
Bias-Free Scalable Gaussian Processes via Randomized Truncations

A. Proof of Biases for CG and RFF
A.1. Proof of Theorem 1

Proof. To prove the bias of the CG log marginal likelihood
terms, we rely on a connection between conjugate gradients,
the Lanczos algorithm (Lanczos, 1950), and Gauss quadra-
ture. In particular, we demonstrate that uJ and vJ – CG’s
estimates for y>K̂−1

XXy and log |K̂XX| terms – are equiva-
lent to Gauss quadrature approximations of two Riemann-
Stieljes integrals. We then use quadrature error analysis to
prove the biases of these terms.

Expressing y>K̂−1
XXy and z>(log K̂XX)z as Riemann-

Stieljes integrals. First, we note that y>K̂−1
XXy and

z>(log K̂XX)z (our stochastic trace estimate of log |K̂XX|)
can both be expressed by the quadratic form w>f(A)w,
where f(A) denotes a matrix function of the matrix A, and
w is a vector. Letting A = PΛP> be the eigendecomposi-
tion of A, we can write this quadratic form as

w>f(A)w = w>Pf(Λ)P>w = ‖w‖2
N∑
i=1

f(λi)µ
2
i ,

where λmin ≤ λi ≤ λmax are the diagonal elements of Λ
(i.e. the eigenvalues) – ordered from smallest to largest, and
µi are the components of P>w/‖w‖. The summation in
the above equation can be expressed as a Riemann-Stieltjes
integral:

I[f] := ‖w‖2
N∑
i=1

f(λi)µ
2
i

= ‖w‖2
∫ λmax

λmin

f(t)dµA(t), (S1)

where the measure µA(t) is a piecewise constant function

µA(t) =

0, if t < λmin,∑i
j=1 µ

2
j , if λi ≤ t < λi−1∑N

j=1 µ
2
j , if λmax ≤ t.

(S2)

See (Golub & Meurant, 2009) for more details.

The Lanczos algorithm approximates these integrals
with Gauss quadrature. The Lanczos algorithm (Lanc-
zos, 1950), which is briefly described in Sec. 3.1, iter-
atively expresses a symmetric matrix A via the partial
tridiagonalization T

(J)
w = Q

(J)>
w AQ

(J)
w . Q

(J)
w ∈ RN×J

is a orthonormal matrix with w/‖w‖ as its first column,
and T

(J)
w is a J × J tridiagonal matrix. Briefly, the

columns of Q(J) matrices are computed by performing
Gram-Schmidt orthogonalization on the Krylov subspace
[w,Aw,A2w, . . . ,AJ−1w], and storing the orthogonal-
ization constants in T

(J)
w .

The Lanczos algorithm is commonly used to estimate
quadratic forms:

w>f(A)w ≈ w>Q(J))wf
(
T(J)

w

)
Q(J)>)ww

= ‖w‖2e>1 f
(
T(J)

w

)
e1, (S3)

where e1 is the first unit vector. Note that Eq. (S3) holds
because the columns of Q

(J)
w are orthonormal.

There is a well-established connection between Eq. (S3) and
numeric quadrature (e.g. Golub & Meurant, 2009). More
specifically, Eq. (S3) is exactly equivalent to a J-term Gauss
quadrature rule applied to the Riemann-Stieltjes integral
in Eq. (S1). We can thus analyze Lanczos estimates of
w>f(A)w using standard Gauss quadrature error analysis.

Equivalence between CG and the Lanczos algorithm.
We will now show an equivalence between our estimates
uJ ≈ y>K̂−1

XXy and vJ ≈ z>(log K̂XX)z and Lanczos
algorithm approximations. Note that we have already es-
tablished vJ ≈ z>(log K̂XX)z as a Lanczos algorithm
approximation in Eq. (8):

z> = ‖z‖2e>1 (log T(J)
z)e1.

For uJ ≈ y>K̂−1
XXy, we exploit a connection between CG

and Lanczos (Golub & Van Loan, 2012, Ch. 11.3):

J∑
j=1

γjdj = ‖y‖Q(J)
y (T(J)

y)−1e1, (S4)

where
∑J
j=1 γjdj (see Eq. 4) is the J th CG approximation

to K̂−1
XXy. Multiplying Eq. (S4) by y>, we have

uJ = y>

 J∑
j=1

γjdj

= ‖y‖y>Q(J)

y (T(J)
y)−1e1

= ‖y‖2e>1 (T(J)
y)−1e.

Therefore, the CG approximations of y>K̂−1
XXy and

z>(log K̂XX)z are both Lanczos approximations. Putting
all the pieces together, we have just shown that uJ and vJ
are equivalent to J-term Gauss quadrature rules applied to
the following integrals:

y>K̂−1
XXy = ‖y‖2

∫ λmax

λmin

t−1 dµK̂XX
(t), (S5)

z>
(

log K̂−1
XX

)
z = ‖z‖2

∫ λmax

λmin

log(t) dµK̂XX
(t), (S6)

where the measure µK̂XX
(t) is defined by Eq. (S2).

Bias-Free Scalable Gaussian Processes via Randomized Truncations

Applying Gauss quadrature error analysis to uJ and vJ .
To analyze the bias of teh CG estimates, we make use of
standard error Guass quadrature error analysis. If L(J)

G [f]
is the J-term Gaussian quadrature approximation of the
Riemann-Stieltjes integral I[f] (see Eq. S1), the error can
be exactly expressed as:

I[f]− L(J)
G [f] = (γ1 · · · γJ−1)2 f

(2J)(η)

(2J)
, (S7)

for some η ∈ [λmin, λmax], where f (2J) is the 2J th deriva-
tive of f and {γi} are some quantities that depend on the
spectrum of the matrix K̂XX (Golub & Meurant, 2009, Ch.
6).

Turning back to uJ , the corresponding function f(t) = t−1

has even derivatives of the form f (2J) = (2J)! t−(2J+1) >
0,∀J, ∀t ∈ (λmin, λmax). Replacing I[f] with the integral
defined by Eq. (S5), we have that y>K̂−1

XXy − uJ ≥ 0,
which proves that CG underestimates y>K̂−1

XXy. Similarly
for vJ , the corresponding f(t) = log t has even deriva-
tives of the form f (2J) = −(2J − 1)! t−2J < 0,∀J, ∀t ∈
(λmin, λmax). Replacing I[f] with the integral defined by
Eq. (S6), we have that z>(log K̂XX)z− vJ ≤ 0.

The convergence rates of uJ and vJ follow from Eq. 4.4
of Ubaru et al. (2017). Let ρ = (

√
κ+ 1)/(

√
κ− 1), where

κ is the condition number of K̂XX (i.e. the ratio of its
maximum and minimum singular values). Then

‖y>K̂−1
XXy − uJ‖ ≤ Cρ−2J ,

‖z>(log K̂XX)z− vJ‖ ≤ Cρ−2J ,

where C is a constant that depends on the extremal eigen-
values of K̂XX.

A.2. Proof of Theorem 2

Proof. The inequalities are a result of applying Jensen’s
inequality to the inverse of a positive definite matrix (which
is a convex function) and the log determinant of a positive
definite matrix (which is a concave function). For example,
for the y>K̂−1

XXy term we have that

E
P(ω)

[
y>K̃−1

J y
]

= y> E
P(ω)

[
K̃−1
J

]
y

≥ y>
(

E
P(ω)

[
K̃J

])−1

y

= y>K̂−1
XXy

A similar procedure, but in the opposite direction applies to
the log |K̂XX|.

To estimate the rate of decay of the biases, we rely on two
keys ideas. The first idea is to translate the central moments

of the kernel matrix being approximated by the random
Fourier features into the central moments of these features.
This strategy resembles the analysis in (Nowozin, 2018)
which uses (Angelova, 2012, Theorem 1). The second idea
is to use an approximation to two matrix functions. For
the inverse function we use a Neumann series and for the
logarithm we use a Taylor series. These series require that
the eigenvalues of the approximation residual (K̂XX − K̃J)
are less than 1. We will make this assumption as we know
that for a large enough J , the kernel approximation will be
close to K̂XX. Below is a formal argument.

For a fixed ω we can write

y>K̃−1
J y = y>

(
K̂XX − K̂XX + K̃J

)−1

y

= y>K̂
−1/2
XX

(
I− I + K̂

−1/2
XX K̃JK̂

−1/2
XX

)−1

K̂
−1/2
XX y

= y>K̂
−1/2
XX

(
I−

(
I− K̂

−1/2
XX K̃JK̂

−1/2
XX

))−1

K̂
−1/2
XX y

(S8)

this last form allow us to use a Neumann series to expand
the inner inverse matrix. Hence, we have that(

I−
(
I− K̂

−1/2
XX K̃JK̂

−1/2
XX

))−1

=

∞∑
t=0

(
I− K̂

−1/2
XX K̃JK̂

−1/2
XX

)t
Combining this with Eq. (S8), we have that

E
P(ω)

[
y>K̃−1

J y
]

= y>K̂−1
XXy

+

∞∑
t=2

y>K̂
−1/2
XX E

P(ω)

[(
I− K̂

−1/2
XX K̃JK̂

−1/2
XX

)t]
K̂
−1/2
XX y

(S9)

where the first term of the series (t = 0) is the data-
fit term being approximated and the second term of the
series cancels out (t = 1). Following the analysis in
(Nowozin, 2018) we translate the central moments of the
random variable K̂

−1/2
XX K̃JK̂

−1/2
XX to the central moments

of K̂
−1/2
XX

(
φ (ω)φ (ω)

>
+ σ2I

)
K̂
−1/2
XX denoted as µi for

i ≥ 2. Since the term (t = 2) will dominate, we will only
focus on it (as the others would be of a higher order in J ,
see (Angelova, 2012)). We have that

E
P(ω)

[(
I− K̂

−1/2
XX K̃JK̂

−1/2
XX

)2
]

=
µ2

J
(S10)

Therefore, incorporating the previous result into Eq. (S9),
allows us to conclude that

E
P(ω)

[
y>K̃−1

J y
]
− y>K̂−1

XXy = O (1/J)

Bias-Free Scalable Gaussian Processes via Randomized Truncations

For the model complexity term log |K̂XX| we follow a sim-
ilar procedure as before. For a fixed ω

log
∣∣∣K̃J

∣∣∣ = log
∣∣∣K̂XX − K̂XX + K̃J

∣∣∣
= log

∣∣∣K̂XX

∣∣∣− log
∣∣∣I− (I− K̂

−1/2
XX K̃JK̂

−1/2
XX

)∣∣∣
Focusing on the last term we have that

log
∣∣∣I− (I− K̂

−1/2
XX K̃JK̂

−1/2
XX

)∣∣∣
= tr

(
log
(
I−

(
I− K̂

−1/2
XX K̃JK̂

−1/2
XX

)))
We can rewrite the term in the R.H.S as follows

log
(
I−

(
I− K̂

−1/2
XX K̃JK̂

−1/2
XX

))
=

∞∑
t=1

1

t

(
I− K̂

−1/2
XX K̃JK̂

−1/2
XX

)t
Again, following the analysis of (Nowozin, 2018),
we can express the central moments of the random
variable K̂

−1/2
XX K̃JK̂

−1/2
XX to the central moments of

K̂
−1/2
XX

(
φ (ω)φ (ω)

>
+ σ2I

)
K̂
−1/2
XX denoted as µi for

i ≥ 2. Also, as explained before, the dominant term will
be (t = 2), therefore we have that thus, using Eq. (S10) we
have that

tr
(

E
P(ω)

[
log
(
I−

(
I− K̂

−1/2
XX K̃JK̂

−1/2
XX

))])
= O (1/J)

Therefore, we can conclude that

E
P(ω)

[
log
∣∣∣K̃J

∣∣∣]− log
∣∣∣K̂XX

∣∣∣ = O (1/J) .

B. Further Derivations of Randomized
Truncation Estimators

Here we prove the unbiasedness of both Russian Roulette
(RR) Eq. (6) and Single Sample (SS) Eq. (7) estimators.
Recall from Sec. 2.3 that we wish to estimate the expensive

ψ =
∑H
j=1 ∆j , H ∈ N ∪ {∞},

by computing just the first J � H terms, where J ∈
{1, . . . ,H} is randomly drawn from the truncation distri-
bution P(J = J). RR and SS estimators, denoted as ψ̄,
offer two strategies for up-weighting the J computed terms,
which, as we will prove below, yield an unbiased estimator
EJ [ψ̄] = ψ.

B.1. Unbiasedness of the RR Estimator

The RR estimator of Eq. (6) is unbiased, i.e., EJ
[
ψ̄J
]

= ψ.

Proof.

EJ
[
ψ̄J
]

= EJ

 J∑
j=1

∆j

P(J ≥ j)

= EJ

 H∑
j=1

∆j

P(J ≥ j)
· Ij≤J

=

H∑
j=1

∆j

P(J ≥ j)
EJ [Ij≤J]

=

H∑
j=1

∆j

P(J ≥ j)

[
H∑
J=1

P(J = J) · IJ≥j

]

=

H∑
j=1

∆j

P(J ≥ j)
P(J ≥ j) = ψ

B.2. Unbiasedness of the SS Estimator

The SS estimator of Eq. (7) is unbiased, i.e., EJ
[
ψ̄J
]

= ψ.

Proof.

EJ
[
ψ̄J
]

= EJ

 H∑
j=1

∆j

P(J = j)
· IJj1j=J

=

H∑
j=1

∆j

P(J = j)
EJ [Ij=J]

=

H∑
j=1

∆j

P(J = j)

H∑
J=1

P(J = J) · IJ=j

=

H∑
j=1

∆j

P(J = j)
P(J = j) = ψ

B.3. Minimizing the Variance of the SS Estimator

Below we will derive the optimal distribution that minimizes
the variance of our SS estimator. Note that for a given
truncation distribution, we have that

VJ
(
ψ̄
)

=
H∑
j=1

∆2
j

P (J = j)
2VJ (IJ=j)

=

H∑
j=1

∆2
j

(
1− P (J = j)

P (J = j)

)

Bias-Free Scalable Gaussian Processes via Randomized Truncations

since IJ=j is a Bernoulli random variable with probability
P (J = j), we can plug-in its variance and derive the second
equality. Hence, to find the truncation distribution that
minimizes the variance of the SS estimator we can solve the
following constraint optimization problem.

min
p

H∑
j=1

∆2
j

1− pj
pj

s.t.
H∑
j=1

pj = 1, pj ≥ 0

where pj is acting as a shorthand of P (J = j). The La-
grangian of the problem is

L (p, λ) =

H∑
j=1

∆2
j

1− pj
pj

+ λ

1−
H∑
j=1

pj

where we can ignore the nonnegativity constraints in pj as
long as ∆j > 0 (see solution below). Hence, the first order
conditions dictate that

∂L
∂pj

(
p?j , λ

?
)

= −

(
∆2
j

p?j

)2

+ λ? = 0

therefore, if we take the ratio of the probabilities with respect
to the first we get that p?j =

∆j

∆1
p?1. If we substitute this

expression in the equality constraint we get that

P? (J = j) =
∆j∑H
i=1 ∆i

∝ ∆j (S11)

We emphasize that this result is a guide for practical choices
of the truncation distribution. It is impractical to compute
it as it will require evaluating all the ∆j for j = 1, . . . ,H .
However, if we posses an estimate or a theoretical bound
on rate of decay of each ∆j then our unnormalized trunca-
tion distribution should also decay at this rate to minimize
variance.

B.4. SS estimator as Importance Sampling

Here we derive the SS estimator by importance sampling
the quantity ψ with P(J = J) as our proposal distribution.

ψ =

H∑
J=1

∆J

Next, re-write the summation above as an expectation over
the discrete uniform distribution J ∼ U [1, H] = 1

H , ∀J :

= H

H∑
J=1

1

H
∆J ,

We now introduce an alternative proposal distribution J ∼
P(J = J):

= H

H∑
J=1

∆J

HP(J = J)
P(J = J)

= E
J∼P(J=J)

[
∆J

P(J = J)

]
,

Approximating the final expectation using a single Monte
Carlo sample results in the SS estimator.

C. Estimating the Marginal Log Likelihood
from RR-CG

Recall from Sec. 4.1 that we use the Russian Roulette esti-
mator in conjunction with conjugate gradients to compute
an unbiased (stochastic) gradient of the log marginal likeli-
hood. In this section, we briefly describe how to obtain an
unbiased estimate of the log marginal likelihood itself.

The y>K̂−1
XXy term can be estimated directly from the

K̂−1
XXy solve in Eq. (16). The log |K̂XX| term is less

straightforward, as the estimate from the CG byproducts
(Eq. 8) isn’t readily expressed as a summation. Instead,
we apply the Russian Roulette estimator to the following
telescoping series:

log |K̂XX| ≈ ‖z‖2eT1
(

log T(N)
z

)
e1 (S12)

= ‖z‖2eT1
(

log T(1)
z

)
e1 +

N∑
j=2

∆j ,

where ∆j = ‖z‖2eT1
(

log T
(j)
z − log T

(j−1)
z

)
e1. We can

therefore apply the Russian Roulette estimator with trun-
cation P(J) to Eq. (S12). This telescoping series can be
expensive to compute. Since it is unnecessary for gradient-
based optimization, we introduce it only as a tool to analyze
the RR-CG log marginal likelihood.

D. Optimal Truncation Distributions
D.1. Proof of Theorem 3

Proof. For Thm. 3 we have to combine the results of Thm. 1
with the optimal distribution for RR that is derived in Beat-
son & Adams (2019). We will only focus on vJ which that
approximates log |K̂XX| since the procedure is analogous
for uJ which approximates y>K̂−1

XXy. Beatson & Adams
(2019, Theorem 5.4) state that the optimal RR truncation
distribution that maximizes the ROE is

P∗ (J ≥ j) ∝

√
E [||vj ||2]

c (j)− c (j − 1)

where c (j) is the computational cost of evaluating vj
which is the j-th term being approximated through Russian

Bias-Free Scalable Gaussian Processes via Randomized Truncations

Roulette. In this case, the vj are nonrandom and single-
valued and the cost per iteration is constant with respect to
j. Hence, we can conclude that

P∗ (J ≥ j) ∝ vj = O
(
C−2j

)
which implies that P∗ (J ≤ j) ∝ 1 − O

(
C−2j

)
since the

derivative of an exponential function is of the same form we
have that P∗ (J = j) ∝ O

(
C−2j

)
.

D.2. Proof of Theorem 4

The strategy for Thm. 4 is to relate the kernel approximation
using J + 1 random Fourier features to the kernel approx-
imation using J features for the two components of the
log marginal likelihood: the data-fit term y>K̂−1

XXy and
the model complexity term log |K̂XX|. For y>K̂−1

XXy we
create this connection through the Sherman-Morisson for-
mula and for the log |K̂XX| we use the matrix determinant
lemma. Throughout these proofs, we will require some
results regarding positive definite matrices that we add as
remarks below. Before stating those remarks, we will first
introduce some auxiliary notation.

KJ :=
1

J

J∑
j=1

φjφ
>
j

(J + 1) KJ+1 = JKJ + φJ+1φ
>
J+1

Note the difference between the K̃J term used throughout
the paper which includes the σ2I against the KJ term which
only includes the RFF features. Moreover, to reduce clutter
we define the following matrix

W :=

(
J

J + 1
KJ + σ2I

)
whose use will become evident throughout the proof.

Remark 1. Given a positive definite matrix A we have that
for any a ∈ (0, 1) and any b > 0

‖aA + bI‖22 ≤ ‖A + bI‖22

If we express A = VDV>, where V is an orthogonal ma-
trix and D is a diagonal matrix containing the positive eigen-
values of A, then we have that aA+bI = V (aD + bI) V>.
This implies that the eigenvalues of A + bI are larger than
those of aA + bI. An immediate consequence of this re-
mark is that ‖W‖22 ≤

∥∥KJ + σ2I
∥∥2

2
or that

∥∥W−1
∥∥2

2
≤∥∥Λ−1 + σ−2

∥∥2

2
≤ σ−4 where Λ contains the positive eigen-

values of KJ .

Remark 2. Given a positive definite matrix A we have that
for any a ∈ (0, 1), any b > 0 and any vector x

x> (aA + bI)
−1

x ≤ x> (A + bI)
−1

x ≤ b−1x>x

This remark follows by using the same diagonal decompo-
sition as the one used in the previous remark. Hence, by
noting that the eigenvalues of (bI)

−1 are larger than those
of (aA + bI)

−1 and this last matrix has larger eigenvalues
than (A + bI)

−1 then the result follows.

Proof of Theorem 4. We start by showing the rate of decay
for the ∆j involving the data-fit terms. Note that we can
express

y>
(
KJ+1 + σ2I

)−1
y

= y>

(
J

J + 1
KJ + σ2I +

φJ+1φ
>
J+1

J + 1

)−1

y

= y>

(
W +

φJ+1φ
>
J+1

J + 1

)−1

y

(S13)

Applying Sherman-Morisson formula to the inverse of the
R.H.S results in

W−1 −

(
φ>J+1W

−1
)> (

φ>J+1W
−1
)

(J + 1) + φ>J+1W
−1φJ+1

where the symmetry of W allows us to express the numera-
tor as above. Substituting the previous result into Eq. (S13)
and rearranging terms allows us to conclude that

y>
(
σ2I + KJ

)−1
y − y>

(
σ2I + KJ+1

)−1
y

≤ y>
(
σ2I +

J

J + 1
KJ

)−1

y − y>
(
σ2I + KJ+1

)−1
y

=

(
φ>J+1W

−1y
)2

(J + 1) + φ>J+1W
−1φJ+1

≤

(
φ>J+1W

−1y
)2

J + 1

≤
∥∥φJ+1

∥∥2

2

∥∥W−1y
∥∥2

2

J + 1

≤
∥∥φJ+1

∥∥2

2
σ−4‖y‖22

J + 1
(S14)

where the first inequality follows from Remark 2, the second
inequality occurs since φ>J+1W

−1φJ+1 > 0, the third
inequality results from applying Cauchy-Schwarz and the
fourth stems from Remark 1. Finally, taking expectations in
Eq. (S14) we can conclude that

E
P(ω)

[
y>
(
σ2I + KJ

)−1
y
]

− E
P(ω)

[
y>
(
σ2I + KJ+1

)−1
y
]

= O (1/J) .

Bias-Free Scalable Gaussian Processes via Randomized Truncations

We now move into the rate of decay of the ∆j terms involv-
ing the model complexity terms. Note that we can express

∣∣KJ+1 + σ2I
∣∣ =

∣∣∣∣∣ J

J + 1
KJ + σ2I +

φJ+1φ
>
J+1

J + 1

∣∣∣∣∣
then by using the matrix determinant lemma we have that

∣∣KJ+1 + σ2I
∣∣ =

(
1 +

1

J + 1
φ>J+1W

−1φJ+1

)
|W|

≤
(

1 +
1

J + 1
φ>J+1W

−1φJ+1

) ∣∣KJ + σ2I
∣∣

≤
(

1 +
σ−2

J + 1
φ>J+1φJ+1

) ∣∣KJ + σ2I
∣∣

(S15)

where the first inequality follows from Remark 1 and from
noting that the determinant is equivalent to the product of the
eigenvalues of the matrix. The second inequality follows
from Remark 2. Now, we will take the logarithms and
the expectations of Eq. (S15). We will first focus on the
first term in the RHS. By using a Taylor expansion of the
logarithm up to a second term we have that

E
P(ω)

[
log

(
1 +

σ−2

J + 1
φ>J+1φJ+1

)]

=
σ−2 EP(ω)

[
φ>J+1φJ+1

]
J + 1

+O
(
1/J2

)
therefore, substituting the previous result into Eq. (S15)

E
P(ω)

[
log
∣∣KJ+1 + σ2I

∣∣]− E
P(ω)

[
log
∣∣KJ + σ2I

∣∣]
=
σ−2 EP(ω)

[
φ>J+1φJ+1

]
J + 1

+O
(
1/J2

)
= O (1/J)

which concludes the analysis of the rate of decay of the
log determinant terms. Thus, since each rate of decay if
O (1/J), then following Eq. (S11) we have that the trunca-
tion distribution that minimizes the variance is

P∗ (J) ∝ ∆J = O (1/J) .

E. Experiment Details.
We provide the experiment details for the predictive perfor-
mance experiments in Sec. 5.

Experiment setup. To optimize the hyperparameters of
the CG, RR-CG and Cholesky models, we use an Adam opti-
mizer with learning rate = 0.01 and a MultiStepLR scheduler
dropping the learning rate by a factor of 10 at the 50%, 70%
and 90% of the optimization iterations. We run the optimiza-
tion for 1500, 800 and 300 iterations on small (PoleTele,
Elevators and Bike), medium (Kin40K, Protein, KEGG and
KEGGU) and large (3DRoad) datasets, respectively. The
number of iterations for CG and the expected number of
iterations for RR-CG are both set to 100. The latter is
achieved by using the truncation distribution from Eq. (17)
with λ = 0.05 and Jmin = 80.

For CG and RR-CG, we use the rank-5 pivoted Cholesky
preconditioner of Gardner et al. (2018). To reduce the num-
ber of optimization steps needed for the 3DRoad dataset,
we initialize the hyperparameters to those found with the
(biased) sgGP method. During evaluation, we compute the
predictive mean using 1,000 iterations of CG. Predictive
variances are estimated using the rank-100 Lanczos approx-
imation of Pleiss et al. (2018).

For RFF we use 1,000 random Fourier features across all
experiments. In terms of optimization, we use an Adam
optimizer with learning rate = 0.005 for KEGG, 0.001 for
KEGGU and 0.01 for the remaining datasets. We also use a
MultiStep scheduler that activates at 85%, 90%, 95% of the
optimization iterations with a decay rate of 0.5 and also take
a total of 500 optimization iterations on all the datasets.

In all the SVGP models we use 1,024 inducing points, with
a full-rank multivariate Gaussian variational distribution.
Hyperparameters and variational parameters are jointly op-
timized for 300 epochs using minibatches of size 1,024. As
with the other baselines, we use the an Adam optimizer
with a learning rate of 0.01, dropping the learning rate by
a factor of 10 after 50%, 70% and 90% of the optimization
iterations.

For sgGP, we train using minibatches of 16 data points. As
suggested by Chen et al. (2020), the minibatches are con-
structed by sampling one training data point and selecting
its 15 nearest neighbors. To accelerate optimization, we
accumulate the gradients of 1,024 minibatches before per-
forming an optimization step (these 1,024 minibatch updates
can be performed in parallel, enabling GPU acceleration).
We optimize the models for 300 epochs, using the same
learning rate and scheduler as with SVGP. During evalua-
tion, we use the same procedure as for CC/RR-CG (1,000
iterations of CG, rank-100 Lanczos variance estimates).

For POE, we divide the training dataset into disjoint subsets,
each with M = 1024 data points. If N is not divisible by
1024, we pad the final subset with elements from the first
subset. We train independent GP with independent hyperpa-
rameters on each of the subsets using the same optimization

Bias-Free Scalable Gaussian Processes via Randomized Truncations

RMSE
Cholesky POE RFF SVGP sgGP CG RR-CG

Dataset n

PolTele 9.6K .112± .002 .174± .006 .106± .000 .150± .000 .128± .001 .119± .002 .112± .002
Elevators 10.6K .360± .006 .379± .005 .365± .001 .376± .006 .362± .006 .360± .006 .360± .006

Bike 11.1K .035± .003 .071± .002 .063± .001 .045± .002 1.044± .334 .040± .005 .035± .002
Kin40K 25.6K — .248± .001 .074± .000 .152± .001 .081± .000 .093± .000 .091± .001
Protein 25.6K — .715± .007 .547± .001 .664± .008 .562± .005 .541± .008 .541± .008
KEGG 31.2K — .097± .004 .101± .001 .088± .002 .089± .002 .195± .064 .087± .003

KEGGU 40.7K — .125± .001 .129± .001 .122± .001 .123± .001 .120± .000 .120± .000
3DRoad 278K — .675± .001 .348± .001 .439± .002 .285± .003 .202± .003 .114± .013

NLL
Cholesky POE RFF SVGP sgGP CG RR-CG

Dataset n

PolTele 9.6K −.464± .006 −.252± .010 −.159± .005 −.442± .004 −.480± .004 −.354± .003 −.458± .006
Elevators 10.6K .425± .013 .469± .016 .780± .006 .442± .015 .426± .015 .429± .012 .425± .013

Bike 11.1K −.984± .018 −.799± .010 .099± .030 −1.514± .024 85.715± 49.088 −.971± .008 −.982± .018
Kin40K 25.6K — .464± .002 1.407± .004 −.410± .003 .427± .001 .468± .003 .449± .013
Protein 25.6K — 1.105± .008 1.163± .003 1.014± .012 .951± .004 .934± .006 .934± .006
KEGG 31.2K — −.874± .011 6.311± 2.323 −1.022± .023 −.981± .033 .415± .653 −.884± .009

KEGGU 40.7K — −.636± .002 4.000± .303 −.685± .005 −.668± .005 −.637± .006 −.650± .004
3DRoad 278K — 1.031± .002 1.317± .004 .601± .004 .831± .000 .613± .010 .776± .030

Table S1. Root-mean-square-error (RMSE) and negative log-likelihood (NLL) of exact GPs using CG, RRCG and other baselines on
UCI regression datasets using a constant prior mean and a RBF kernel with independent lengthscale for each dimension. All trials were
averaged over 3 trials with different splits. N and d are the size and dimensionality of the training dataset, respectively.

Training time (m)
Cholesky POE RFF SVGP sgGP CG RR-CG

Dataset n

PolTele 9.6K 22.417± .035 1.167± .006 .464± .002 3.862± .018 .629± .006 12.793± .111 14.968± .258
Elevators 10.6K 30.617± .016 1.051± .008 .503± .002 4.236± .023 .696± .001 14.443± .080 16.519± .152

Bike 11.1K 34.991± .016 1.364± .012 .476± .014 4.261± .023 .691± .002 11.634± .131 13.669± .080
Kin40K 25.6K — .930± .006 .772± .008 9.597± .043 1.559± .010 11.345± .073 12.823± .114
Protein 25.6K — .851± .003 .716± .008 11.115± .033 1.867± .007 10.507± .044 12.142± .052
KEGG 31.2K — 1.135± .003 .682± .002 11.881± .058 1.786± .009 22.780± .021 25.390± .089

KEGGU 40.7K — 1.140± .005 .835± .001 15.281± .070 2.572± .029 34.396± .026 37.825± .064
3DRoad 278K — 2.176± .022 6.089± .031 104.164± .294 22.615± .147 145.396± 1.373 158.657± .554

Table S2. Total training time (in minutes) of exact GPs using CG, RRCG and other baselines on UCI regression datasets (see the number
of optimization iterations for each method in experiment setup). All trials were averaged over 3 trials with different splits.

procedure as Cholesky models. Following Deisenroth &
Ng (2015, Eqs. 11 and 12), the posterior distribution for a
test input x∗ is Gaussian with mean µ∗POE(x∗) and variance
σ2∗

POE(x∗):

µ∗POE(x∗) =
σ2∗

POE(x∗)

K

K∑
k=1

σ−2∗
k (x∗)µ∗k(x∗),

σ−2∗
POE (x∗) =

1

K

K∑
k=1

σ−2∗
k (x∗),

whereK is the number of independent GP experts and µ∗k(·)
and σ2∗

k (·) are the posterior mean and variance of each
expert model.

Full tables. In Table S1, we report the RMSE and NLL
numbers which are used to plot Fig. 6 in the paper, and in
Table S2 we report the corresponding training time.

F. Additional Experiments
F.1. Predictive Performance with Different CG

iterations

Here we include an additional experiment to show that early
truncated CG can be detrimental to GP learning while RR-
CG remains robust to the expected truncation number.

We conduct GP learning with the CG, RR-CG and Cholesky
methods in the Elevators dataset. We vary the number of
(expected) iterations for CG and RR-CG from 20 to 100
and plot the corresponding RMSE / NLL in Fig. S1. From
the figure, we conclude that: 1) early truncation of the CG
algorithm impedes GP optimization and leads to poor pre-
dictions. This problem lessens as we increase the number
of CG iterations from 20 to 100. 2) The RR-CG model is
robust to the expected truncation number, as it keeps compa-
rable RMSE and NLL values to the Cholesky model under
different expected truncation numbers. This experiment can

Bias-Free Scalable Gaussian Processes via Randomized Truncations

Figure S1. Predictive RMSE (left) and NLL (right) as a function of the number of (expected) CG iterations by optimizing Exact GP with
CG (blue solid line) and RR-CG (purple solid line). Lower is better. The red dashed line corresponds to optimizing GP with Cholesky.
The results are over three random seeds.

only be run in smaller datasets to be able to compare against
Cholesky. We chose Elevators as this dataset requires the
largest number of CG iterations before convergence hence
making the difference of choosing between CG and RR-CG
evident. We emphasize that RR-CG is a better alternative
to early-truncated CG as the latter can perform poorly in
some cases, whereas the former is robust to the choice of
expected truncation number.

F.2. Convergence of GP hypeparameters for other
datasets.

In this section, we show how SS-RFF and RR-CG converge
to the Cholesky solution whereas the biased methods do not.
We make this analysis for other datasets than the ones used
in the main manuscript.

Using RFF with 1,000 or 1,500 features generates re-
sults that clearly diverge from the Cholesky solution and
RFF with a 1,000 features generates numerically unsta-
ble training. In contrast, SS-RFF with 1,500 features is
able to achieve the Cholesky solution after 1,000 iterations.
Nonetheless, SS-RFF with 1,000 features also suffers from
numerical instability as RFF 1,000 but at a lesser degree.

The RR-CG models converge to optimal solutions, while
the (biased) CG models diverge. Only the results for a
low number of iterations is plotted since for more then
40 iterations CG and RR-CG are indistinguishable from
Cholesky.

Figure S2. The GP optimization objective for models trained with
RFF and SS-RFF. (Bike dataset, RBF kernel, Adam optimizer.)
RFF models converge to sub-optimal log marginal likelihoods.
SS-RFF models converge to (near) optimum values, yet require
more than 100× as many optimization steps.

Figure S3. The GP optimization objective for models trained with
CG and RR-CG. (PoleTele dataset, RBF kernel, Adam optimizer.)
Models converge in < 100 steps of Adam.

	Introduction
	Background
	Conjugate Gradients
	Random Fourier Features
	Unbiased Randomized Truncation

	GP Learning with CG and RFF is Biased
	CG Biases GP Towards Underfitting
	RFF Biases GP Towards Overfitting

	Bias-free Scalable Gaussian Processes
	Russian Roulette-Truncated CG (RR-CG)
	Single Sample-Truncated RFF (SS-RFF)
	Analysis of the Bias-free Methods

	Results
	Conclusion
	Proof of Biases for CG and RFF
	Proof of Theorem 1
	Proof of Theorem 2

	Further Derivations of Randomized Truncation Estimators
	Unbiasedness of the RR Estimator
	Unbiasedness of the SS Estimator
	Minimizing the Variance of the SS Estimator
	SS estimator as Importance Sampling

	Estimating the Marginal Log Likelihood from RR-CG
	Optimal Truncation Distributions
	Proof of Theorem 3
	Proof of Theorem 4

	Experiment Details.
	Additional Experiments
	Predictive Performance with Different CG iterations
	Convergence of GP hypeparameters for other datasets.

