A Probabilistic Approach to Neural Network Pruning

A. Supporting Lemmas

We start by presenting various technical lemmas that support the main proofs. Lemma 1 shows the expectation of moments
of order statistics of the uniform distribution. This lemma is used in the magnitude-based pruning result of FCNs.

Lemma 1. Given n independent and identically distributed random variables Uy, . .

[n], we have
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Proof. Note that for 0 < # < a?, wehave F(z) = P(X; <2) =P (U2 <2) =P (-2 < U; < V) = ? Therefore,
the probability density function of X, is given by
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Specifically, we have EX ) = azm and EX7 ) = a D ) (D) (i T O

Next, we present some results for sub-Gaussian random matrices. We first give the definition of sub-Gaussian random

variables in the following.

Definition 1. A random variable X € R is said to be sub-Gaussian with variance proxy o2 if EX = 0 and its moment

generating function satisfies

Eexp [sX] < exp (

In this case, we write X ~ subG(c?).

0.2

)

2

, VseR.

Note that SUbG(c?) denotes a class of distributions rather than a single distribution. Many common distributions, like
Gaussian and any bounded distributions with zero expectation, all fall into this category. If X ~ subG(c?), then we have

var (X) = EX? < 02,
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Lemma 2 (Proposition 2.4 of Rudelson & Vershynin (2010)). Let A be a ny x ng random matrix whose entries are
independent mean zero sub-Gaussian random variables whose sub-Gaussian variance proxy are bounded by 1. Then there
exists universal positive constants c and C' such that, for any t > 0 we have

P (|A], > C (v/m1 + vn2) + 1) < 267 (12)

Lemma 3. Let B be a n1 x ny random matrix whose entries are independently and identically distributed following
U [—%, %] where K is a positive constant and n = max {n1,na}. Then there exist positive constants cy (depends on

K ) and 5y such that | B|, < co with probability at least 1 — 2e~4%™,

Proof. Let us denote A = @B. Then the entries in A are independently and identically distributed following

U [—\/3, \/5] which belongs to the sub-Gaussian distribution with variance proxy 1. Applying Lemma 2, we know
that there exist positive constants C' and & such that

P (| All, > 2Cvn + 1) <P (JA|, > C (Vi + /n2) + ) < 2e7%F

Taking t = 24/n, we have

P <|B|2 > % (C+ 1)) =P (\/% HAH2 > % (C + 1)) =P (HAH2 >2n (C+ 1)) < 28—45011’

and therefore

P(|Bly < co) =1 —2e7*",

whereco=%(0+1)>0. O

In the two lemmas above, we assume certain distributions for the entries in the random matrices. The following lemma is
more general in the sense that it only requires the entries in the matrices to be independent.

Lemma 4 (Theorem 2 of Latata (2005)). Let A be a random matrix whose entries A; j are independent mean zero random
variables with finite fourth moment. Then

2

E|Al, < C | max (ZEAEJ) + max <21EA§J> + <2EA;{j> , (13)
J ( ,J

where C'is an universal positive constant.

The proofs of the main theorems in this paper heavily rely on Lemmas 3 and 4. Note that there are some universal constants
in the statement of these two lemmas that all appear in the bounds of the main theorems. Thus we give a numerical study of
these two lemmas in Appendix D.3 and D.4.

Lemma 5 (Chernoff Bound). Suppose X,...,X,, are independent random variables taking values in {0,1}. Let
X :=>" X, and j := EX. Then for any § > 0, we have

52
P(X > (1+8)) < exp <_1+5u). (14)

The next lemma results from the famous problem “balls-into-bins.” This is a classic problem in probability theory that has
many applications in computer science. See the survey paper by Richa et al. (2001) for more details.

Lemma 6. Consider the problem of throwing N balls independently and uniformly at random into n bins. Let X; be the

random variable that counts the number of balls in the j-th bin, 1 < j < n. If N = nlog(n), then with probability at least

"1 _~ 3N
1 —n73 we have max e, X; < 2.
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Proof. Let X;; be the indicator random variable for the event that the i-th ball falls into the j-th bin, i € [N], j € [n]. Then
EX; = Zfil EX;; = &, j € [n]. Note that o = & > log(n), applying Lemma 5 with § = 2, we have

n

N 4 4
P (Xj = 3n) < exp (—3,u) < exp (—3log(n)> =n"3.

By the union bound we have

ol

3N 3N 3N _4 _1
P(maXXj>>—]P’ U {ijn} <) ]P’<Xj>>§n-n 5 =n73,

j€ln] n j€[n] je[n] n

and therefore

3N
P (maij < > >1 —n_%.
je[n] n

O

The last lemma focuses on the singular values of the matrix representation of convolutional operators. Given a convolutional
tensor F € R4*4X4%4  the corresponding matrix representation W of F has dimension p?>d x p?d, where p is the width and
height of the input feature map. Applying the traditional singular value decomposition methods on such a large matrix is
usually time-consuming and computationally-inefficient. Sedghi et al. (2018) provide tools to represent the set of singular
values of W by the joint of sets of singular values of many smaller sub-matrices. This is done by carefully analyzing the
properties of ciuculant-type matrices. We use the following lemma from Sedghi et al. (2018) to calculate the Ly norm of the
weight matrices in CNNs.

Lemma 7 (Theorem 6 of Sedghi et al. (2018)). Let w = exp (27i/p), where i = \/—1 and S be the p x p matrix that
represents the discrete Fourier transform

w1><1 wlxp

S =

wbxl oo PxP

Given a tensor F € R¥*4X9%4_ [ot ys denote K € RY*¥*P*P qs defined in (7) and we denote W* e RAP* xdp*
the matrix encoding the linear transformation computed by the convolutional layer parameterized by K, as defined in
(8) = (9). Let P(“?) be the d x d matrix such that the (s,t)-th element of P"“") is equal to the (u,v)-th element of
STK;..S,u,v e [pl,s,t,€ [d], or equivalently

,,:,:S)uvv u,ve[p],s,t,E[d].
Then
W, = max {[Pe)] ).
2

u,ve[p]|

B. Proofs

In this section, we provide the full proof of Theorems 1, 2, and 3. Note that the proofs of these three theorems are similar.
Theorem 2 exhibits all ideas and thus it is presented in full. The proofs of the other theorems show the difference.

B.1. Proof of Theorem 2

Proof. For any x € Bg, and 1 < k < [, we denote y(z) := o) (Wiop—1(---Waoy (Wix))) and y}(z) :=
o (Wiok—1 (--- W5o1 (Wix))) as the output of the k-th layer of f and F', respectively.

Recall that we set M7 and M as the all 1 matrices, i.e. Wi = Wi* and W; = Wl*. For each 1 < k < [, we order the entries
of W} by their absolute values such that

< v <o K (W’:)i’f?k’jgk

<|mi)

(Wi st

Kk ik
12:J2
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and denote T, := {(i¥, j5) : 1 < s < | D}~ *|}. We set (My);; = 0if (4, j) € Ty, and (My); ; = 1 otherwise. We further
denote two events

A := {the number of zero entries in each row of Mj, is at most 3| Dy ~*|/dy}

AR = {the number of zero entries in each column of Mj, is at most 3| D}~ | /dj—1 }

and set event A%) = Aﬁk) ﬂAEk). Note that (3) and (4) guarantee that [D,lfaj > dylog (dy) and D,i*a >

dr—11og (dy—1), respectively, and the events Agk) and Agk)

P(AD) =P (4D A®) = (A®)P (49) > (1= %) (1=d3,) > (1-a3)
N

2(1—2)
Further, for A := A® (... A=), we have P(A) = [[,_,P (A®) > <1 - d*%) where the probability is

taken over the randomness of masks (and is not over the randomness of weights in W,;“ ’s).

are independent. Thus by Lemma 6, we have

Let us assume that

d-ic < No.....Nj_ ¢ . 15
1 mln{ 2, ) ll’(2l2_1)L1:l1N1:l} (15)

We use induction to show that, for any z € By, and 1 < k <[,
(I) with probability at least Hle (1 —6;), we have |y ()], < L1:x N1k,

(II) with probability at least 1 — (k — 1)cod ™% — 2(k — 1)d 3 — Zle(k +1—14)8;, we have | (yx(z)|A) —
(2F1 —1) d=%“Ly.;,Ny.;. for some positive constant ¢ specified later®.

Z)H2 <

The case of k& = 1 is as follows. Note that for any vector v, we have |1 (v)|, = |o1(v) — 01(0)|, < L1 [[v — 0], = Ly ||v]|,.
Thus, [yf(z)|y = |on (Wix)|y < Ly [Wiz||y < Ly [Wi], [2], < L1N1 with probability at least 1 — d;. Further, we
have y1 (z) = o1 (Wiz) = o1 (Wi'z) = yf (x), and thus [y (z) — y{ (z)], = 0.

Suppose the statement holds for 1 < k < [ — 1; we consider the case of k£ + 1. Note that the events {HW,C 1 H2 < N, k+1}
and {Hyk z)|, < L.k N1, k} are independent. By induction statement (I), with probability at least

\
1=
_

P ({HW:+1H2 N’““} ﬂ {Hyk Mo < i k}) (HW:+1H2 < Nk“)'P (Hy;"(:v)llz < Ll:klek) =
i=1

we have
Hyljﬂ(x)Hz Ha’fﬂ (Wk+1yk )“2 Lyt ”W:Hy;:(x)”z < Lk HW:HHQ lyi (@)l
< Lgy1Ngs1 - LNk = L1 Nigrs
which shows (I) in the induction statement.

We next show that (I) holds. Under event A, the number of non-zero entries in each row of Wy 1 is at most 3[D 1 /g1
Thus we have

max Z E [(Wkﬂ)ij

elda] Jeldk]

dps1 max {dpy1,di} di+1dk

3 1 .
3D1 @ K 2 3K D1 a\ 2 a
A] << |Dii7 ] 1 ) < (1k+1 = \BK.D, % < \/3K.d"°,
(16)

8Note that in the induction statement (II), the probability (and the expectations in the following context) is taken over the randomness of

is equivalent to ||y (z) — y;f (2) ‘A, and the statement can also

- I,

be written as P ({”yk(x) —yi (x)”2 <(2'-1) d*%Qleklek} ‘A) >1—(k—1)cod™ T —2(k — 1)d*% — Zle(k +1—14)d;.

weights but not the masks. The random variable | (yx ()| A) — v (z)



A Probabilistic Approach to Neural Network Pruning

and similarly,

Nl

; A] < /3K, d°. (17)

2

max [ Y E [(WkH)L
ie

In addition, since there are at most [D,lg 1] non-zero entries in Wy, 1 := Wy — W)F |, we have

Ky

2 S Prtl
max {di1,dy} Di41

= KoD; % < Kod 2%, (18)

Z E [’(Wk-k—l)i,j '

i€[dk+1].5€[dk]

4| <1k

Combining (16) — (18) and Lemma 4, there exists a universal positive constant c¢; such that

1
2 2
E[[ Wi}l < x| max |37 EWiea)]; | +max (> EWe)i; | + > EWn)i;
el \ j&a TET \ iefdria) ieldn 1] geld]
1
<o [VBEW T + VBRI + (Kad )] (19)
< CQd %7
1
where c5 = ¢; (2«/31(1 + K;).
By the Markov’s inequality, for all ¢ > 0 we have
E [[Wi+1llo|A]

P (Wil > t}]4) < :
Taking t = d~ %, we have

P ({||Wk+1”2 <d %} ‘A) >1—eod %
By induction statement (I) and the fact that P ((")]_; 4;) = >,;_, P (A;) — (s — 1), with probability at least’

IP’<{}(W;€+1’A)W,;“+1}2<dz}ﬂ{’W,;“+l}2 Nk-‘rl}ﬂ{Hyk Hz le‘le}

N{I@)]4) - @), < (2" - )d_ialekNl:k}> (20)

k k
= (1 - ng_%) + (1 - 5k+1) + H (1 —;) + (1 — (k‘ — 1)ng_% — Z(k +1-— 2)5l> -3
i=1 i=1
k k
> (L—cad™ %) + (1 — 0ps1) + <1 — Z 5i> + (1 —(k—1)eod™ 5 — Z(k +1-— i)§i> -3
i=1 =1
k+1
=1—keyd™ 5 = Y (k+2—1)d,
i=1
We use the fact that, for any a1, - -+ ,as € (0,1), we have [[J_, (1 —a;) > 1 — X)°_, a;. This inequality is frequently used in the

following proofs.



A Probabilistic Approach to Neural Network Pruning

we have

| (yr+1(2)]A) = g1 (@),
= |oker (Wis1|A)yr(2)) — onsr (Wi 15 (2))],
< L1 |(Waia|A) g (@) — Wi yi (2)],
< Ly [H (Wk+1|A) yr(z) — Wk+1y:(l‘)H2 + H (Wk+1|A) y;g(x) - Wl:Jrlylj(x)HQ]
< Lirt [|(Wara|A) |, lyn(@) — v @)y + | (Wi | A) = Wi, lwit (@)],]
< Lipt [(HW;HHQ + H (Wk+1|f4) Wk+1H ) lyr () — yfi (@), + H (Wk+1|A) - Wlfﬂ”g Iy (x)||2]
< Lga (Nk+1 +d_%a) H (yk(x }A) — Y (@ “2 +die Ll:kNlrk] @D

< Lpq1 [2Nk+1 | (ye(2)|A) = yii ()], + d_%alekNm]

< Ligt [2Nisn - (257 = 1) 474 LugcNug +d 75 Ly N

< Lig1 [2Ngg1 - (2871 = 1) d™ 1Ly Ny + d_iaLl:klek-H]
= (2"~ 1) d *Ligs1 N (22)
where in (21) we use assumption (15). This finishes the induction.

We have just shown that with probability at least 1 — (I — 2)cod ™% — Zi:(l —1)d;, we have

| (=1 (2)|A) — gy (2)], < (277 = )d_%aLququ

For the last layer, by assumption, with probability at least (1 — J;) - [1 — (I —2)cad™ % — Zi;i (- i)éi], we have for
every z € By,

|(f(@)|A) = F(2)], = HWl(yl,l(:c)lA) — Wiy ()],
= | W (-1 ( \A)*Wz*yz*l )],
< Wl | (- ( }A)—yl (@),
N (272 -1)d” 1L 1 Nig
= (272 = 1) d ¥ L1y 1 Ny

€,

N

N

2(1—2)
where the last inequality follows from assumption (15). In conclusion, with probability at least P (A4) > (1 — d_é)
over the randomness of masks, we have sup,.p, |(f()]A4) — F(x)H2 < e with probability at least (1 — ;) -

[1 — (I —2)cd™ % — Zi;i(l — i)&i]. As a result, basic probability yields that with probability at least

poi=(1-a )" g l1 — (=2 — li(z - 1)511 ,

i=1

we have

sup [f(z) — F(z)], <€

IEBdO

It remains to determine a lower bound of d such that

1, . €
d~1% < min {NQ, ey Ni_q, @2 1) Ly 1 Mia } (23)
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and
po=1-4. (24)

For (23), we have

4 4
o

d>N,*, 2<k<l-1 and d=>((2""2=1)Liy-1N1)" -e o. (25)

Regarding (24), condition (5) guarantees that 6y = 0 — [61 + Zi;i(l — 1)51] > 0. We have

2(1-2)d "5 < §st e d=6,°(3(1-2))°, (26)
a 1 _4
(1 =2erd™ <30 = d>8" Beall - 2)) . 27)
Combining (25) - (27), we know that if
4 (O s Cs ° Cy s
d> o 2= = 4
Inax{Cl,<€> ’(50)’ 5 )
for some positive constant C, Cs, Cs and Cjy, then with probability at least
N 20-2) . et .
po = (1—d—§) (1-0)- [1—(1—2)@(1—4 —2(1—2)511
i=1
) -1
>1—(1—2)cod T —2(1—2)d 3 — lél + Z(l — 2)621
i=1
2 1
>1—-0g—zd—(0—56
3% — 3% ( 0)
=1-4,
we have
sup | f(z) = F(z)[, < e
TE dg
O

B.2. Proof of Theorem 1

Proof. For any © € Bg, and 1 < k < [, we denote yi(z) = o (Wio(---Wao (Wix))) and yi(z) =
o(Wiko (---W3o (Witz))) as the output of the k-th layer of f and F, respectively.

Recall that we set M, and M as the all 1 matrices, i.e. Wi = W;* and W; = Wz*~ For each 1 < k < [, we order the entries
of W;* by their absolute values such that
‘(W/: )i’f, Jh

<--<-- < (W;)i%k’jgk

<|m)

K ik
12:J2

and denote Zj, := {(i¥,j%) : 1 < s <|D}~*|}. We set (My);; = 0if (i,5) € Iy, and (M); ; = 1 otherwise. In the
following, we show that My, ..., M; defined above satisfy (2).

By Lemma 3, there exist positive constants ¢, (depends on K) and &y such that'®
P (Wi, <o) =1—2e*4  1<k<l (28)

"In fact, we get [ different sets of {c;, d;} ,i € [I] by applying Lemma 3 [ times. We take co = max {c;} and 8o = min {d;} so that
(28) is satisfied forall 1 < k < [.
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Let us assume that

€
d™® < min ¢, — . 29)
{ (20-2-1) Ll:(l—l)clo ! }

We use induction to show that, for any € By, and 1 < k <[,

(I) with probability at least (1 — 26*45°d)k, we have |y (z)], < Ligcl

[P

(II) with probability at least 1 — (k — 1)cod™® — (k + 2)(k — 1)e=*0? we have |yp(z)—yf(z), <
(281 — 1) d=*Lygef "

Statement (I) can be proved in the same way as in the proof of Theorem 2. We next show that (IT) holds. The case of
k = 1is trivial since y1 (z) = yF(x). Suppose the statement holds for 1 < k < [ — 1; we consider the case of k£ + 1. Note

. . . . . . _ K _
that the non-zero entries of Wyy1 1= Wy — Wi, are {(W,;"H)m. (i, 5) € Ikﬂ}. Taking a = Wererrry the

Dyy1,7 = |D; ;%] in Lemma 1, for every entry e of Wy 1, we have

k+1
2
K2 Dl—a Dl—oz +1
]E€2 < E (W]:+1)4k+1 et _ . l k?+1J (l k+1J )
‘bz dinize) max {dp, dg+1} (D41 + 1)(Drs1 +2)
K’ Diii (Dpsf +1) K’

< X < X 2D72a < 2K2d_1_4a,
max {dk, dk+1} (Dk+1 + 1)(Dk+1 + 2) max {dk, dk+1} k1

and similarly
4

Ee' <E|(Wi)we a0 | <24K'd7?78

1—ad pl-a
[Dpy1) 1Ppir]

Taking A = Wj1 in Lemma 4, we know there exists a constant co > 0 such that E | W1, < cad™2*, where
co = CK (2v/2 + (24)%/*) and C is the universal constant as defined in Lemma 4. By Markov’s inequality, for all ¢ > 0

we have P (|Wii1], =) < w. Taking ¢ = d~“, we have

P (Wi, <d ™) 21— cad ™.
Similar to (20) — (22) in the proof of Theorem 2, with probability at least
P {10 = W2l < 3 (W2l < o} O {l2 @, < Lunch)
ﬂ {Hyk(l") —yi ()], < (2'671 - 1) diaLl:kC§71}> (30)

> (1—cod™®) + (1 - 2e*450d) + (1 - 2e*450d)k + (1 — (k= 1)ead™™ — (k+2)(k — 1)6*450‘1) -3
> 1 — kead™™ — (k + 3)ke™ %04,

we have
|yrs1(z) — Z/;:H(x)”Q < (2F - 1) diaLL(kH)Cg,

which finishes the induction.

We have just shown that with probability at least 1 — (I — 2)cod™® — (I + 1)(I — 2)e~4%4, we have

-1(z) =yt ()], < (277 = 1) dLygonyep >
lyi—1(2z) =y 1 (@), < (22 —1)d“L ch?

For the last layer, by (28), with probability at least (1 — 2e=4%¢) . (1 — (I — 2)cod™* — (I + 1)(I — 2)e~*%%), we have
for every x € By,,

If(z) — F(x)Hz <S¢ (21_2 - 1) d_ale(z—nCé*Q < €,
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where the last inequality follows from assumption (29). In conclusion, we show that with probability at least
po = (1—2e7*%%) (1 — (1 = 2)cad™™ — (I + 1)(1 — 2)e~*9) ,
we have

sup [ f(z) — F(z)[, < e

:(JGBdO

It remains to determine a lower bound of d such that

€
d™® < min K ¢, — (3D
{ (272 -1) Ll:(l—l)Cé ! }

and
po=1—0. (32)

For (31), we have

1

_1 2072 — 1) Lyg_pyeh '\ °

d>co(l’ and d><( ) Lia-ne : (33)
€

Regarding (32), we have pg > 1 — (I — 2)cod™ — (12 — [)e~ %%, Note that py > 1 — § if (I — 2)cod™® < £ and

i
2 . . . .
(12 — [)e=4%0d < ;2—:55. These conditions are satisfied if

2 _
i (W) (34)

Q=

and

1 1
d> o <log (5) + log(I* — 2)) . (35)

Combining (33) - (35), we know that if

d?maX{C’fl‘,(C:)a,<c(;3>a ,Cy + Cslog (;)},

for some positive constants C, Cs, Cs, Cy and Cs specified above, then with probability at least 1 — § we have

sup | f(z) = F(z)[, < e

wEBdO

B.3. Proof of Theorem 3

Proof. Let F(F) e R *dx—1Xak%dk be the corresponding convulotional tensor of W and K(®) g Rk dr—1Xpxpr
be as defined in (7). For any x € Cyq, and 1 < k < [, we denote y,(x) = o (Wyo (--- Wao (Wiz))) and yj (z) =
o(Wio (---Wio (Witz))) as the output of the k-th layer of f and F, respectively.

Recall that for 1 < k < [, random pruning is based on 2D filters, i.e., we randomly select |d?~%| pairs of indices (s, ')
from [d] x [d] with replacement and set }'i,k’i,m: to be zero. Denote Zj, := {(s’, ') : ]—'gfz,’:’: is pruned} and M*) be the
d x d matrix such that Mglf)t, = 1if (s',t') € I, and Mgf)t, = 0 otherwise. We further denote two events

AP = {the number of zero entries in each row of M*) is at most 3|d>~|/ d} ,

AR = {the number of zero entries in each column of M*) is at most 3[d2_°‘J/d}
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and set event A(®) :— A% N A% Note that a < 2 — W guarantees that |d*~%| > dlog(d) and the events

Agk) and Aﬁk) are independent. Thus by Lemma 6, we have

P(A®) =P (4P AD) =P (4P P (4] > (1- d—%)2

N\ 20-2)
Further, for A := A® ... A1), we have P (A) = [[\_, P (A®)) > (1 - d*E) where the probability is

taken over the randomness of masks (and is not over the randomness of weights in W;*’s).

For 1 < k <[, let P(Fwv) ¢ RIX? 4 o € [p] be as defined in Lemma 7 such that'!

)

Recall that w = exp (2my/=1/p) and S € RP*? is the matrix of the discrete Fourier transform. By Lemma 7, the (s, ¢)-th
entry of P(*":*) can be written as

HWI: H2 = max {HP(’C:U,U)
u,ve[p]

P = (STK.08), = > WKW, wd = 3w K, W s e [d]u,v e [p],

stzg
i,j€[p] i,5€[q]

where the last equality is due to (7) since K §’? has non-zero entries only in its top-left ¢ x ¢ sub-matrix.
Denoting P*::v:0:7) :— “”'UJK( ) uve [p],i,7 € [q], then we have P(F:%-v) := 7.

N 1;4fe[q
-l

BN

| P(k,u,v,i,j) and

ui+vj K(k)
5587

peossa] -
2

=

i u,v € [pl,4,J € [q]-
By assumption (iii), F . (k) ;€ R%*? i a random matrix whose entries are independently sampled from different distributions.
In addition, these dlstrlbutlons second-order moments are upper-bounded by Cl and the fourth-order moments are
upper-bounded by & 574z - By Lemma 4, for all 4, j € [q], there exists a universal constant C > 0 such that

Cy 3 Cq 5 Cs i Cs
ot ze[(uge)  (o52) (o) ] .
i pd) “\%pa) T\ e p 0)
where C3 = C (2\/ +Cl/4>.
Thus we have
2
E|WE|, < IEHP(’“’”’”) < EHPUW"M)H - EH .(’?)--( <L 37
il < o (B[P0} < a0 2 o[ =, 2 Bl e o e
i,5€(q] i,5€(q]
By the Markov’s inequality, we have
e
P(IWil, <p™™) 21— Cs—— (38)

pl B’

We use induction to show that, for any x € Cp%do and 1 < k < [, we have

k
(I) with probability at least (1 —Cs pﬂ;ﬁl) , we have |y} (z)]|, < (Lp—ﬁ1) porv/do,

""Note that the dimension of W;* and W}* are not p?d x p*d and thus we cannot apply Lemma 7 directly. However, we can always
embed them into a p®d x p?d matrix. For example, we can define W;* = [W}¥, 0,24 p2(a—q,)] and apply Lemma 7 on W¥. We use the

fact that |W;* HWl to get the same result.

I, <
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(I) with probability at least 1 — (k — 1)C4%2d*i°‘+52 - k2+k EAh=20, 1 7. we have |(yx(z)|A) — yf (2)
(p_ﬂl (p= + d_ﬂ?)k_1 — p‘kﬂl) L¥po+/dy holds for some positive constant C specified later'?.

N

l»

N

The case of k = 1 is as follows. With probability at least 1 — 03171(1_7231, we have [[yf(z)], = |o (Wiz)|, < L|Wiz|,

LW, |z, < Lp~?'poy/dy. Further, we have y; (z) = o (Wiz) = o (Wiz) = y§(z), and thus |y (z) — y§ ()],
0.

Suppose the statement holds for 1 < k < I — 1, we consider the case of k£ + 1. Note that the events {HW,;“ " H2 < p*ﬁl}

and {Hyk ()], < (Lp~") pm/do} are independent. By (38) and the induction statement (I), with probability at least

2 k+1
POW 2l <) P (@), < (00 ) oode) = (1-Corir)
we have

lyi @)y = o (Wi @) ], < LIWEaE (@), < LW, vk @),
< Lp = (Lp=?)" pov/do = (Lp~")"*" por/do,

which shows (I) in the induction statement.

We use a similar approach as in the proof for Theorem 2 to show that (II) holds. Let us denote F(}? jl) = ME+HD o

K(kjjl), i,j € [p].ie., Ki’f;l.)‘ = K(,k;l) if (s',t') € Ty 41 and ng:r,l.). = 0, otherwise. Then W,y := Wk | =W 4

can be represented by

—(k+1) —(k+1)
By, - Big
Wit = : : , (39)
(k+1) H(k+1)
Bd’ Tt Bd’,d
—(k+1) . . .
where each B, * is a doubly block circulant matrix such that
circ (Fikjll)) circ ( K ik;r;)) .. circ (K ik;r;)
. —(k+1) (k+1) . (k+1)
. circ (Ks :) (KS ) <. cire <KS )
Bgﬁ:rl) _ . ,t,p, t,1,: . t,p—1,: (40)
circ (?ikj;)) ( K ikt+31)) ... cire (Fik:ll))
—(k+1,u,v) dxd
Again, let P € R%*% u, v € [p] be such that

Pi{?—l,u,l}) _ (STK k-‘rl)s) _ Z uZK(k+1)wUJ, s te [d],u,v c [p]7

s,t,1, s,t,1,7
i,5€[q]

)

—(k+1,u 1),1,]) —(k+1,u,v) —(k+1,u,v,i,5)

and we denote P ““’“JK( ;LJ)ML v € [pl,4,j € [g]. Then we have P = ijeta P
and o
[ _ [ D) J R e i e g
2 AR RS} 2 RARAS!

2Note that in induction statement (II), the probability (and the expectations in the following context) is taken over the randomness of
weights but not the masks, the random variable | (yx(z)|A) — y;f (2) H2 is equivalent to |yx (z) — v} () H2 |A. Further, the statement can
also be written as

_ 2 2 _
P({”yk(w) —y?f(w)”g < (p%l (p*fﬁ +d752)k 1 _p,kﬁl) po\/CTo} ‘A) 1—( —1)04%03*%“32 K4k 203p r
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By assumption (iii), every entry of F(kﬂ-) follows a distribution such that the second-order moment is upper-bounded by

+1
—4 and the fourth-order moment is upper-bounded by & STz Under event A, that the number of non-zero entries in K , ( )

is at most |d*~*| and the number of non-zero entries in each row/column of K, . ( 1) is at most 3|d*>~*|/d, by Lemma 4 and

a similar derivation to (16) — (19), we have

[[REI] 4] < T

where Cy = C (2 (301)% + CQZ) and C' is the universal constant as defined in Lemma 4.

By Lemma 7, we have

B (Wit~ Wl 4] = & [[Waeal,}a] = max {5 [[P*

u,vE[p]

)

< | % sl Ly

wrelel | e

- | 3 e[

u,vE[p]
2
< C4qf _%a.
p

By the Markov’s inequality, for all ¢ > 0 we have

1 Wk’+1H2‘A]
; )

. E[|wg,
P ({HWkJrl - Wk+1H2 = t} ’A) <
Taking ¢ = d~"2, we have

¢ 1
B ({IWi ~ Winly < a1 [a) > 1- S,

Similar to (20) — (22) in the proof of Theorem 2, with probability at least
P(“(Wkﬂ‘A) _WI:HHQ gd_ﬁZ}ﬂ{HW;HHQ 51}ﬂ{“yk )Mo < (Lp ﬁ1) po\F}
N{le@]4) = @], < (57 (= + )" =) L’“po%%}) 1)

2 2 2 k 2 2 2
oL —tasp o o e L g-tas kT AE—2 a7
> (1 Cy » d 3 2) + <1 Cgpl_ﬂl) + (]. 03p1—51> + (]. (/f 1)04 » d 1 2 5 Cspl—ﬂl 3

tarp, R+ (k1) -2, ¢
9 3p1_517

2
—1-ke,La-
p
we have

| (ir1(2)|4) = yita ()], < ¥ povid [p’ﬁl (& +d )" - p’(’““)ﬁl] 7

which finishes the induction.
12—1—2
2

We have just shown that with probability at least 1 — (I — 2)Cy %d*%aﬂb — Cs plq;,gl, we have

|91 @) 4) = g @), < L Mpova [p? (o7 4 d2)' 7 = p0m ]
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Note that the last layer of F is a fully-connected layer with dimension p?d x d;. By Lemma 4, the Markov’s inequality, and
a similar derivation to (36) — (37), there exists a positive constant C such that P (|[W*| <p=#) > 1 — pE—";ﬁ. Therefore,

with probability at least
C(5 q2 — Lot l2 —1-2 q2
(1 — plﬁl) . <1 — (l — 2)04;6[ 4 — B) CBplfﬁl

P-1-2_, & G
2 Spl=BL  pl-Bi’

@ 1
>1—(1-2)Cy—d 1Pz
p
we have that for every z € C24,

[(f@)]A) = F(@)], < p= L' oV [p=% (p=t - a=%) ™ = pm 00 ]

2(1-2)
With probability at least P (A) = (1 — d*%) over the randomness of masks, we have

sup | (f()|A) - F(x)|, < p L pov/d [p—ﬁl (" + d—ﬁ2)1—2 _p—(l—l)ﬁl]

IECP(% do

with probability at least 1 — (I — 2)C4§ —gothe _ 12’;’203 plqjgl — —%5— As aresult, basic probability yields that

P

— _ — _ — B\ 2 —(—
sup | £(@) = F(@)lly <p~ " L poVd [p= (p77 4 d=2)" 7 = p 70

€
Cp% dg

1

2(1-2) ) ,
holds with probability at least (1 - d_ﬁ) (1 — (1 - 2)C4§d_%"+ﬂ2 - =220 plqjﬂl — plclsﬂl )

C. Extension of Magnitude-based Pruning

In this section, we discuss some extensions of Theorems 1 and 3 presented in the main paper. Note that we only provide
ideas but not strict proofs in this section, as the results here are based on approximations and further efforts are required to
give precise statements.

C.1. Magnitude-based Pruning of FCNs with Sub-Gaussian Distributions

Note that in Theorem 1, assumption (iii), we assume that the distribution of the weights in the layers of F’ are independently
_ K K
\/max{dk,dk—l} ’ \/max{dk ,d—1}
statistics and hence we can bound the gap between weight matrices and pruned weight matrices precisely. In fact, the
uniform and exponential distributions are the only distributions that have a closed-form for order statistics in the literature.
It is a natural question of what happens if the weights follow a more general distribution, e.g. a sub-Gaussian distribution.

. The uniform distribution provides a closed-form order

and identically following U/ [

Consider a target weight matrix W* € R?*? where we prune the smallest |d?~*| entries in W * based on magnitude. We
further assume that the weights in W* independently and identically follow a sub-Gaussian distribution subG(o?) with
appropriate choice of 02 (e.g., 02 = é). Next we present the idea of applying the results of intermediate order statistics to
show a similar result in the asymptotic sense.

Theorem 4 (Lemma 1 of Chibisov (1964)). Let X1, Xs, ... be a sequence of independent random variables with the
same distribution function F. We denote X,(,?) as the m-th largest among X1, ..., X, and Gmm,(x) =P (X}v?) < a:) If

n — o0, m — o, and m/n — 0, then

sup |G (anz + by) — @ (un(2))] — 0,

where u, (z) = 7"““\;%*"")

and P is the cumulative distribution function of the standard Gaussian distribution.
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Note that the non-zero entries of W := W* — W are the smallest |d>~| order statistics of SUbG(c?) based on magnitude,
where W is the pruned weight matrix. If we order the weights in W* by their magnitude, i.e.

*
| l17J1| = | 12]2| S s ’Widbjdz )
then the non-zero entries in WV are
* * *
W117J1 ) le J2rt Wi[d2—ajvjld2—aj'

Taking m = |d*~%|,n = d? a,, = 1,b, = 0in Theorem 4 and note that G,,, ,,(z) = P (‘W*

lld2—aJ 7jld2—aJ

2
x)—(b w -0, z— .
|d?=]
] by some positive constant /3, by the properties of the cumu-
]

4
] . Then we can apply Lemma 4 (similar to (16) — (19)) to upper-bound the expectation E [W],.

< x) , we have

3 <
blip ()Wlﬂ opdja2-a)

Thus we can approximate the expectation HW

L a2—a| Jldz a)

lative density function of standard Gaussian and subG (O’ ) Similarly, we can get the estimations of E [ V[/"l‘d2 o] djaz—a]

d2— "J’J[dQ a)

and E “W*

Recall that this is an asymptotic derivation, and we also need to bound the gap between the above second and fourth-order
moments when n = d? is a large but fixed.

C.2. Magnitude-based Pruning of CNNs

We are given a convolutional tensor F € RIX4XPXP_ [ et

Big -+ Big

W* _ . . . c szdxpzd
Bgi1 -+ Baga

be the linear transformation corresponding to F, and tensor K and B as defined in (7) — (9). The magnitude-based filter
pruning of CNN is to order the L; norms ||vec (B; ;)| ,4,j € [d] (or equivalently, |vec (K; ;. .)[,) and set the filters with
the smallest L; norms to be zero. In other words, if we denote W' to be the pruned weight matrix, then

is a block matrix of B; j, where B; ; = B; ; if |vec (B; ;) |, is among the smallest |d>~*| norms, and B; j = 0, other-
wise. Similar to Appendix C.1, we can upper-bound E [WW* — W|, by E HEOHE 2, where By € {B;; : i,j € [d]}

is the matrix corresponding ot the |d?~“|-th smallest value based on L; norms.

Note that the L; norms are the sum of many random samples drawn from a given distribution. By the Central Limit Theory,
|vec (B;)|, can be approximated by a normal distribution. Thus we can estimate |vec (By) | , by a similar approach to the

one in Appendix C.1. Theorem 6 of Sedghi et al. (2018) further provides a tool to upper-bound | By |, by | vec (Bo)|,-

Note that we use two approximations in the above derivation. One is for the distribution of |vec (B; ;)||, .4, j € [d] and the
other one comes from the asymptotic result as discussed in Appendix C.1. Caution should be taken while following these
steps to attack the magnitude-based pruning problem of CNNs.

D. Numerical Study

In Sections D.1 and D.2, we show the histograms of some trained FCNs and CNNs. In Sections D.3 and D.4, we show the
universal constants in Lemmas 3 and 4 as we use them frequently in the paper.
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D.1. Distribution of Weights in Trained FCNs

We first describe the setting where we train a vanilla FCN. The Covertype dataset (Blackard & Dean, 1998) is to predict
7 different forest cover types from cartographic variables. Data is in raw form (not scaled) and contains binary (0 or 1)
columns of data for qualitative independent variables (wilderness areas and soil types). The dataset contains about 580,000
samples with 9 numerical and 44 categorical features. We normalize the numerical features by mean and variance of each
feature. We build a 5-hidden-layer fully-connected neural network with ReLU activation functions to predict the label of
each sample. There are 1,024 neurons in each hidden layer and thus the first weight matrix has dimension 54 x 1024, the
internal 4 weight matrices have dimension 1024 x 1024, and the last weight matrix has dimension 1024 x 7. We minimize
the cross-entropy loss using Adam with learning rate 0.001. The batch-size is selected to be 512 and we run 20 epochs of
training. The trained network achieves approximately 80% predicting accuracy.

Figure 1 in the main paper shows the histogram of the entries in all weight matrices. We mainly focus on the second to fifth
layers because we do not perform any pruning on the first and last layers. In these 4 layers, the weights are approximately
distributed following a Gaussian distribution. We also report the means and variances of the entries in each internal layer in
Table 1. As we can see from the results, for the internal weight matrices, the means are close to zero while the variances are
approximately bounded by ﬁ, which is also the initialization variance suggested by Glorot & Bengio (2010). We have
also tested several other random initial weights and network architectures, and the results and conclusions are similar and
not presented.

Table 1: Expectation and variance of the entries in all weight matrices

Layer 1 2 3 4 5 6

Mean  -0.0309 -0.0215 -0.0078 -0.0119 -0.0092 -0.0275
Variance  0.0155  0.0035 0.0022 0.0019 0.0016  0.0057

D.2. Distribution of Weights in VGG16

We plot the histogram of weights in different layers of VGG16 (Simonyan & Zisserman, 2014). The pre-trained model is
imported from PyTorch package (Paszke et al., 2019) where the weights are trained on a variety of image datasets. Figure
2 shows the results for all layers of the pre-trained VGG16 (13 convulotional layers and 3 fully-connected layers). As we
can see, the entries in the internal layers follow Gaussian distributions approximately.

D.3. Constants in Lemma 3

Lemma 3 gives an upper-bound of the random matrix B € R™**"2 whose entries are independently and identically following
a uniform distribution [— %, %] , where n = max {n1,ns} and K is a positive constant. To better understand the values

of constants ¢y and g, we take various tuples of (n1,n9, K') and calculate the norm | B|,. In the numerical experiments,
we generate in total N = 1000 random matrices and report cq and dy that satisfy P (| B[, < cg) = 1 — 274%™ = ¢ for
q = 95%,99%,99.9%, 99.99%. We also report the mean and standard deviation of | B||, for reference. The results are
given in Table 2. The table shows that, even if n; and n. are on the low end with respect to the actual use cases, we can
still have a small ¢ that is close to 1 and a small J that is close to 0. Note that these two quantities are frequently used in
Theorem 1 and we observe that the constant terms in the theorem are mild while the probability that the statement hold is
positive.

D.4. Constant in Lemma 4

Lemma 4 shows that there exists a universal constant C' such that, for any random matrix A whose entries are independent,
we have

2

E|Al, < C | max (ZEAEJ) + max <21EA3].> + (ZEA?J) : (42)
J i ,J

We use this lemma many times to bound the Ly norm of various random matrices, e.g., in (19) and (36). In the following,
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Figure 2: Histogram of entries of all weight matrices of a pre-trained VGG16

we consider the cases where the elements of A € R4*¢ follows U := U [—\/% , \/%

constant K, respectively. We also consider the case where we initialize the elements of A by samples of (0, é), but we
set |d>~| entries to be zero randomly (thus it aligns with the use case in (19)).

—

and NV (0, &) for some positive

In the numerical experiments, we generate in total N = 500 random matrices A and calculate the quantities

1 1 1
E | All, , max; (Z] EA?J-) * max; (3 EA?;)? and (Zi,j ]EA%) " In Table 3, we report the minimum C' such that
(42) holds with the choices of d, distribution of A; ;, and « (if necessary).

E. Discussion

In this section, we discuss some assumptions made to simply the presentations. We provide (possible) ways to avoid them
but the detailed proofs are omitted.

E.1. Independency of Weights in the Target Network

The assumption of independent trained weights satisfied to a certain degree. Many existing works show that the trained
weights are not “far away” from the initialization and thus certain levels of independency remains among the trained weights.
For example, Bai & Lee (2020) show that the trained weights can be approximated by a Taylor expansion around the
initialization and the coefficients of the polynomial are relatively small. This also aligns with the observation from the
NTK literature (Jacot et al., 2018) that the trained weights are close to initialization. There are no well-accepted metrics to
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Table 2: Numerical results for the constants in Lemma 3

I e L ML
32 32 1 1.087 0.038 1.15 0.029 1.183 0.041 1.206 0.059 1218 0.077
32 32 /3 1.8%2 0.066 1.996 0.029 2.044 0.041 2.069 0.059 2.131 0.077
32 o4 1 0.941 0.027 0.988 0.014 1.015 0.021 1.039 0.03 1.042 0.039
32 64 /3 1631 0.046 1.707 0.014 1.743 0.021 1.786 0.03 1.797 0.039
32 128 1 0.836 0.018 0.867 0.007 0.878 0.01 0.895 0.015 0.902 0.019
32 128 /3 1.449 0.032 1.503 0.007 1.528 0.01 1.577 0.015 1.579 0.019
32 256 1 0.762 0.013 0.784 0.004 0.794 0.005 0.806 0.007 0.811 0.01
32256 /3 1319 0.022 1.357 0.004 1371 0.005 139 0.007 1.393 0.01
32 512 1 0.708 0.009 0.723 0.002 0.731 0.003 0.74 0.004 0.747 0.005
32 512 /3 1.226 0.016 1.253 0.002 1.267 0.003 1.278 0.004 1.283 0.005
64 64 1 1.114 0.026 1.158 0.014 1.183 0.021 1.205 0.03 1.209 0.039
64 64 /3 1932 0.045 2.009 0.014 2.045 0.021 207 0.03 2.08 0.039
64 128 1 0.959 0.018 0.992 0.007 1.005 0.01 1.04 0.015 1.054 0.019
64 128 /3 1.66 0.031 1.711 0.007 1.743 0.01 1.782 0.015 1.785 0.019
64 256 1 0.848 0.012 0.868 0.004 0.88 0.005 0.887 0.007 0.888 0.01
64 256 /3 1.47 0.021 1.508 0.004 1.523 0.005 1.53 0.007 1.554 0.01
64 512 1 0.77 0.008 0.785 0.002 0.792 0.003 0.796 0.004 0.801 0.005
64 512 /3 1.333 0.015 1.359 0.002 1.371 0.003 1.388 0.004 1.392 0.005
128 128 1 1.131 0.017 1.159 0.007 1.173 0.01 1.199 0.015 1.205 0.019
128 128 +/3 1956 0.029 2.008 0.007 2.024 0.01 2.044 0.015 2.045 0.019
128 256 1 0.969 0.012 0.99 0.004 0999 0.005 1.012 0.007 1.013 0.01
128 256 /3 1.679 0.019 1.712 0.004 1.728 0.005 1.743 0.007 1.746 0.01
128 512 1 0.856 0.008 0.87 0.002 0.875 0.003 0.881 0.004 0.885 0.005
128 512 /3 1.482 0.014 1.507 0.002 1.52 0.003 1.527 0.004 1.528 0.005
256 256 1 1.14 0.011 1.16 0.004 1.17 0.005 1.18 0.007 1.181 0.01
256 256 /3 1976 0.021 201 0.004 2.027 0.005 2.036 0.007 2.036 0.01
256 512 1 0.976 0.008 0989 0.002 0.995 0.003 1.002 0.004 1.014 0.005
256 512 /3 1.691 0.013 1.714 0.002 1.727 0.003 1.735 0.004 1.735 0.005
512 512 1 1.146 0.007 1.159 0.002 1.163 0.003 1.172 0.004 1.174 0.005
512 512 /3 1.985 0.012 2.006 0.002 2.015 0.003 2.033 0.004 2.04 0.005

measure how close are the weights to independency, and thus we assume them to be independent.

There are other ways to relax independency. For random pruning, independency is assumed so that we can apply the Latala’s
inequality (Lemma 4). There also exist other versions of spectral norm bounds for sub-Gaussian random matrix with
non-i.i.d. entries (Chapter 5 of Pastur & Shcherbina (2011)) and for a matrix with independent rows and columns (Vershynin,
2012). For magnitude-based pruning, the assumption is used to derive the explicit form of expectation of order statistics. By
assuming an equal correlation between weights, we can also give the explicit forms (Chapter 5 of David & Nagaraja (2004)).
The general form of order statistics for dependent uniform samples can be achieved approximately in the same way.

E.2. With-replacement and Without-replacement Sampling for Random Pruning

Under the random pruning scheme, we select N entries uniformly at random from a d x d weight matrix and set them to

zero. The proposed approach in the beginning of Section 4 corresponds to “with-replacement” sampling since an entry might

be selected multiple times. Another “without-replacement” sampling approach refers to selecting /N non-overlapping entries
d2

from the weight matrix. Note that with a positive probability of gé\’N) , the entries selected by the “with-replacement” approach

have no repeated elements and the two approaches align. In this sense, we can derive the results of the “without-replacement”

approach from the stated results in this work by simply multiplying the corresponding probability that all selected entries are
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Table 3: Numerical results for the constant in Lemma 4

[N

max; (L, E42,)°  (%,,EA)" Ej4l, c©

d  Distribution o max; (3, E42,) ;

32 U N/A 1.006 1.006 1.159 1.888  0.596
64 U N/A 1.006 1.005 1.159 1934 0.61
128 U N/A 1.005 1.005 1.159 1.958  0.618
256 U N/A 1.004 1.003 1.158 1976 0.624
512 U N/A 1.003 1.002 1.158 1985  0.627
32 N(0,3) NA 1011 1.014 1.314 1.905 0571
64 MN(0,3) NA 1.008 1.008 1.315 1.947  0.585
128 N(0,3) NA 1.005 1.007 1.316 1965  0.59
256 N (0,4) NA 1.005 1.006 1.316 1979 0.595
512 N(0,3) NA 1.004 1.004 1.316 1.988  0.598
32 N(0,2) NA 1.751 1.745 2.279 3295 0571
64  N(0,2) NA 1.755 1.744 2.28 3.361  0.582
128 N(0,3) NA 1.742 1.743 2.28 3405 0.591
256 N (0,2) N/A 1.743 1.742 2.28 3428 0595
512 N(0,3)  NA 1.74 1.739 2.279 3441 0.598
32 N(0,3) o001 0.626 0.63 1.033 1237 0.54
64  MN(0,3) 001 0.632 0.629 1.035 1239 054
128 N(0,%) 001 0.63 0.63 1.037 1242 0.541
256 N (0,%) 001 0.63 0.63 1.039 1246 0.542
32 N(0,3) o1 0.714 0.713 1.103 1379 0.545
64 N(0,5) 01 0.729 0.729 1.117 1426 0.554
128 N(0,4) 01 0.744 0.744 1.129 1.459  0.558
256 N (0,%) 01 0.758 0.756 1.14 1491 0.562
32 N(0,5) 05 0.928 0.925 1.258 1759 0.565
64 N(0,%) 05 0.95 0.948 1.275 1.831 0577
128 N(0,4) 05 0.964 0.964 1.288 1.883  0.586
256 N (0,5) 05 0.975 0.974 1.296 192 0592

not repeated.

E.3. Global and Layer-wise Magnitude-based Pruning

In this paper, the magnitude-based pruning is defined layer-wise as we order the weights in each layer based on magnitude
separately and prune the smallest ones. There is also another “global” version where the weights of the entire network are
sorted and the weights with the smallest magnitudes are pruned. Next we show the connection between these two settings
and how to extend the proofs to the global setting.

Suppose that we want to prune a total of IV weights in a [-layer network. If we treat the small weights as balls and layers as
bins, then by Lemma 6, the maximum load in each bin is bounded by O(N /) with high probability. In other words, we
expect to see that the appearances of pruned weights in all layers are approximately uniform (the numbers can differ by a
constant but not orders of magnitude) with high probability. This is also the reason why we rarely see that the small weights
appear in the same layer of a trained network in practice. Under this high-probability event, we get back to the layer-wise
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magnitude-based pruning setting excepts that the number of weights to be pruned in each layer may vary by a constant. In
this sense, the original proofs can be easily revised to fit the global magnitude-based setting.



