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Abstract
Evaluating the quality of learned representations
without relying on a downstream task remains
one of the challenges in representation learning.
In this work, we present Geometric Component
Analysis (GeomCA) algorithm that evaluates rep-
resentation spaces based on their geometric and
topological properties. GeomCA can be applied
to representations of any dimension, indepen-
dently of the model that generated them. We
demonstrate its applicability by analyzing rep-
resentations obtained from a variety of scenarios,
such as contrastive learning models, generative
models and supervised learning models.

1. Introduction
Efficient data representations have been shown to improve
machine learning models in numerous domains such as su-
pervised and transfer learning (Oneto et al., 2020; Wang
et al., 2020), density estimation (Kirichenko et al., 2020),
reinforcement learning (Ghosh & Bellemare, 2020), to name
a few. Significant progress has been made on learning rep-
resentations with different structures, for example disentan-
gled (Pfau et al., 2020; Kim & Mnih, 2018), in the form of
a specific manifold or curvature (Arvanitidis et al., 2018;
2020; Moor et al., 2020; Schönenberger et al., 2020), or
with particular similarity as learned by contrastive learning
algorithms (Le-Khac et al., 2020). In general, data represen-
tations are desirable not only due to their low dimension-
ality but also because they enable measuring meaningful
distances, which is especially critical in noisy data or visual
data such as images and videos.

The quality of learned representations is typically deter-
mined by their performance on a specific downstream task.
For example, disentanglement is determined by the accu-
racy of classifiers trained to predict the underlying factors
of variation present in the dataset (Higgins et al., 2017; Kim
& Mnih, 2018; Locatello et al., 2019). In reinforcement
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learning and robotics, usefulness of representations is evalu-
ated on the performance of the policy (Ghadirzadeh et al.,
2020; Laskin et al., 2020) and the robotics task (Lippi et al.,
2020), respectively. However, such evaluation favors rep-
resentations that are tied to the downstream task, making
them difficult to be generalized across variety of tasks.

A more general way to evaluate representations is to ana-
lyze how well their global structure, i.e., their geometric
and topological properties, reflect the underlying structure
of the data manifold. This direction has been recently ex-
plored in the context of Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014) where it is challenging
to define an appropriate downstream task for evaluation.
Recently proposed methods, such as Improved Precision
and Recall (IPR) (Kynkäänniemi et al., 2019) and Geome-
try Score (GS) (Khrulkov & Oseledets, 2018), have shown
success in detecting failure cases of GANs but provide little
insight into the actual structure of learned representations,
thus hindering further investigation of local areas of the
representation space where the potential failures arise.

Figure 1. Example of two images of different class label in the
ImageNet dataset belonging to the same connected component in
the VGG16 representation space.

In this work, we present a method for evaluating the struc-
ture of both the entire representation space and any of its
connected components. We achieve this by comparing two
discrete sets representing the true data manifold: the refer-
ence representation set R and the evaluation representation
set E. Depending on the application, R and E can consist
of raw data points or their features obtained from a neural
network. Intuitively, if the structure of evaluated representa-
tions E is well aligned with the structure of the reference
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representations R, then E well represents the underlying
data manifold.

Our method, called Geometric Component Analysis (Ge-
omCA), uses graphs to extract the structure of R and E, and
analyzes the degree of their alignment. In contrast to other
closely related methods such GS and IPR, we analyze the
alignment not only on a global level, but also on a local
level by analyzing the location and correspondence between
the connected components of R and E. We demonstrate
that GeomCA can detect outliers and connected components
in E that are not present in R, as well as identify the co-
ordinates of individual points from any component, thus
enabling their visualization.

We apply GeomCA to different practical setups. First, we
consider a contrastive learning scenario and evaluate the
structural similarity between the encodings belonging to
different classes of the training and validation datasets (Sec-
tion 4). Second, we evaluate generative models by compar-
ing the connected components of the training and generated
datasets (Section 5). Finally, we apply GeomCA to inves-
tigate if features extracted by a supervised model are sepa-
rated according to their respective classes (Section 6). For
instance, Figure 1 shows two images belonging to different
classes in the ImageNet dataset (Deng et al., 2009) that are
close to each other in the feature space of VGG16 (Liu &
Deng, 2015).

In summary, our contributions are: (i) we present GeomCA
for assessing the quality of data representations by lever-
aging their geometric and topological properties (Sections
2, 3), and (ii) we experimentally demonstrate valuable in-
sights provided by GeomCA on representations obtained
from various models and scenarios (Sections 4, 5, 6).

2. Method
In this section, we introduce the proposed GeomCA al-
gorithm. We present its intuitive idea in Section 2.1, its
technical details in Section 2.2 and its improvements over
the existing closely related methods in Section 2.3.

2.1. Intuitive Idea

The basic idea of the GeomCA algorithm is to compare the
global properties (topology) and local properties (geometry)
of two sets of representations, R and E, representing the
underlying true data manifoldM. We say that E is a good
representation ofM if it is well aligned with the reference
representation R. We aim to detect areas where R and E
are coherent and quantify their alignment, as well as detect
isolated individual representations (outliers) or groups of
points from only one of the sets R or E. In summary, we
wish to answer the following two questions:

(Q1) Do R and E have the same number of connected com-
ponents, and are their sizes comparable? [Topology]

(Q2) How much do the connected components of R and E
overlap? [Geometry]

We find the connected components of R and E by building
ε-threshold graphs, or in short, ε-graphs. In an ε-graph,
two points are connected by an edge if they are less than
the given threshold ε apart1. This allows us to immedi-
ately answer (Q1): we build ε-graphs GR,GE on R and E,
respectively, and compare the number of their connected
components as well as their sizes. Examples of ε-graphs for
ε1 < ε2 < ε3 are visualized in Figure 2. In the left panel, R
(in blue) and E (in orange) both have 6 connected compo-
nents composed of only one point each. When increasing ε,
edges among them start emerging (colored with respective
color of the set). In the middle panel, R has four connected
components of size 1 and one of size 2, while E has three
connected components of size 1, 2 and 3.

To answer (Q2), we additionally need to quantify the align-
ment of these connected components. Intuitively, this can
be measured in terms of edges connecting R and E. In
Figure 2, we visualized such edges in gray color. In the mid-
dle panel, the two R components in top right area are well
aligned with the largest E component. This area increases
for a larger ε shown in the right panel.

Figure 2. Examples of ε-graphs obtained for 0 < ε1 < ε2 < ε3
built on the sets R (blue) and E (orange).

We connect points from R and E using the same ε threshold
as in GR and GE . This is equivalent to building an ε-graph
GR∪E on the union R ∪E. In this way, studying the align-
ment of GR and GE translates to studying the nature of
the connected components of GR∪E . If R and E are well
aligned, all the connected components of GR∪E are “well
mixed”. This means, equally well represented by points
from R and E which are, in turn, also well geometrically
positioned. For example, in Figure 3 (a) and (b), both GR∪E
graphs have two connected components that are equally well
represented by R and E. However, in (b), R and E in the

1Vertex sets of graph-connected components in an ε-graph
are equivalent to clusters obtained from the DBSCAN clustering
algorithm (Ester et al., 1996).
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outer component are not well mixed but rather concatenated.
On contrary, in (c), the two components containing both R
and E points are well geometrically aligned but none of the
components are equally well represented by R and E.

In summary, we evaluate the topological and geometric
properties of R and E by investigating the connected com-
ponents of the ε-graph GR∪E . We answer (Q1) by analyzing
the nature of the vertices in each component, and (Q2) by
analyzing the nature of the edges. This intuitive idea is the
main driver behind GeomCA, which we rigorously define
in the following section.

Figure 3. Examples of 2-dimensional points representing the set
R (blue) and E (orange) arranged in components of different
consistency and quality.

2.2. GeomCA Algorithm

LetX = {xi}nX
i=1 ⊂ RM be a dataset of observations and let

Z = {zi}nX
i=1 ⊂ RN denote their representations obtained

from any model M, i.e., Z = M(X). In a machine learning
setup, it is commonly assumed that N �M , although this
is not necessary for GeomCA to work. Let R = {zi}nR

i=1

and E = {zi}nE
i=1 be two subsets of representations in Z for

which we assume that nR + nE ≤ nX and R 6= E. The
latter assumption eliminates the case where R and E are
perfectly aligned. While GeomCA provides most insight
into representations when R∩E = ∅, a non-empty intersec-
tion might be desirable in situations where it is important to
investigate deviations from the intersection R ∩ E.

As intuitively explained in Section 2.1, the idea of GeomCA
is to analyze the alignment of R and E using ε-threshold
graphs defined below.

Definition 2.1 An ε-threshold graph, or ε-graph, on the set
of points W with respect to the radius ε > 0 is a graph
Gε(W ) = (V, E) with vertices V = W and edges E =
{eij = (vi, vj) ∈ V × V | d(vi, vj) < ε}.

We built an ε-graph Gε(R ∪ E) on the union R ∪ E. We
discuss the choice of the radius ε in Section 3.1. In the
remainder of this section, we will refer to the graph Gε(R ∪
E) simply as G, and denote its connected components by
Gi such that G := tiGi. Moreover, we define a restriction
of a graph H to a subset W to be the subgraph HW ⊂ H
with vertex and edge sets restricted to W . For example, a

connected component Gi restricted to the set R is a graph
GRi obtained by removing all E points from the vertex set
as well as all the edges from and to them from the edge set
of Gi. Lastly, we denote by |H|V and |H|E the cardinalities
of the vertex set and edge set of a graphH, respectively.

Our algorithm (summarized in Algorithm 1) consists of a
local evaluation and a global evaluation phase. The for-
mer evaluates how well the connected components of G
are represented by R and E, while the latter evaluates the
alignment of R and E on the level of the entire graph G. We
describe each of these phases in detail in the following.

Local evaluation The goal of this phase is to analyze the
connected components of G. As mentioned in Section 2.1,
we study their geometric properties with respect to the sets
R and E. In particular, we study their (i) vertex heterogene-
ity determined by the ratio of representations from R and
E contained in them, and (ii) heterogeneity of edges among
these vertices. We refer to these geometric properties as con-
sistency and quality of connected components, respectively,
and rigorously define them in the following.

Definition 2.2 Consistency c of a component Gi is defined
as the ratio

c(Gi) = 1− | |G
R
i |V − |GEi |V |
|Gi|V

. (1)

A component Gi attains high consistency score c(Gi) if it
contains equally many representations from R and E, i.e.,
if |GRi |V ≈ |GEi |V . We call such component consistent. On
contrary, c(Gi) is low if Gi is dominated either by points
from R or E, in which case Gi is said to be inconsistent. In
Figure 3, panels (a) and (b) contain examples of consistent
components, while (c) shows inconsistent ones consisting
only of points from R. However, as seen in (b), consistency
itself is not a sufficient measure as it fails to detect cases
where R and E are consistent but not well geometrically
positioned. This is measured by component quality deter-
mined by the number of edges among representations from
R and E as defined below.

Definition 2.3 Quality of a component Gi is defined as the
ratio

q(Gi) =

{
1− (|GR

i |E+|G
E
i |E)

|Gi|E if |Gi|E ≥ 1,

0 otherwise.
(2)

A component Gi attains high quality score, if it exhibits
good connectivity among representations from R and E it
contains, i.e., if both |GRi |E and |GEi |E are small. We call the
edges connecting R and E heterogeneous and a component
with high number of heterogeneous edges to be of high
quality. On the other hand, if edges in Gi exist only among
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points from one of the sets R or E, the component achieves
low quality score and is said to be of low quality and its
edges homogeneous. In Figure 3 (a) and (b), the connected
components are consistent but only the ones in (a) are also
of high quality (visualised by large number of gray edges).
On contrary, the components in (c) are inconsistent but the
largest component in fact has many heterogeneous edges,
thus attaining high quality score.

Algorithm 1 GeomCA
Require: sets of representations R and E
Require: component consistency thresholds ηc
Require: component quality threshold ηq
Require: Distance threshold ε
G ← build epsilon graph(R,E)
[Phase: Local evaluation]
C ← get connected components(G)
Qlocal ← zeros(len(C), 2)
for i = 0, . . . ,len(C) do
Gi ← C[i]
compute c(Gi) as in Definition 2.2
compute q(Gi) as in Definition 2.3
Qlocal[i, :]← [c(Gi), q(Gi)]

end for
[Phase: Global evaluation]
compute c(G) and q(G) as in Definition 2.4
compute P,R with respect to ηc, ηq as in Definition 2.5
Qglobal ← [P,R, c(G), q(G)]

Return: Qglobal, Qlocal

Global evaluation The consistency and quality measures
can be also used in several ways to obtain global scores over
the entire ε-graph. First, we simply generalize Definitions
2.2 and 2.3 to G.

Definition 2.4 We define c(G) as network consistency, and
q(G) as network quality.

The global network consistency and quality are important
measures to detect imbalances between the sets R and E.
This is especially applicable in large-scale experiments
where the sizes of R and E are reduced for computational
purposes. We discuss such reduction in Section 3.2 and
demonstrate the usefulness of network consistency and qual-
ity measures in these situations in Section 5.

Next, we exploit the components of certain consistency and
quality to retrieve two more global scores: precision and
recall. These are determined by the fraction of points from
one set contained in specific components of G.

Definition 2.5 Let ηc, ηq ∈ [0, 1] be real numbers. Let

S(ηc, ηq) =
⋃

q(Gi)>ηq,
c(Gi)>ηc

Gi (3)

be the union of the connected components Gi with the mini-
mum consistency and quality scores determined by ηc and
ηq, respectively. Let S(ηc, ηq)R and S(ηc, ηq)E denote the
restrictions of S(ηc, ηq) to the sets R and E, respectively.
We define precision P and recallR with respect to ηc, ηq as

P =
|SE |V
|GE |V

R =
|SR|V
|GR|V

, (4)

respectively, where we omitted the explicit dependency on
ηc, ηq for simplicity.

The thresholds ηc and ηq determine the level of alignment
between the sets R and E that we wish to consider, and
therefore enable to easily focus our analysis on the con-
nected components of the desired quality and consistency.
A high value of ηc requires the components to be consistent
while a high value of ηq additionally requires the compo-
nents to have large number of heterogeneous edges. The
effect of these thresholds is demonstrated in Appendix A.1.

2.3. Comparison with Closely Related Methods

Our method is in spirit closest to Geometry Score (GS)
(Khrulkov & Oseledets, 2018), and in implementation to
Improved Precision and Recall score (IPR) (Kynkäänniemi
et al., 2019). Both of these methods were developed for
evaluation of generative models and therefore also use a ref-
erence set R consisting of training data, and an evaluation
set E consisting of the generated data. GS first estimates
the manifolds described by R and E using Witness com-
plexes, and then compares their topological properties using
persistent homology. The comparison is based on Relative
Living Times (RTL) of homology derived from persistence
barcodes in a probabilistic form. Because of Witness com-
plexes, GS relies on repetitive subsampling to obtain a stable
estimate. GeomCA instead compares topological properties
of R and E by analyzing an ε-graph which is equivalent to
the 1-skeleton of a Vietoris-Rips graph at the given threshold
ε. In contrast to GS, GeomCA exploits all the samples and
does not require subsampling. Compared to GS, GeomCA is
much simpler to tune as it depends only one hyperparameter
ε with an intuitive interpretation.

In IPR, the R and E manifolds are approximated using
spheres around each point with radius determined by their
k-nearest neighbours. The hyperparameter k can result in
large volumes in sparse areas, which authors resolve with
manual pruning. GeomCA could be interpreted as using
spheres of fixed radius ε, except that we do not endow the
graph with any volume. In order to run IPR, the sets R and
E need to have the same size, which is not requirement for
neither GS or GeomCA.

In contrast to both methods, GeomCA not only extracts the
connected component but also enables detailed analysis of
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their structure by investigating the corresponding vertices
and edges. Moreover, GeomCA enables flexibility to evalu-
ate components of specific size, consistency or quality. In
addition to the detailed local evaluation of the components,
our refined metrics also provide insights into the global
structure of the representation space.

3. Implementation Details and Experimental
Design

In this section, we provide additional implementation details
as well as an overview of our experiments.

3.1. Selecting distance threshold ε

The structure of the ε-graph G depends on the hyperpa-
rameter ε determining the maximum length of its edges.
Extracting the true underlying value of ε is a non-trivial
task, especially in higher dimensional representation spaces.
If ε is too small, each point is contained in its own com-
ponent, while ε too large connects all the points into one
single component. The true ε that results in the approxima-
tion ofM reflecting the correct topology of the space lies
between these two extreme choices. A more precise esti-
mate could be determined by topological algorithms, such
as persistent homology (Zomorodian & Carlsson, 2004).
However, due to computational and scalability issues of
this approach, we instead resort to a simple practically ap-
plicable heuristic and estimate ε empirically by examining
the distances in the reference set R. We randomly sample
2k representations from R and calculate their pairwise dis-
tances D = {d(zi, zj)| i = 1, . . . k, j = k + 1, . . . , 2k}.
We then set ε as pth percentile of the set D and denote it
by ε = ε(p). In our experiments, we chose small p in sce-
narios where we expect the distances among certain points
to have low variance. For example, in contrastive learning,
we expect points considered similar to have small distances
(Section 4). On the other hand, in high-dimensional rep-
resentation spaces, we expect the estimated distances to
naturally have a larger variance which is why we chose a
larger p (Sections 5 and 6). We leave the improvements on
the choice of ε as future work.

3.2. Reducing the number of representations

As seen from Definition 2.1, the construction of ε-graph
involves calculation of pairwise distances among points in
R∪E. Such calculation can become a computational burden
when analyzing large sets of representations. One way to
reduce the number of representations in R and E without
losing the topological information is to perform geometric
sparsification defined below.

Definition 3.1 A geometric sparsification of a set W with
respect to a sparsificaltion distance δ > 0 is a subset W ′ ⊂
W such that d(wi, wj) > δ for every wi, wj ∈W ′, i 6= j.

The sparsificaiton parameter δ determines the extend of data
reduction, where a larger δ results in a sparser point cloud.
We perform geometric sparsification on the sets R and E
separately, such that we can construct the ε-graph more
efficiently using the obtained sparse sets R′ and E′. The
reason for separate sparsification of R and E is to detect
potential differences in their topology. Intuitively, if R and
E reflect the structure of the same representation space, then
so should the sparsified sets.

We emphasize that this is an optional pre-processing step
added for computational efficiency and can be disregarded
if sufficiently powerful hardware is available. Note that
the process affects the introduced consistency score c as
it reduces the number of points in sets R and E but does
not change their topology precisely because it takes into
account the geometric position of the points. The choice
of the sparsification parameter δ is closely related to the
choice of the distance threshold ε, and should be chosen
from the interval [0, ε]. Intuitively, if δ = ε, a component in
the ε-graph G is created only when points from R and E are
well mixed. This means that between every pair of points
from one set (e.g., R) there necessarily needs to exists a
point from the other set (e.g., E) that is less than ε apart
from both of the points from the first set (e.g., R). On the
other hand, if δ < ε, we still allow points from each of the
sets to get connected without having a “witness” from the
other set.

3.3. Experiment Overview

We implemented GeomCA described in Algorithm 1 using
GUDHI library (The GUDHI Project, 2020) which sup-
ports efficient computation of geometric sparsification, and
Networkx library (Hagberg et al., 2008) for building and
analyzing ε-graphs. Our code is available on GitHub2. We
applied GeomCA on three different scenarios and evaluated

• similarity of representations obtained from two con-
trastive learning methods, Siamese (Hadsell et al.,
2006) and SimCLR (Chen et al., 2020),

• quality and diversity of images generated by a Style-
GAN (Karras et al., 2019), and

• separability of representations obtained from a pre-
trained VGG16 (Liu & Deng, 2015) model on Ima-
geNet (Deng et al., 2009).

We compared the results with IPR and GS methods using
hyperparameters described in Appendix A. We denote the

2https://github.com/petrapoklukar/GeomCA

https://github.com/petrapoklukar/GeomCA


Geometric Component Analysis

Figure 5. Precision P and recall R scores obtained on representa-
tions from Siamese network trained on Df (left) and Dm (right)
when varying mode truncation level t. We compare the results with
IP and IR scores, as well as GS computed on balanced (b) and
imbalanced (imb) sets R and Et (multiplied by 10 on the right).

IPR precision and recall by IP , IR, respectively, and mark
GS scores with b if R and E were of the same size (bal-
anced) and imb in the opposite case (imbalanced). In all
experiments, the components analyzed in the local evalua-
tion were sorted by their size in decreasing order such that
G0 always denotes the largest component in the graph.

4. Experiment 1: Contrastive Learning
We evaluated two models for learning contrastive represen-
tations, Siamese and SimCLR, on an image dataset intro-
duced by (Chamzas et al., 2020). Images, shown in Figure 4,

Figure 4. Examples of box im-
ages recorded from front, right
and left views (left to right) con-
tained in Df and Dm.

consist of four boxes
placed in 12 possible
arrangements recorded
from front, left and right
camera views in differ-
ent scene color configu-
rations. In this exper-
iment, we used two of
their datasets: (i) Df
containing front view im-
ages and (ii) Dm addi-
tionally containing im-

ages recorded from the left and right views. Each dataset
consists of 5000 training images and 5000 test images not
used during training. We always constructed R and E from
12-dimensional representations of training and test images,
respectively.

Mode Truncation Experiment In the first experiment, we
applied GeomCA to investigate mode collapses and mode
discoveries, two possible scenarios occurring during training
of deep neural networks. We constructed R from represen-
tations corresponding to the first 7 classes (arrangements of
boxes), c0, . . . , c6, and defined the setsEt to contain images

from the first t classes, c0, . . . , ct, for t = 0, . . . , 11 (see
Appendix A.1 for exact sizes of these sets). Therefore, Et
imitate mode collapse for t < 7 and mode discovery for
t > 7. Since contrastive learning models should encode sim-
ilar classes closeby, we used a small ε = ε(1). Moreover,
we used δ = ε

2 to allow the homogeneous clusters also form-
ing a component (see discussion in Sections 3.1 and 3.2),
and chose ηc = 0.75, ηq = 0.45 in order to analyze only
consistent components of high quality.

In Figure 5, we show precision and recall scores, P,R,
obtained on R ∪ Et for each t. The representations were
obtained from two Siamese models trained on Df (left) and
Dm (right). We observe that the scores correctly reflect
the number of modes covered by each Et, where recall (in
orange) increases but precision (in blue) decreases with in-
creasing t. At t = 6, where E6 perfectly matches R, both
P,R are high. We observe that the scores correlate well
with the IPR scores (visualised in purple and yellow), but not
with GS which fails to detect mode discovery cases. Note
that IPR scores require R and E to have the same size and
were obtained by randomly sampling min(|R|, |E|) sam-
ples for each of the sets. This is not needed for GeomCA
which can handle even heavily imbalanced sets, for example,
as obtained for t = 0 or t = 11. We applied GS on both
imbalanced (dark green) and balanced (light green) sets, fol-
lowing the authors’ recommendation, which yielded similar
results. Moreover, GeomCA and IPR correctly identify the
modes even on the harder dataset Dm (right panel), where
GS is unsuccessful also for the mode collapse cases.

However, using local evaluation, GeomCA can provide a
more detailed insight into the sets R and Et. For example,
in the right panel of Figure 5 we observe a drop in P,R
scores at t = 2. We investigated this by analyzing the
quality of the components Gi of G(R ∪ E2) containing at
least 100 representations, i.e, |Gi|V > 100. The resulting
scores are visualized in the left panel of Figure 6, where
the markers of the components were scaled with their size,
and colored with blue if they contain only points from R
and gray if they additionally contain points from E. We
clearly see that the drop in P,R scores originates from the
large heterogeneous component G2 with q(G2) just below
the chosen threshold ηq = 0.45. Moreover, we see that
the model fails to fully separate all 7 classes since we can
observe only 6 large components (x-axis). This is even more
evident when performing the same analysis on G(R ∪ E3)
visualized in the right panel of Figure 6. Here, we observe
only 4 large components and a significant growth in size
of the first component which now contains 53% of R ∪
E3 instead of 24 % of R ∪ E2 as for t = 2. Note that
such detailed insights cannot be obtained by the existing
frameworks such as IPR and GS.
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Figure 6. Quality of the components (y-axis) containing more than
100 points obtained at t = 2 (left) and t = 3 (right) from the
Siamese network on Dm. The gray line denotes the threshold
ηq = 0.45. Components’ markers are scaled with their size. Gray
denotes heterogeneous components, while blue denotes homoge-
neous components consisting only of R.

In Appendix A.1, we demonstrate how the component con-
sistency and quality thresholds ηc, ηq can be flexibly ad-
justed to evaluate only components of certain minimum
quality.

Evaluating class separability In Figure 5 (left), we have
seen thatR and E6 obtained fromDf by the Siamese model
are well aligned. In this experiment, we applied GeomCA
to both Siamese and SimCLR models and investigated the
extend of the separation that these models achieve among
the 7 classes contained in the sets R and E6. In an ideal
case, we would observe exactly 7 consistent components
of high-quality. Moreover, if the clusters are far apart from
each other, the result should be robust to the choice of the
distance threshold ε. However, as discussed in Section 3.1,
for a too small ε, there should be no such components,
while for a too large ε we should observe only one large
component. To eliminate the effect of sparsification and
ensure perfect consistency, we randomly sampled 250 points
from each of the classes ct and ran GeomCA without any
further reduction of points.

In Figure 7, we plot the number of components with
|Gi|V > 100 obtained by Siamese (in green) and SimCLR
models (in red) when varying ε ∈ {0.05, 0.1, . . . , 0.9}. We
clearly observe that only Siamese model well separates the
classes since we observe 7 components for a large range of
ε choices. Surprisingly, SimCLR is much more sensitive to
the choice of ε, Moreover, we observe that Siamese network
achieves higher network quality than SimCLR (visualized
in Figure 10, Appendix A.1),

5. Experiment 2: Generative Models
GeomCA algorithm can also be used to evaluate the quality
and diversity of samples generated by generative models.

Figure 7. Number of components containing more than 100 points
(y-axis) obtained from Siamese and SimCLR models when
varying the distance threshold ε.

We used a StyleGAN trained on FFHQ dataset (Karras et al.,
2019) and replicated the truncation experiment as performed
in (Kynkäänniemi et al., 2019). Here, the latent vectors gen-
erating images are during testing sampled from a truncated
normal distribution such that the values which fall outside a
given range are resampled to fall inside that range (Brock
et al., 2019). The level of truncation is controlled by the
parameter ψ determining a tradeoff between perceptual qual-
ity and variation of images. We generated 50000 images
and obtained their 4096-dimensional representations from a
pretrained VGG16 model. These composed the set E, while
we created R from 50000 representations of the training
data. Due to large dimensionality of the representations,
we chose ε = ε(10), and ηc, ηq = 0. Since the generated
representations E are in an ideal case well aligned with R,
we chose δ = ε.

Figure 8. Results of the StyleGAN truncation experiment. Left:
GeomCA precision and recall P,R compared with IPR and GS
(multiplied by 10) scores. Right: network consistency c(G) and
quality q(G) as well as the size |G0|V of the only component
containing more than 100 points (scaled by the number of all
points in G).
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In the left panel of Figure 8, we visualize GeomCA P and
R, IPR and GS (multiplied by 10) scores obtained at each
truncation level ψ. We observe that all methods reflect the
applied truncation, with some deviations for GS at ψ = 0.
Comparing GeomCA and IPR, we observe fairly consistent
recall but more variation in the precision scores. Therefore,
we further investigated the network consistency c(G) and
network quality q(G). The results, visualized in the right
panel of Figure 8, show that the network consistency (green)
is lower than 0.5 for ψ ≤ 0.8. This is the effect of the
geometric sparsification, which in fact removes the majority
of E points. For example, the sparsified E contains only 2
points for ψ = 0.0, 0.1. As in Section 3.2, we argue that this
provides valuable insights into the structure of the generated
points. If these reflected the structure of the training points
R, the sparsification would return sparsified sets R and E
of approximately the same size. Since this is not the case
even for ψ = 1.0, we argue that the model fails to fully
learn the true distribution of the training data, which is
also reflected in our low precision scores P . Note that the
network has perfect quality regardless the value of ψ due to
δ = ε. As discussed in Section 3.2, this requires every point
in R to be ‘witnessed” by a point in E, which give rise to
heterogeneous edges in the network.

Investigation of homogeneous edges requires to choose δ <
ε and potentially increasing ε itself. In Appendix A.2, we
provide further experiments when varying both ε and δ and
show that GeomCA correctly reflects the structure of the
space in all cases. We also use this large scale experiment
to perform both time complexity and robustness analysis for
varying number of samples considered in the sets R and E.

6. Experiment 3: VGG16 Model
The FFHQ representations in the StyleGAN evaluation in
Section 5 are obtained from a VGG16 model pretrained on
the ImageNet dataset. In a detailed analysis, we always
observed only one connected component containing more
than 100 points, the size of which grew with the truncation
ψ as shown in the right panel of Figure 8 (in gray and la-
beled with |G0|V ). However, since VGG16 is a supervised
learning model, we would expect it to be able to separate rep-
resentations at least to some extent. To determine whether
this inseparability originates from the VGG16 model or the
nature of the FFHQ dataset, which contains images of faces,
we also applied GeomCA to VGG16 representations of the
ImageNet dataset.

We performed a simple experiment and defined the sets R
and E to contain 5 different classes of the ImageNet dataset
each. In version 1, we manually chose classes representing
kitchen utilities for R, and dogs for E such that R and E
contain semantically different representation (see Appendix
A.3 for exact labels and sizes). In version 2, the 5 classes

Table 1. GeomCA scores obtained on VGG16 representations from
ImageNet experiment in version 1 (Kitchen utilities vs dogs) and
version 2 (random) compared with IPR and GS scores.

KITCHEN VS. DOGS RANDOM

c(G), q(G) 0.75, 1.00 0.98, 1.00
P 0.0042 0.0423
R 0.0130 0.0391

|GR|V 1688 1688
|GE |V 2839 1630
|G0|V 18 77

# NON TRIVIAL Gi 7 25

IP, IR 0.78, 0.97 0.95 , 0.98
GS 0.0018 0.0004

for R and E were chosen at random. If VGG16 is able
to separate the classes, then we do not expect to obtain
components with high consistency and quality in version
1, while few small ones can emerge in version 2 due to the
random choice. Moreover, if the sets in version 1 reflect
differences in semantic information of classes, this could
potentially be seen in the imbalances after the sparsification
process, while this should not be significant in version 2.

As in Section 5, we estimated ε = ε(10) and chose δ = ε.
The results of the global and local GeomCA evaluation as
well as IPR and GS scores are shown in Table 1. The graph
G in version 1 achieves 75% consistency, which is indeed
the result of sparsification. This indicates that the designed
sets R and E contain different semantic information. More-
over, since P andR are both low, we conclude that there is
little overlap between the sets. This can also be seen from
the fact that we obtain only 7 non trivial components con-
taining more than one point, where the largest component
G0 contains only 18 elements. On contrary, we observe high
c(G) and slightly larger P,R scores in version 2, which
indicates that there are few areas where R and E are well
aligned. This can also be seen from larger number of non
trivial components as well as more points in the largest com-
ponent. Note that q(G) = 1 due to δ = ε. Therefore, we
hypothesise that VGG16 achieves a certain level of separa-
tion of ImageNet training classes. We emphasise that it is
difficult to draw the same conclusion from either IPR or GS
as they fail to provide such detailed insight.

To gain further insights into separability capabilities of the
model, we visualize images of representations contained in
the obtained components. In Figure 9, we visualize in red
a component containing two representations, and in blue
an E outlier, both from version 1 (top row) and version 2
(bottom row). In both cases, red components show examples
of erroneous merges based on human labels, which are not
surprising due to the striking similarity between the images.
In the top row, both images contain a silver pot, while the
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Figure 9. Examples of ImageNet images corresponding to the rep-
resentations from version 1 (top) and version 2 (bottom) obtained
from a pretrained VGG16. Images with red stroke are taken from
components of size 2, where left column images belong to rep-
resentations of R and right ones to E. Images with blue stroke
correspond to outliers. See the text for discussion.

right one also shows a dog. In the bottom row, the crabs in
the images belong to two different species that are arguably
hard to differentiate but both are placed in a human hand.
Another example from version 2 is shown in Figure 1 where
images have similar background but contain different object
in the center. In the case of outliers, it is rather hard to spot
the dog in the lower corner of the top row image, while the
sliding window in the bottom one, which is the image label,
seems to be of secondary focus after the animals.

7. Conclusion and discussion
We presented GeomCA algorithm for evaluating topological
and geometrical properties of representation spaces. The
intuition behind GeomCA is that if two given sets of repre-
sentations R and E contain observations from the same data
manifold, then they are necessarily well aligned. We mea-
sure this alignment by analyzing the connected component
of an ε-threshold graph built on their union R∪E. For each
component, we determine its consistency by measuring the
ratio of points from R and E contained in it, and quality
by measuring the ratio of heterogeneous edges connecting
points from R and E. Moreover, we aggregate these scores
into four global measures, precision, recall, network consis-
tency and network quality. We demonstrate the usefulness of
the proposed global and local measures in several different
scenarios such as evaluation of separability of representa-
tions obtained from both contrastive learning or supervised
learning algorithms as well as in the evaluation of trained
generative models.
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