
Bias-Free Scalable Gaussian Processes via Randomized Truncations

Andres Potapczynski * 1 Luhuan Wu * 2 Dan Biderman * 1 Geoff Pleiss 1 John P. Cunningham 1 2

Abstract
Scalable Gaussian Process methods are computa-
tionally attractive, yet introduce modeling biases
that require rigorous study. This paper analyzes
two common techniques: early truncated conju-
gate gradients (CG) and random Fourier features
(RFF). We find that both methods introduce a
systematic bias on the learned hyperparameters:
CG tends to underfit while RFF tends to over-
fit. We address these issues using randomized
truncation estimators that eliminate bias in ex-
change for increased variance. In the case of
RFF, we show that the bias-to-variance conver-
sion is indeed a trade-off: the additional vari-
ance proves detrimental to optimization. However,
in the case of CG, our unbiased learning proce-
dure meaningfully outperforms its biased counter-
part with minimal additional computation. Our
code is available at https://github.com/
cunningham-lab/RTGPS.

1. Introduction
Gaussian Processes (GP) are popular and expressive non-
parametric models, and considerable effort has gone into al-
leviating their cubic runtime complexity. Notable successes
include inducing point methods (e.g. Snelson & Ghahra-
mani, 2006; Titsias, 2009; Hensman et al., 2013), finite-basis
expansions (e.g. Rahimi & Recht, 2008; Mutnỳ & Krause,
2018; Wilson et al., 2020; Loper et al., 2020), nearest neigh-
bor truncations (e.g. Datta et al., 2016; Katzfuss et al., 2021),
and iterative numerical methods (e.g. Cunningham et al.,
2008; Cutajar et al., 2016; Gardner et al., 2018). Com-
mon to these techniques is the classic speed-bias tradeoff :
coarser GP approximations afford faster but more biased
solutions that in turn affect both the model’s predictions and
learned hyperparameters. While a few papers analyze the

*Equal contribution (randomly ordered). 1Zuckerman In-
stitute, Columbia University 2Statistics Department, Columbia
University. Correspondence to: Andres Potapczynski
<ap3635@columbia.edu>, Luhuan Wu <lw2827@columbia.edu>,
Dan Biderman <db3236@columbia.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

bias of inducing point methods (Bauer et al., 2016; Burt
et al., 2019), the biases of other approximation techniques,
and their subsequent impact on learned GP models, have
not been rigorously studied.

Here we scrutinize the biases of two popular techniques –
random Fourier features (RFF) (Rahimi & Recht, 2008) and
conjugate gradients (CG) (e.g. Cunningham et al., 2008;
Cutajar et al., 2016; Gardner et al., 2018). These methods
are notable due to their popularity and because they allow
dynamic control of the speed-bias tradeoff: at any model
evaluation, the user can adjust the number of CG iterations
or RFF features to a desired level of approximation accu-
racy. In practice, it is common to truncate these methods
to a fixed number of iterations/features that is deemed ade-
quate. However, such truncation will stop short of an exact
(machine precision) solution and potentially lead to biased
optimization outcomes.

We provide a novel theoretical analysis of the biases result-
ing from RFF and CG on the GP log marginal likelihood
objective. Specifically, we prove that CG is biased towards
hyperparameters that underfit the data, while RFF is bi-
ased towards overfitting. In addition to yielding suboptimal
hyperparameters, these biases hurt posterior predictions, re-
gardless of the inference method used at test-time. Perhaps
surprisingly, this effect is not subtle, as we will demon-
strate. Our analysis suggests there is value in debiasing
GP learning with CG and RFF. To do so, we turn to recent
work that shows the merits of exchanging the speed-bias
tradeoff for a speed-variance tradeoff (Beatson & Adams,
2019; Chen et al., 2019; Luo et al., 2020; Oktay et al., 2020).
These works all introduce a randomization procedure that
reweights elements of a fast truncated estimator, eliminating
its bias at the cost of increasing its variance.

We thus develop bias-free versions of GP learning with CG
and RFF using randomized truncation estimators. In short,
we randomly truncate the number of CG iterations and RFF
features, while reweighting intermediate solutions to main-
tain unbiasedness. Our variant of CG uses the Russian
Roulette estimator (Kahn, 1955), while our variant of RFF
uses the Single Sample estimator of Lyne et al. (2015). We
believe our RR-CG and SS-RFF methods to be the first to
produce unbiased estimators of the GP log marginal likeli-
hood with < O(N3) computation.

https://github.com/cunningham-lab/RTGPS
https://github.com/cunningham-lab/RTGPS

Bias-Free Scalable Gaussian Processes via Randomized Truncations

Finally, through extensive empirical evaluation, we find our
methods and their biased counterparts indeed constitute a
bias-variance tradeoff. Both RR-CG and SS-RFF are un-
biased, recovering nearly the same optimum as the exact
GP method, while GP trained with CG and RFF often con-
verge to solutions with worse likelihood. We note that bias
elimination is not always practical. For SS-RFF, the opti-
mization is slow, due to the large auxiliary variance needed
to counteract the slowly decaying bias of RFF. On the other
hand, RR-CG incurs a minimal variance penalty, likely due
to the favorable convergence properties of CG. In a wide
range of benchmark datasets, RR-CG demonstrates similar
or better predictive performance compared to CG using the
same expected computational time.

To summarize, this work offers three main contributions:

• theoretical analysis of the bias of CG- and RFF-based
GP approximation methods (§3)

• RR-CG and SS-RFF: bias-free versions of these popu-
lar GP approximation methods (§4)

• results demonstrating the value of our RR-CG and SS-
RFF methods (§3 and 5).

2. Background
We consider observed data D = {(xi, yi)}Ni=1 for xi ∈ Rd
and yi ∈ R, and the standard GP model:

f(·) ∼ GP(µ(·), k(·, ·)),
yi = f(xi) + εi, εi ∼ N

(
0, σ2

)
where k(·, ·) is the covariance kernel, µ(·) is set to zero
without loss of generality, and hyperparameters are collected
into the vector θ, which is optimized as:

θ∗ = arg minθ L(θ)

L(θ) = − log p(y |X;θ)

=
1

2

(
log |K̂XX|︸ ︷︷ ︸

model complexity

+y>K̂−1XXy︸ ︷︷ ︸
data fit

+N log 2π
) (1)

where K̂XX ∈ RN×N is the Gram matrix of all data points
with diagonal observational noise:

K̂XX[i, j] = k(xi,xj) + σ2Ii=j .

Following standard practice, we optimize θ with gradients:

∂L
∂θ =

1

2

(
tr
{
K̂−1XX

∂K̂XX

∂θ

}
− y>K̂−1XX

∂K̂XX

∂θ K̂−1XXy
)
.

(2)

Three terms thus dominate the computational complexity:
y>K̂−1XXy, log |K̂XX|, and tr{K̂−1XX

∂K̂XX

∂θ }. The common

approach to computing this triad is the Cholesky factoriza-
tion, requiring O(N3) time and O(N2) space.

Extensive literature has accelerated the inference and hy-
perparameter learning of GP. Two very popular strategies
are using conjugate gradients (Cunningham et al., 2008;
Cutajar et al., 2016; Gardner et al., 2018; Wang et al., 2019)
to approximate the linear solves in Eq. (2), and random
Fourier features (Rahimi & Recht, 2008), which constructs
a randomized finite-basis approximation of the kernel.

2.1. Conjugate Gradients

To apply conjugate gradients to GP learning, we begin by
replacing the gradient in Eq. (2) with a stochastic estimate
(Cutajar et al., 2016; Gardner et al., 2018):

∂L
∂θ ≈

1

2

(
z>K̂−1XX

∂K̂XX

∂θ z− y>K̂−1XX
∂K̂XX

∂θ K̂−1XXy
)
,

(3)

where z is a random variable such that E[z] = 0 and
E[zzT] = I. Note that the first term constitutes a stochas-
tic estimate of the trace term (Hutchinson, 1989). Thus,
stochastic optimization of Eq. (1) can be reduced to comput-
ing the linear solves K̂−1XXy and K̂−1XXz.

Conjugate gradients (CG) (Hestenes et al., 1952) is an iter-
ative algorithm for solving positive definite linear systems
A−1b. It consists of a three-term recurrence, where each
new term requires only a matrix-vector multiplication with
A. More formally, each CG iteration computes a new term
of the following summation:

A−1b =
∑N
i=1 γidi, (4)

where the γi are coefficients and the di are conjugate search
directions (Golub & Van Loan, 2012). N iterations of CG
produce all N summation terms and recover the exact solu-
tion. In practice, exact convergence may require more than
N iterations due to inaccuracies of floating point arithmetic.
However, the summation converges exponentially, and so
J � N iterations may suffice to achieve high accuracy.

CG is an appealing method for computing K̂−1XXy and
K̂−1XXz due to its computational complexity and its potential
for GPU-accelerated matrix products. J iterations takes at
most O(JN2) time and O(N) space if the matrix-vector
products are performed in a map-reduce fashion (Wang et al.,
2019). However, ill-conditioned kernel matrices hinder the
convergence rate (Cutajar et al., 2016), and so the J th CG
iteration may yield an inaccurate approximation of Eq. (3).

2.2. Random Fourier Features

Rahimi & Recht (2008) introduce a randomized finite-basis
approximation to stationary kernels:

k(x,x′) = k(x− x′) ≈ φ(x)>φ(x′) (5)

Bias-Free Scalable Gaussian Processes via Randomized Truncations

where φ(x) ∈ RJ and J � N . The RFF approximation
relies on Bochner’s theorem (Bochner et al., 1959): let-
ting τ = x − x′, all stationary kernels k(τ) on Rd can be
exactly expressed as the Fourier dual of a nonnegative mea-
sure P(ω): k(τ) =

∫
P(ω) exp(iωτ) dω. A Monte Carlo

approximation of this Fourier transform yields:

k(τ) ≈ 2

J

J/2∑
j=1

exp(iωjτ), ωj ∼ P(ω),

which simplifies to a finite-basis approximation:

KXX ≈ [φ(x1) . . .φ(xn)][φ(x1) . . .φ(xn)]>,

φ(x) = [cos
(
ω>i x

)
, sin

(
ω>i x

)
]
J/2
i=1, ωi ∼ P(ω).

For many common kernels, P(ω) can be computed in closed-
form (e.g. RBF kernels have zero-mean Gaussian spectral
densities). The approximated log likelihood can be com-
puted inO(J3+N) time andO(JN) space using the Wood-
bury inversion lemma and the matrix determinant lemma,
respectively. The number of random features J/2 is a user
choice, with typical values between 100-1000. More fea-
tures lead to more accurate kernel approximations.

2.3. Unbiased Randomized Truncation

We will now briefly introduce Randomized Truncation Esti-
mators, which are the primary tool we use to unbias the CG
and RFF log marginal likelihood estimates. At a high level,
assume that we wish to estimate some quantity ψ that can
be expressed as a (potentially-infinite) series:

ψ =
∑H
j=1 ∆j , H ∈ N ∪ {∞}.

Here and in the following sections, ∆j can either be ran-
dom or deterministic. To avoid the expensive evaluation
of the full summation, a randomized truncation estimator
chooses a random term J ∈ {1, . . . ,H} with probability
mass function P(J) = P(J = J) after which to truncate
computation. In the following, we introduce two means of
deriving unbiased estimators by upweighting the summation
terms.

The Russian Roulette estimator (Kahn, 1955) obtains an
unbiased estimator ψ̄J by truncating the sum after J ∼ P(J)
terms and dividing the surviving terms by their survival
probabilities:

ψ̄J =

J∑
j=1

∆j

P(J ≥ j)
=

H∑
j=1

(
IJ≥j

P(J ≥ j)

)
∆j , (6)

and, E[ψ̄J] =
∑H
i=1 ∆j = ψ. (See appendix for further

derivation.) The choice of P(J) determines both the compu-
tational efficiency and the variance of ψ̄J . A thin-tailed P(J)
will often truncate sums after only a few terms (J � H).

However, tail events (J ≈ H) are upweighted inversely to
their low survival probability, and so thin-tailed truncation
distributions may lead to high variance.

The Single Sample estimator (Lyne et al., 2015) imple-
ments an alternative reweighting scheme. After drawing
J ∼ P(J), it computes a single summation term ∆J , which
it upweights by 1/P(J):

ψ̄J =
∆J

P(J)
=

H∑
j=1

(
IJ=j

P(J = j)

)
∆j . (7)

This procedure is unbiased, and it amounts to estimating
ψ using a single importance-weighted sample from P(J)
(see appendix). Again, P(J) controls the speed/variance
trade-off. We refer the reader to (Beatson & Adams, 2019)
for a detailed comparison of these two estimators. We em-
phasize that both estimators remain unbiased even if ∆j

is a random variable, as long as it is independent from the
random truncation integer J .

3. GP Learning with CG and RFF is Biased
Here we prove that early truncated CG and RFF provide
biased approximations to the terms comprising the GP log
marginal likelihood (Eq. 1). We also derive the bias de-
cay rates for each method. We then empirically demon-
strate these biases and show they affect the hyperparameters
learned through optimization. Remarkably, we find that
the above biases are highly systematic: CG-based GP learn-
ing favors underfitting hyperparameters while RFF-based
learning favors overfitting hyperparameters.

3.1. CG Biases GP Towards Underfitting

In the GP literature, CG has often been considered an “exact”
method for computing the log marginal likelihood (Cunning-
ham et al., 2008; Cutajar et al., 2016), as the iterations are
only truncated after reaching a pre-specified residual er-
ror threshold (e.g. 10−10). However, as CG is applied to
ever-larger kernel matrices it is common to truncate the CG
iterations before reaching this convergence (Wang et al.,
2019). While this accelerates the hyperparameter learning
process, the resulting solves and gradients can no longer be
considered “exact.” In what follows, we show that the early-
truncated CG optimization objective is not only approximate
but also systematically biased towards underfitting.

To analyze the early-truncation bias, we adopt the analysis
of Gardner et al. (2018) that recovers the GP log marginal
likelihood (Eq. 1) from the stochastic gradient’s CG esti-
mates of K̂−1XXy and K̂−1XXz (Eq. 3). Recall the two terms in
the log marginal likelihood are the “data fit” term y>K̂−1XXy

and the “model complexity” term log |K̂XX|. The first term
falls directly out of the CG estimate of K̂−1XXy, while a

Bias-Free Scalable Gaussian Processes via Randomized Truncations

Figure 1. CG (left) systematically overestimates log |K̂XX| and underestimates y>K̂−1
XXy whereas RFF (right) does the opposite. The

dashed orange line shows the exact values computed by Cholesky. Our unbiased methods, RR-CG (left) and SS-RFF (right), recover the
true log |K̂XX| and y>K̂−1

XXy values. For these two methods, the x-axis indicates the expected number of iterations/features.

Figure 2. Kernel lengthscale values learned by optimizing (biased)
CG and RFF log marginal likelihood approximations. CG overesti-
mates the optimal kernel lengthscale whereas RFF underestimates
it. We plot the divergence (in log-ratio scale) between the learned
and true lengthscales as a function of the number of CG iterations
(left) and of the number of RFF samples (right).

stochastic estimate of log |K̂XX| can be obtained through
the byproducts of CG’s computation for K̂−1XXz. Gard-
ner et al. (2018) show that the CG coefficients in Eq. (4)
can be manipulated to produce a partial tridiagonalization:
T

(J)
z = Q

(J)>
z K̂XXQ

(J)
z , where T

(J)
z ∈ RJ×J is tridiago-

nal. T(J)
z can compute the Stochastic Lanczos Quadrature

estimate of K̂XX (Ubaru et al., 2017; Dong et al., 2017):

log |K̂XX| = E
[
zT (log K̂XX)z

]
≈ ‖z‖2e>1

(
logT(J)

z

)
e1, (8)

where log(·) is the matrix logarithm and e1 is the first row
of the identity matrix. The following theorem analyzes the
bias of these y>K̂−1XXy and log |K̂XX| estimates:

Theorem 1. Let uJ and vJ be the estimates of y>K̂−1XXy

and log |K̂XX| respectively after J iterations of CG; i.e.:

uJ = y>
(∑J

i=1γidi

)
, vJ = ‖z‖2e>1

(
logT(J)

z

)
e1.

If J < N , CG underestimates the inverse quadratic term
and overestimates the log determinant in expectation:

uJ ≤ y>K̂−1XXy, Ez[vJ] ≥ log |K̂XX|. (9)

The biases of both terms decay at a rate ofO(C−2J), where
C is a constant that depends on the conditioning of K̂XX.

Proof sketch. The direction of the biases can be proved
using a connection between CG and numeric quadrature.
uJ and vJ are exactly equal to the J-point Gauss quadra-
ture approximation of y>K̂−1XXy and ‖z‖2e>1 (logT

(N)
z)e1

represented as Riemann-Stieltjes integrals. The sign of the
CG approximation bias follows from the standard Gauss
quadrature error bound, which is negative for y>K̂−1XXy

and positive for log |K̂XX|. The convergence rates are from
standard bounds on CG (Golub & Van Loan, 2012) and
the analysis of Ubaru et al. (2017). See appendix for a full
proof.

Fig. 1 confirms our theoretical analysis and demonstrates
the systematic biases of CG. We plot the log marginal likeli-
hood terms for a subset of the PoleTele UCI dataset, varying
the number of CG iterations (J) used to produce the esti-
mates. Compared against the exact terms (computed with
Cholesky), we see an overestimation of log |K̂XX| and an
underestimation of y>K̂−1XXy. These biases are most promi-
nent when using few CG iterations.

We turn to study the effect of CG learning on hyperpa-
rameters. Since the log marginal likelihood is a noncon-
vex function of θ, it is not possible to directly prove how
the bias affects θ. Nevertheless, we know intuitively that
underestimating y>K̂−1XXy de-prioritizes model fit while
overestimating log |K̂XX| over-penalizes model complexity.
Thus, the learned hyperparameters will likely underfit the
data. Underfitting may manifest in an overestimation of
the learned lengthscale `, as low values of ` increase the
flexibility and the complexity of the model. This hypothesis
is empirically confirmed in Fig. 2 (left panel). We train a
GP regression model on a toy dataset: y = x sin(5πx) + ε

Bias-Free Scalable Gaussian Processes via Randomized Truncations

and ε ∼ N (0, 0.01). We fix all hyperparameters other than
the lengthscale, which is learned using both CG-based op-
timization and (exact) Cholesky-based optimization. The
overestimation of ` decays with the number of CG iterations.

3.2. RFF Biases GP Towards Overfitting

Previous work has studied the accuracy of RFF’s approx-
imation to the entries of the Gram matrix k(x,x′) ≈
φ(x)>φ(x′) (Rahimi & Recht, 2008; Sutherland & Schnei-
der, 2015). However, to the best of our knowledge there
has been little analysis of nonlinear functions of this ap-
proximate Gram matrix, such as y>K̂−1XXy and log |K̂XX|
appearing in the GP objective. Interestingly, we find that
RFF systematically biases these terms:

Theorem 2. Let K̃J be the RFF approximation with J/2
random features. In expectation, K̃J overestimates the
inverse quadratic and underestimates the log determinant:

EP(ω)

[
y>K̃−1J y

]
≥ y>K̂−1XXy (10)

EP(ω)

[
log |K̃J |

]
≤ log |K̂XX|. (11)

The biases of both terms decay at a rate of O(1/J).

Proof sketch. The direction of the biases is a straightforward
application of Jensen’s inequality, noting that K̂−1XX is a
convex function and log |K̂XX| is a concave function. The
magnitude of the bias is derived from a second-order Taylor
expansion that closely resembles the analysis of Nowozin
(2018). See appendix for full proof.

Again, Fig. 1 confirms the systematic biases of RFF, which
decay at a rate proportional to the number of features, as pre-
dicted by Thm. 2. Hence, RFF should affect the learned hy-
perparameters in a manner opposite to CG. Overestimating
y>K̂−1XXy emphasizes data fitting while underestimating
log |K̂XX| reduces the model complexity penalty, overall
resulting in overfitting behavior. Following the intuition
presented in Sec. 3.1, we expect the lengthscale to be under-
estimated, as empirically confirmed by Fig. 2 (right panel).
The figure also illustrates the slow decay of the RFF bias.

4. Bias-free Scalable Gaussian Processes
We debias the estimates of both the GP training objective in
Eq. (1) and its gradient in Eq. (2) (as approximated by CG
and RFF) using unbiased randomized truncation estimators.
To see how such estimators apply to GP hyperparameter
learning, we note that both CG and RFF recover the true
log marginal likelihood (or an unbiased estimate thereof) in
their limits:

Observation 1. CG recovers the exact log marginal likeli-

hood in expectation in at most N iterations:

y>K̂−1XXy = y>
(∑N

j=1γjdj

)
, (12)

log |K̂XX| = Ez

[
‖z‖2e>1 (logT

(N)
z)e1

]
. (13)

By the law of large numbers, RFF converges almost surely to
the exact log marginal likelihood as the number of random
features goes to infinity:

y>K̂−1XXy = lim
J→∞

y>K̃−1J y, (14)

log |K̂XX| = lim
J→∞

log |K̃J |. (15)

To maintain the scalability of CG and RFFs while eliminat-
ing bias, we express the log marginal likelihood terms in
Eqs. (12) to (15) as summations amenable to randomized
truncation. We then apply the Russian Roulette and Single
Sample estimators of Sec. 2.3 to avoid computing all sum-
mation terms while obtaining the same result in expectation.

4.1. Russian Roulette-Truncated CG (RR-CG)

The stochastic gradient in Eq. (3) requires performing two
solves: K̂−1XXy and K̂−1XXz. Using the summation formula-
tion of CG (Eq. 4), we can write these two solves as series:

K̂−1XXy =
∑N
i=1 γidi, K̂−1XXz =

∑N
i=1 γ

′
id
′
i,

where each CG iteration computes a new term of the sum-
mation. By applying the Russian Roulette estimator from
Eq. (6), we obtain the following unbiased estimates:

K̂−1XXy ≈
∑J
j=1(γjdj)/P(J ≥ j), J ∼ P(J)

K̂−1XXz ≈
∑J′

j=1(γ′jd
′
j)/P(J ≥ j). J ′ ∼ P(J ′),

(16)

These unbiased solves produce an unbiased optimization
gradient in Eq. (3); we refer to this approach as Russian
Roulette CG (RR-CG). With the appropriate truncation dis-
tribution P(J), this estimate affords the same computational
complexity of standard CG without its bias.

We must compute two independent estimates of K̂−1XXy with
different J ∼ P(J) in order for the y>K̂−1XX

∂K̂XX

∂θ K̂−1XXy
term in Eq. (3) to be unbiased. Thus, the unbiased gradient
requires 3 calls to RR-CG, as opposed to the 2 CG calls
needed for the biased gradient. Nevertheless, RR-CG has
the same O(JN2) complexity as standard CG – and the
additional solve can be computed in parallel with the others.

We can also use the Russian Roulette estimator to compute
the log marginal likelihood itself, though this is not strictly
necessary for gradient-based optimization. (See appendix.)

Choosing the truncation distribution. Since the Rus-
sian Roulette estimator is unbiased for any choice of P (J),

Bias-Free Scalable Gaussian Processes via Randomized Truncations

we wish to choose a truncation distribution that balances
computational cost and variance1. Beatson & Adams (2019)
propose the relative optimization efficiency (ROE) metric,
which is the ratio of the expected improvement of taking an
optimization step with our gradient estimate to its computa-
tional cost. A critical requirement of the ROE analysis is the
expected rate of decay of our approximations in terms of the
number of CG iterations J . We summarize our estimates
and choices of distribution as follows:

Theorem 3. The approximation to log |K̂XX| and to
y>K̂−1XXy using RR-CG decays at a rate of O(C−2J).
Therefore the truncation distribution that maximizes the
ROE is P∗(J) ∝ C−2J , where C is a constant that depends
on the conditioning of K̂XX. The expected computation
and variance of P∗ (J) is finite.

Proof sketch. Beatson & Adams (2019) show that the trunca-
tion distribution that maximizes the ROE is proportional to
the rate of decay of our approximation divided by its compu-
tational cost. The error of CG decays as O(C−2J), and the
cost of each summation term is constant with respect to J .
In practice, we vary the exponential decaying rate to control
the expectation and variance of P(J). To further reduce
the variance of our estimator, we set a minimum number of
CG iterations to be computed, as in (Luo et al., 2020). See
appendix for full proof.

In practice, however, we do not have access to C since
computing the conditioning of K̂XX is impractical. Yet,
we can change the base of the exponential to e and add a
temperature parameter λ to rescale the function and control
the rate of decay of the truncation distribution as a sensible
alternative. Thus, we follow a more general exponential
decay distribution:

P(J) ∝ e−λJ , J = Jmin, · · · , N (17)

where Jmin is the minimum truncation number. By varying
the values of λ and Jmin, we can control the expectation
and standard deviation of P(J). In practice we found that
having the standard deviation value between 10 and 20
achieves stable GP learning process, which can be obtained
by tuning λ between 0.05 and 0.1 for sufficiently large
datasets (e.g. N ≥ 500). We also noticed that the method is
not sensitive to these choices of hyperparameters and that
they work well across all the experiments. The expected
truncation number can be further tuned by varying Jmin.
We emphasize that these choices impact the speed-variance
tradeoff. By setting a larger Jmin we decrease the speed
by requiring more baseline computations but also decrease
the variance (since the minimum approximations have the
largest deviations from the ground truth).

1Solely minimizing variance is not appealing, as this is
achieved by P (J) = IJ=N which has no computational savings.

Toy problem. In Fig. 1 we plot the empirical mean of the
RR-CG estimator using 104 samples from an exponential
truncation distribution. We find that RR-CG produces unbi-
ased estimates of the y>K̂−1XXy and log |K̂XX| terms that
are indistinguishable from the exact values computed with
Cholesky. Reducing the expected truncation iteration E(J)
(x-axis) increases the standard error of empirical means,
demonstrating the speed-variance trade-off.

4.2. Single Sample-Truncated RFF (SS-RFF)

Denoting K̃j as the kernel matrix estimated by j random
Fourier features, we can write log |K̂XX| as the following
telescoping series:

log |K̂XX| = log |K̃1|+
N/2−1∑
j=2

(
log |K̃j | − log |K̃j−1|

)
(18)

+ log |K̂XX| − log |K̃N/2−1|

= log |K̃1|+
∑N/2
j=2 ∆j , (19)

where ∆j is defined as log |K̃j | − log |K̃j−1| for all j <
N/2, and ∆N/2 is defined as log |K̂XX| − log |K̃N/2−1|.
Note that each ∆j is now a random variable, since it depends
on the random Fourier frequencies ω. Crucially, we only
includeN/2 terms in the series so that no term requires more
thanO(N3) computation in expectation. (For any j > N/2,
K̃j is a full-rank matrix and thus is as computationally
expensive as the true K̂XX matrix.) We construct a similar
telescoping series for y>K̂−1XXy.

As with Eq. (16), we approximate the series in Eq. (19)
with a randomized truncation estimator, this time using the
Single Sample estimator (7):

log |K̂XX| ≈ log |K̃1|+ ∆J/P (J) . (20)

where J is drawn from the truncation distribution P(J) with
support over {2, 3, . . . N/2}. Note that the Single Sample
estimate requires computing 3 log determinants (log |K̃1|,
log |K̃J−1|, and log |K̃J |) for a total ofO(J3 +NJ2) com-
putations and O(NJ) memory. This is asymptotically the
same requirement as standard RFF. The Russian Roulette
estimator, on the other hand, incurs a computational cost of
O(NJ3 + J4) as it requires computing (log |K̃1| through
log |K̃J |) which quickly becomes impractical for large J .

A similar Single Sample estimator constructs an unbiased
estimate of y>K̂−1XXy. Backpropagating through these Sin-
gle Sample estimates produces unbiased estimates of the
log marginal likelihood gradient in Eq. (2).

Choosing the truncation distribution. For the Single
Sample estimator we do not have to optimize the ROE since

Bias-Free Scalable Gaussian Processes via Randomized Truncations

minimizing the variance of this estimator does not result in
a degenerate distribution.

Theorem 4. The truncation distribution that minimizes
the variance of the SS-RFF estimators for log |K̂XX| and
y>K̂−1XXy is P∗ (J) ∝ 1/J . The expected variance and
computation of P∗(J) is finite.

Proof sketch. The minimum variance distribution can be
found by solving a constrained optimization problem. In
practice, we can further decrease the variance of our estima-
tor by fixing a minimum value of RFF features to be used
in Eq. (19) and by increasing the step size (c ∈ N) between
the elements at each ∆j = log |K̃cJ | − log |K̃c(J−1)|. See
appendix for full proof.

For the experiments we started with 500 features and also
tried various step sizes c ∈ {1, 10, 100}. The variance of the
estimator decreases as we increase c since the probability
weights will decrease in magnitude. Yet, despite of using
the optimal truncation distribution, setting a high number
of features and taking long steps c = 100, the variance
of the estimator still requires taking several steps before
converging, making SS-RFF computationally impractical.

Toy problem. Similar to RR-CG, in Fig. 1 we plot the
empirical mean of the SS-RFF estimator using 104 samples.
We find that SS-RFF produces unbiased estimates of the
y>K̂−1XXy and log |K̂XX| terms. However, these estimates
have a higher variance when compared to the estimates of
RR-CG. Reducing the expected truncation iteration E(J)
(x-axis) increases the standard error of the empirical means,
demonstrating the speed-variance trade-off.

4.3. Analysis of the Bias-free Methods

Randomized truncations and conjugate gradients have ex-
isted for many decades (Hestenes et al., 1952; Kahn, 1955),
but have rarely been used in conjunction. Filippone & En-
gler (2015) proposed a method closely related to our RR-
CG which performs randomized early-truncation of CG
iterations to obtain unbiased posterior samples of the GP
covariance parameters. We differ by tackling the GP hyper-
parameter learning problem: we provide the first theoretical
analysis of the biases incurred by both CG and RFF, and
proceed to tailor unbiased estimators for each method.

To some extent, randomized truncation methods are antithet-
ical to the original intention of CG: producing deterministic
and nearly exact solves. For large-scale applications, where
early truncation is necessary for computational tractability,
the ability to trade bias for variance is beneficial. This fact
is especially true in the context of GP learning, where the
bias of early truncation is systematic and cannot be simply
explained away as numerical imprecision.

Randomized truncation estimates are often used to estimate

Figure 3. Optimization landscape of a GP with two hyperparame-
ters. The SS-RFF and RR-CG models converge to similar hyper-
parameter values that are nearly optimal, while the RFF and CG
models converge to suboptimal solutions. In addition, the stochas-
tic effect of the randomized truncation is visible in the trajectories
of RR-CG and SS-RFF. Moreover, CG (and RR-CG) models trun-
cate after 20 iterations (in expectation); RFF (and SS-RFF) models
use 700 features (in expectation).

infinite series, where it is challenging to design truncation
distributions with finite expected computation and/or vari-
ance. We avoid such issues since CG and the telescoping
RFF summations are both finite.

5. Results
First, we show that our bias-free methods recover nearly
the same hyperparameters as exact methods (i.e. Cholesky-
based optimization), whereas models that use CG and RFF
converge to suboptimal hyperparameters. Since RR-CG
and SS-RFF eliminate bias at the cost of increased variance,
we then demonstrate the optimization convergence rate and
draw conclusions on our methods’ applicability. Finally,
we compare models optimized with RR-CG against a host
of approximate GP methods across a wide range of UCI
datasets (Asuncion & Newman, 2007). All experiments are
implemented in GPyTorch (Gardner et al., 2018)

Optimization trajectories of bias-free GP. Fig. 3 dis-
plays the optimization landscape – the log marginal like-
lihood of the PoleTele dataset – as a function of (RBF)
kernel lengthscale ` and noise σ2. As expected, an exact
GP (optimized using Cholesky, Fig. 3 upper left) recovers
the optimum. Notably, the GP trained with standard CG
and RFF converges to suboptimal hyperparameters (upper
right/lower right). RR-CG and SS-RFF models (trained
with 20 iterations and 700 features in expectation, respec-
tively) successfully eliminate this bias, and recover nearly

Bias-Free Scalable Gaussian Processes via Randomized Truncations

Figure 4. The GP optimization objective for models trained with
RFF and SS-RFF. (PoleTele dataset, RBF kernel, Adam optimizer.)
RFF models converge to sub-optimal log marginal likelihoods. SS-
RFF models converge to (near) optimum values, yet require more
than 100× as many optimization steps.

Figure 5. The GP optimization objective for models trained with
CG and RR-CG. (Bike dataset, RBF kernel, Adam optimizer.)
RR-CG models converge to optimal solutions, while the (biased)
CG models diverge. Increasing the expected truncation of RR-CG
only slightly improves optimization convergence; models converge
in < 100 steps of Adam.

the same parameters as the exact model (upper center/lower
left). These plots also show the speed-variance tradeoff of
randomized truncation. SS-RFF and RR-CG have noisy op-
timization trajectories due to auxiliary truncation variance.

Convergence of GP hyperparameter optimization.
Figs. 4 and 5 plot the exact GP log marginal likelihood of
the parameters learned by each method during optimization.
Each trajectory corresponds to a RBF-kernel GP trained on
the PoleTele dataset (Fig. 4) and the Bike dataset (Fig. 5).

Fig. 4 shows that RFF models converge to solutions with
worse log likelihoods, and more RFF features slow the rate
of optimization. Additionally, we see the cost of the aux-
iliary variance needed to debias SS-RFF: while SS-RFF
models achieve better optima than their biased counterparts,
they take 2-3 orders of magnitude longer to converge, de-
spite using a truncation distribution that minimizes variance.
We thus conclude that SS-RFF has too much variance to be
practical for GP hyperparameter learning.

Fig. 5 on the other hand shows that RR-CG is minimally
affected by its auxiliary variance. The GP trained with
RR-CG converges in roughly 100 iterations, nearly match-
ing Cholesky-based optimization. Decreasing the expected
truncation value from E[J] = 40 to 20 slightly slows this
convergence. We note that the bias induced by standard CG
can be especially detrimental to GP learning. On this dataset,
the biased models deviate from their Cholesky counterparts
and eventually diverge away from the optimum.

Predictive performance of bias-free GP. Lastly, we
compare the predictive performance of GPs that use RR-CG,
CG, and Cholesky for hyperparameter optimization. We em-
phasize that the RR-CG and CG methods only make use
of early truncation approximations during training. At test
time, we compute the predictive posterior by running CG
to a tolerance of ≤ 10−4, which we believe can be consid-
ered “exact” for practical intents and purposes. Additionally,
we include four other (biased) scalable GP approximations
methods as baselines: RFF, Stochastic Variational Gaus-
sian Processes (SVGP) (Hensman et al., 2013), generalized
Product of Expert Gaussian Processes (POE) (Cao & Fleet,
2014; Deisenroth & Ng, 2015), and stochastic gradient-
based Gaussian Processes (sgGP) (Chen et al., 2020). We
note that the RFF, SVGP, and sgGP methods introduce both
bias and variance, as these methods rely on randomization
and approximation.

We use CG with J = 100 iterations, and RR-CG with
E[J] = 100 expected iterations; both methods use the pre-
conditioner of Gardner et al. (2018). All RFF models use
700 random features. For SVGP, we use 1,024 inducing
points and minibatches of size 1,024 as in (Wang et al.,
2019). The POE models are comprised of GP experts that
are each trained on 1,024 data point subsets. For sgGP, the
subsampled datasets are constructed by selecting a random
point x, y and its 15 nearest neighbors as in (Chen et al.,
2020). Each dataset is randomly split to 64% training, 16%
validation and 20% testing sets. All kernels are RBF with a
separate lengthscale per dimension. See appendix for more
details.

We report prediction accuracy (RMSE) and negative log
likelihood (NLL) in Fig. 6 (see appendix for full tables on
predictive performance and training time). We make two
key observations: (i) RR-CG meaningfully debiases CG.
When the bias of CG is not detrimental to optimization
(e.g. CG with 100 iterations is close to convergence for the
Elevators dataset), RR-CG has similar performance. How-
ever, when the CG bias is more significant (e.g. the KEGG
dataset), the bias-free RR-CG improves the GP predictive
RMSE and NLL. We also include a figure displaying the
predictive performance of RR-CG and CG with increasing
number of (expected) CG iterations in appendix. (ii) RR-CG
recovers the same optimum as the “ground-truth” method

Bias-Free Scalable Gaussian Processes via Randomized Truncations

Figure 6. Root-mean-square-error (RMSE) and negative log likelihood (NLL) of GP trained with CG (light purple), RR-CG (dark purple)
and various approximate methods (grey). Dashed red lines indicates Cholesky-based GP performance (when applicable). Results are
averaged over 3 dataset splits. Missing RFF and sgGP results correspond to (very high) outlier NLL / RMSE values. In almost all
experiments, GP learning with RR-CG achieves similar or better performance compared to that with CG at the same computational cost.

(i.e. Cholesky) does, as indicated by the red-dashed line in
Fig. 6. This result provides additional evidence that RR-CG
achieves unbiased optimization.

While RR-CG obtains the lowest RMSE on all but 2 datasets,
we note that the (biased) GP approximations sometimes
achieve lower NLL. For example, SVGP has a lower NLL
than that of RR-CG on the Bike dataset, despite having a
higher RMSE. We emphasize that this is not a failing of
RR-CG inference. The SVGP NLL is even better than that
of the exact (Cholesky) GP, suggesting a potential model
misspecification for this particular dataset. Since SVGP
overestimates the observational noise σ2 (Bauer et al., 2016),
it may obtain a better NLL when outliers are abundant.
Though we cannot compare against the Cholesky posterior
on larger datasets, we hypothesize that the NLL/RMSE
discrepancy on these datasets is due to a similar modeling
issue.

6. Conclusion
We prove that CG and RFF introduce systematic biases
to the GP log marginal likelihood objective: CG-based
training will favor underfitting models, while RFF-based
training will promote overfitting. Modifying these methods
with randomized truncation converts these biases into vari-
ance, enabling unbiased stochastic optimization. Our results
show that this bias-to-variance exchange indeed constitutes
a trade-off. The convergence of SS-RFF is impractically
slow, likely due to the truncation variance needed to elimi-
nate RFF’s slowly-decaying bias. However, for CG-based

training, we find that variance is almost always preferable
to bias. Models trained with RR-CG achieve better perfor-
mance than those trained with standard CG, and tend to
recover the hyperparameters learned with exact methods.
Though models trained with CG do not always exhibit no-
ticeable bias, RR-CG’s negligible computational overhead
is justifiable to counteract cases where the bias is significant.

We reported experiments with at most 300K observations for
our methods and baselines, which is substantial for GPs. We
emphasize that RR-CG can be extended to datasets with over
one million data points as in Wang et al. (2019). However,
the computational cost is much higher, requiring multiple
GPUs for training and testing.

We note that the RR-CG algorithm is not limited to GP
applications. Future work should explore applying RR-CG
to other optimization problems with large-scale solves.

Acknowledgements
This work was supported by the Simons Foundation, McK-
night Foundation, the Grossman Center, and the Gatsby
Charitable Trust.

References
Asuncion, A. and Newman, D. Uci machine learning repos-

itory, 2007.

Bauer, M., van der Wilk, M., and Rasmussen, C. E. Under-
standing probabilistic sparse gaussian process approxi-

Bias-Free Scalable Gaussian Processes via Randomized Truncations

mations. In Advances in Neural Information Processing
Systems, 2016.

Beatson, A. and Adams, R. P. Efficient optimization of
loops and limits with randomized telescoping sums. In
International Conference on Machine Learning, 2019.

Bochner, S. et al. Lectures on Fourier integrals, volume 42.
Princeton University Press, 1959.

Burt, D., Rasmussen, C. E., and Van Der Wilk, M. Rates
of convergence for sparse variational gaussian process re-
gression. In International Conference on Machine Learn-
ing, pp. 862–871, 2019.

Cao, Y. and Fleet, D. J. Generalized product of experts
for automatic and principled fusion of gaussian process
predictions. arXiv preprint arXiv:1410.7827, 2014.

Chen, H., Zheng, L., Al Kontar, R., and Raskutti, G. Stochas-
tic gradient descent in correlated settings: A study on
gaussian processes. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

Chen, R. T. Q., Behrmann, J., Duvenaud, D., and Jacobsen,
J.-H. Residual flows for invertible generative model-
ing. Advances in Neural Information Processing Systems,
2019.

Cunningham, J. P., Shenoy, K. V., and Sahani, M. Fast
gaussian process methods for point process intensity esti-
mation. In International Conference on Machine learning,
pp. 192–199, 2008.

Cutajar, K., Osborne, M. A., Cunningham, J. P., and Filip-
pone, M. Preconditioning kernel matrices. In Interna-
tional Conference on Machine Learning, 2016.

Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E.
Hierarchical nearest-neighbor gaussian process models
for large geostatistical datasets. Journal of the American
Statistical Association, 111(514):800–812, 2016.

Deisenroth, M. and Ng, J. W. Distributed gaussian processes.
In International Conference on Machine Learning, pp.
1481–1490. PMLR, 2015.

Dong, K., Eriksson, D., Nickisch, H., Bindel, D., and Wil-
son, A. G. Scalable log determinants for gaussian process
kernel learning. In Advances in Neural Information Pro-
cessing Systems, pp. 6327–6337, 2017.

Filippone, M. and Engler, R. Enabling scalable stochas-
tic gradient-based inference for gaussian processes by
employing the unbiased linear system solver (ulisse). In
International Conference on Machine Learning, pp. 1015–
1024. PMLR, 2015.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and
Wilson, A. G. Gpytorch: Blackbox matrix-matrix gaus-
sian process inference with gpu acceleration. In Ad-
vances in Neural Information Processing Systems, pp.
7576–7586, 2018.

Golub, G. H. and Van Loan, C. F. Matrix Computations.
The Johns Hopkins University Press, 4th Edition, 2012.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian
processes for big data. In Uncertainty in Artificial Intelli-
gence, 2013.

Hestenes, M. R., Stiefel, E., et al. Methods of conjugate
gradients for solving linear systems. Journal of Research
of the National Bureau of Standards, 49(1), 1952.

Hutchinson, M. F. A stochastic estimator of the trace of the
influence matrix for laplacian smoothing splines. Com-
munications in Statistics-Simulation and Computation,
18(3):1059–1076, 1989.

Kahn, H. Use of different monte carlo sampling techniques.
Rand Corporation, 1955.

Katzfuss, M., Guinness, J., et al. A general framework for
vecchia approximations of gaussian processes. Statistical
Science, 36(1):124–141, 2021.

Loper, J., Blei, D., Cunningham, J. P., and Paninski, L.
General linear-time inference for gaussian processes on
one dimension. arXiv preprint arXiv:2003.05554, 2020.

Luo, Y., Beatson, A., Norouzi, M., Zhu, J., Duvenaud, D.,
Adams, R. P., and Chen, R. T. Q. Sumo: Unbiased estima-
tion of log marginal probability for latent variable models.
In International Conference on Learned Representations,
2020.

Lyne, A.-M., Girolami, M., Atchadé, Y., Strathmann, H.,
Simpson, D., et al. On russian roulette estimates for
bayesian inference with doubly-intractable likelihoods.
Statistical science, 30(4):443–467, 2015.

Mutnỳ, M. and Krause, A. Efficient high dimensional
bayesian optimization with additivity and quadrature
fourier features. Advances in Neural Information Pro-
cessing Systems, pp. 9005–9016, 2018.

Nowozin, S. Debiasing evidence approximations: On
importance-weighted autoencoders and jackknife varia-
tional inference. In International Conference on Learned
Representations, 2018.

Oktay, D., McGreivy, N., Aduol, J., Beatson, A., and Adams,
R. P. Randomized automatic differentiation. arXiv
preprint arXiv:2007.10412, 2020.

Bias-Free Scalable Gaussian Processes via Randomized Truncations

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Advances in Neural Information
Processing Systems, pp. 1177–1184, 2008.

Snelson, E. and Ghahramani, Z. Sparse Gaussian processes
using pseudo-inputs. In Advances in Neural Information
Processing Systems, 2006.

Sutherland, D. J. and Schneider, J. G. On the error of random
fourier feaures. Conference on Uncertainty in Artificial
Intelligence, 2015.

Titsias, M. K. Variational learning of inducing variables
in sparse Gaussian processes. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 567–574,
2009.

Ubaru, S., Chen, J., and Saad, Y. Fast estimation of tr(f(a))
via stochastic lanczos quadrature. SIAM Journal on Ma-
trix Analysis and Applications, 38(4):1075–1099, 2017.

Wang, K., Pleiss, G., Gardner, J., Tyree, S., Weinberger,
K. Q., and Wilson, A. G. Exact gaussian processes on a
million data points. In Advances in Neural Information
Processing Systems, pp. 14648–14659, 2019.

Wilson, J., Borovitskiy, V., Terenin, A., Mostowsky, P.,
and Deisenroth, M. Efficiently sampling functions from
gaussian process posteriors. In International Conference
on Machine Learning, pp. 10292–10302, 2020.

	Introduction
	Background
	Conjugate Gradients
	Random Fourier Features
	Unbiased Randomized Truncation

	GP Learning with CG and RFF is Biased
	CG Biases GP Towards Underfitting
	RFF Biases GP Towards Overfitting

	Bias-free Scalable Gaussian Processes
	Russian Roulette-Truncated CG (RR-CG)
	Single Sample-Truncated RFF (SS-RFF)
	Analysis of the Bias-free Methods

	Results
	Conclusion

