Munos, R. Neural predictive belief representations. arXiv:1811.06407,
2018.

Jakob, W., Rhinelander, J., and Moldovan, D. pybindl1 — Seamless operability between C++11 and Python, 2017.
https://github.com/pybind/pybind11.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In ICLR, 2015.

Petrenko, A., Huang, Z., Kumar, T., Sukhatme, G., and Koltun, V. Sample factory: Egocentric 3D control from pixels at
100000 FPS with asynchronous reinforcement learning. In /CML, 2020.

