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Abstract
Neural network pruning techniques reduce the
number of parameters without compromising
predicting ability of a network. Many algo-
rithms have been developed for pruning both over-
parameterized fully-connected networks (FCNs)
and convolutional neural networks (CNNs), but
analytical studies of capabilities and compres-
sion ratios of such pruned sub-networks are lack-
ing. We theoretically study the performance of
two pruning techniques (random and magnitude-
based) on FCNs and CNNs. Given a target
network whose weights are independently sam-
pled from appropriate distributions, we provide
a universal approach to bound the gap between
a pruned and the target network in a probabilis-
tic sense. The results establish that there exist
pruned networks with expressive power within
any specified bound from the target network.

1. Introduction
The common neural network architectures that achieve the
state-of-the-art results usually have tens of billions of train-
able parameters (Goodfellow et al., 2016; Radford et al.,
2019; Brown et al., 2020), leading to a problem that training
and inference of these models are computationally expensive
and memory intensive. To address this problem, researchers
have developed many practical algorithms to compress the
network structure while keeping the original network’s ex-
pressive power (Li et al., 2016; Han et al., 2015a;b; Cheng
et al., 2017).

Recently, Frankle & Carbin (2018) conjecture that, every
successfully trained neural network contains much smaller
subnetworks (winning tickets) that—when trained in isola-
tion from the original initialization—reach test accuracy
comparable to the original network. This conjecture is
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called the Lottery Ticket Hypothesis (LTH). Ramanujan
et al. (2020) further conjecture that, a sufficiently over-
parameterized neural network with random initialization
contains subnetworks that can achieve competitive accuracy
without any training, when comparing to a large trained net-
work. This conjecture can be viewed as a stronger version of
the LTH in the sense that we do not need to train this over-
parameterized random network. However, to determine
the lottery tickets from this over-parameterized network is
NP-Hard in the worst case (Malach et al., 2020; Pensia
et al., 2020). In addition, since over-parameterization is
compared to a trained neural network, which is usually al-
ready over-parameterized, the random initialized network is
over-over-parameterized and thus too large to consider.

Although the development of such network pruning algo-
rithms dates back to late 80s, there have been only limited
studies of the theoretical guarantees of network pruning.
The existence and the representation power of good sub-
networks are lacking (see the related sections of the survey
papers (Sun, 2019; Fan et al., 2019)). Recently, Malach et al.
(2020) prove the strong LTH for fully-connected networks
with ReLU activations. They show that, given a target FCN
of depth l and width d, any random initialized network with
depth 2l and width O

`

d5l2{ε2
˘

contains subnetworks that
can approximate the target network with ε error with high
probability. In the following works, Pensia et al. (2020) and
Orseau et al. (2020) concurrently and independently prove
that the width of the random initialized network can be re-
duced to O pd logpdl{εqq. Pensia et al. (2020) further show
that this logarithmic over-parameterization is essentially op-
timal for networks with constant depth. Note that a random
initialized network is introduced and pruning is applied on
this new network, instead of the target network. Thus, these
results cannot provide much insights for developing model
pruning algorithms that are applied on the target network
directly. Besides, the proof ideas heavily rely on the fact the
the random initialized network is well over-parameterized
so that a subnetwork with a specific structure that can repli-
cate a single neuron of the target network exists. Although
the researchers have improved the polynomial dependency
of width to logarithm, the size of the random initialized
network is still very large.

In this work, we focus on the theoretical results of pruning
an over-parameterized target network directly. There are two
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types of subnetworks: subnetworks where specific weights
are pruned (weight-subnetwork) and subnetworks where
entire neurons are pruned (neuron-subnetworks). We focus
on weight-subnetworks and show that, for both magnitude-
based pruning (prune the smallest entries in the weight ma-
trices based on magnitude) and random pruning (randomly
select some entries in the weight matrices to prune), we can
prune some weights of the target network while maintain-
ing comparable expressive power with positive probability.
We show the random pruning and magnitude-based pruning
results for FCNs and the random pruning result for CNNs,
where the latter one requires a sophisticated formulation to
translate the convolutional layers into fully-connected layers
with a specific ciuculant structure. The proof framework,
which bounds the gap between the output of the pruned and
trained networks layer by layer, are universal for both FCNs
and CNNs. We rely on the results from probability theory
and theoretical computer sciences to give precise bounds of
the norms of weight matrices and other random variables.

Our results, as one of the rare studies about the existence
of good subnetworks, provide relationships between the
width of the target network, the number of pruned weights
in each layer, the universal expressive error over a closed
region, and the probability that such good subnetworks exist.
These results also give guidance for practical researchers
by providing the probability that a good subnetwork exists
and an estimation of how many entries can be pruned at one
time by magnitude-based pruning and random pruning.

The rest of the manuscript is structured as follows. In Sec-
tion 2 we review the literature while in Section 3 we show
the preliminaries and notations that are used throughout the
paper. Sections 4 and 5 discuss the theoretical results of
pruning of FCNs and CNNs, respectively. We conclude the
results and discuss the potential future works in Section 6.
We present technical lemmas in Appendix A and the com-
plete proofs of the theorems in Appendix B. In Appendix
C we discuss how to extend the theorems to more general
settings and in Appendix D we show some numerical results
that support our theorems and assumptions.

2. Literature Review
Empirical Neural Network Pruning There has been a
long history of neural network pruning. Early studies of
pruning reduce the number of connections based on the in-
formation of second-order derivatives of the loss function
(LeCun et al., 1989). Following works focus on magnitude-
based pruning. Han et al. (2015a) propose to reduce the total
number of parameters and operations in the entire network.
Other works explore pruning neurons and design various
methods to determine the redundancy of neurons (Hu et al.,
2016; Srinivas & Babu, 2015). Similar approaches are also
applied to CNNs to prune filters (Luo et al., 2017) or entire

convolutional channels (Li et al., 2016). Recently, Frankle
& Carbin (2018) conjecture the lottery ticket hypothesis that,
a trained network contains a subnetwork that—when trained
in isolation from the original initialization—can match the
performance of the original network. Zhou et al. (2019a)
claim that the good subnetworks in the LTH have better-
than-random performance without any training. Based on
the above two works, Ramanujan et al. (2020) conjecture
the so-called strong LTH that, within a sufficiently over-
parameterized neural network (comparing to the target net-
work) with random weights at initialization, there exists
a subnetwork that achieves competitive accuracy with the
target network.

Theoretical Study of Neural Network Pruning The
study of the theoretical properties of neural network pruning
only started recently. Malach et al. (2020) prove the strong
LTH for FCNs with ReLU activations. In particular, they
show that one can approximate any target FCN of width
d and depth l by pruning a sufficiently over-parameterized
network of width Opd5l2{ε2q and depth 2l such that the
gap between the pruned and target networks is bounded
by ε. Pensia et al. (2020) and Orseau et al. (2020) concur-
rently and independently improved the width of the random
network to Oppolypdq logpdl{εqq. These results are based
on the idea that, for a single-neuron ReLU connection, we
can use a two-hidden-layer neural network with constant
width to approximate it. In comparison, our results study
pruning of the target FCNs and CNNs directly. Another
line of research by Ye et al. (2020a;b) propose a greedy
optimization based neural network pruning method. They
also provide theoretical guarantees of the decreasing dis-
crepancy between the pruned and target networks. Elesedy
et al. (2020) stick with the iterative magnitude-based prun-
ing procedure described in Frankle & Carbin (2018) and
prove the LTH for linear models trained by gradient flow
methods. Arora et al. (2018) and Zhou et al. (2019b) theo-
retically study a close connection between compressibility
and generalization of neural networks. Another line of work
(Baykal et al., 2019a; Liebenwein et al., 2020; Baykal et al.,
2019b) propose sampling-based neural network pruning al-
gorithms according to certain sensitivity scores and provide
theoretical guarantees for both FCNs and CNNs.

Theoretical Study of CNNs Although CNNs are success-
ful in many computer vision tasks (Goodfellow et al., 2016),
there is less work discussing theoretical properties of CNNs.
Jain (1989) shows that a linear transformation of a 2D convo-
lutional filter can be represented by a doubly block circulant
matrix. The circulant structure provides an efficient way
to calculate the singular values of the linear transformation
corresponding to a convoultional layer (Sedghi et al., 2018).
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3. Preliminaries and Notations
We introduce some notations that are used in the sequel.
For vector v, we use }v}0 and }v}2 to denote the L0 and
L2 norm of v, respectively. For matrix M P Rmˆn,
we use Mi,j or pMqi,j to denote the element in the i-
th row and j-th column of M ; we use Mi.: and M:,j

to denote the i-th row and j-th column of M , respec-
tively; the vectorization of M is defined as vecpMq :“

rM1,1, . . . ,Mm,1, . . . ,M1,n, . . . ,Mm,ns
T . We also use

analogous notations for higher-order tensors. The opera-
tor norm and element-wise maximum norm ofM is denoted
by }M}2 and }M}max :“ maxiPrms,jPrns |Ai,j |, respec-
tively. The Hadamard (element-wise) product of two ma-
trices A,B P Rmˆn is denoted by M :“ A ˝ B, where
Mi,j “ Ai,jBi,j . We denote 0mˆn and 1mˆn as the zero
matrix and all 1 matrix of dimension mˆ n.

For n P N`, we define rns :“ t1, . . . , nu. Given a sequence
of real numbers an, we denote

śj
k“i ak “ ai ˆ ¨ ¨ ¨ ˆ aj

if j ě i and
śj
k“i ak “ 1 otherwise. For integers n ą 0

and k, we use k%n “ k mod n if n - k and k%n “ n
otherwise1. We use log to denote the natural logarithm and
set logp2qpxq :“ logplogpxqq.

We use U ra, bs to denote the uniform distribution on interval
ra, bs, and N pµ,Σq to denote the multivariate normal distri-
bution with mean µ P Rp and covariance matrix Σ P Rpˆp.

We are given a target neural network F of depth l ě 3 of
the form

F pxq “W˚
l σl

`

W˚
l´1σl´1 p¨ ¨ ¨W

˚
2 σ1 pW

˚
1 xqq

˘

(1)

where σk is the activation function and weight matrix
W˚
k P Rdkˆdk´1 , k P rls2. Typically, there are two types

of subnetworks, namely weight-subnetworks and neuron-
subnetworks, depending on whether we remove (or set to
zero) the entire neuron or just the entries of a weight matrix.
In this paper, we focus the theoretical results on weight-
subnetworks. Mathematically, a pruned weight-subnetwork
f of F is a network of the same architecture as F such
that the weight matrix in the k-th layer of f is represented
by Wk “ Mk ˝W

˚
k for some mask Mk P t0, 1u

dkˆdk´1 .
Throughout the paper, we fix M1 and Ml as the all 1 matrix
(i.e. we do not prune any weight on the first and last weight
matrix of the target network). We aim at reducing the num-
ber of active weights while keeping the expressive power of
the original network F .

The compression ratio of the k-th layer is defined as γk :“
}vec pWkq}0 {Dk, where Dk :“ dkdk´1 is the number of
weights in the k-th layer. Obviously, we aim at reducing the

1Note that this definition is slightly different from the common
definition of modulo.

2Throughout the paper, we skip the bias terms in the expression
of the neural network.

compression ratios while keeping the expressive power of
the original network F .

The error metric used throughout the paper is the
universal approximation over the unit ball Bd0 :“
 

x P Rd0 : }x}2 ď 1
(

, or in the CNN results we use the
unit cube Cd0 :“

 

x P Rd0 : xi P r0, 1s, i P rd0s
(

instead;
i.e. f is ε-close to F if

sup
xPBd0

}fpxq ´ F pxq}2 ď ε.

This definition of discrepancy is common in the theoretical
model pruning literature (Malach et al., 2020; Pensia et al.,
2020; Orseau et al., 2020). Note that the results of this paper
can be easily generalized from the unit ball to any ball with
radius r in Rd0 . We use the unit ball (or unit cube) only for
ease of notation. The discrepancy between the losses of the
pruned and target network on a given set of samples can be
derived similarly.

4. Pruning Fully-connected Neural Networks
In this section, we show that a fully-connected neural net-
work can be approximated by pruning some of its entries
while keeping comparable expressive power under mild
assumptions.

We start with two different pruning approaches – ran-
dom pruning and magnitude-based pruning. Given a tar-
get network F as defined in (1) and compression ratios
γk, k P rls, random pruning refers to applying a set of masks
tM1, . . . ,Mlu on F such that Mk is constructed by starting
with Mk “ 1dkdk´1

and repeating tγkDku times the follow-
ing steps: (1) select i P rdks uniformly at random; (2) select
j P rdk´1s uniformly at random; (3) set pMkqi,j “ 03. The
magnitude-based pruning refers to applying a set of masks
tM1, . . . ,Mlu on F such that pMkqi,j “ 0 if pi, jq P Ik
and pMkqi,j “ 1 otherwise, where we order the entries
of W˚

k such that |W˚
k |i1,j1

ď ¨ ¨ ¨ ď |W˚
k |iDk ,jDk

and set
Ik :“ tpiu, juq : 1 ď u ď tγkDkuu. Recall that we assume
γ1 “ γl “ 1 and thus M1 and Ml are all 1 matrices4.

Our main theorems in this section show that, for both prun-
ing approaches and under mild conditions, the target net-
work F contains a weight-subnetwork that is ε-close to F
with high probability. We present the results for magnitude-
based pruning and random pruning in Sections 4.1 and 4.2,
respectively. We outline the proof in Section 4.3 and defer

3Note that this scheme corresponds to “with-replacement” sam-
pling, i.e., an index pair pi, jq might be selected twice. There is
another “without-replacement” strategy. For more details regard-
ing these two strategies, please refer to Appendix E.2.

4There is another global version of magnitude-based pruning
where the weights of the entire network are sorted and the weights
with the smallest magnitudes are pruned. For comparison between
these two approaches, please refer to Appendix E.3.
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the complete proof to Appendix B.

4.1. Magnitude-based Pruning of FCN

We first present the result for magnitude-based pruning.
Theorem 1. We are given a target network F as defined in
(1). Let us assume that

(i) σk is Lk-Lipschitz and satisfies σkp0q “ 0, k P rls;
(ii) d :“ min td1, . . . , dl´1u ě max td0, dlu;

(iii) entries in W˚
k are independent

and identically distributed following

U
„

´ K?
maxtdk,dk´1u

, K?
maxtdk,dk´1u



for a fixed

positive constant K.

Let ε ą 0, δ ą 0, and α P p0, 1q be such that

d ě max

#

C
1
α
1 ,

ˆ

C2

ε

˙
1
α

,

ˆ

C3

δ

˙
1
α

, C4 ` C5 log

ˆ

1

δ

˙

+

for some positive constants C1, C2, C3, C4 and C5 (depend-
ing on l and Lk’s) as specified in the proof. Then with
probability at least 1´ δ, the subnetwork f of F with mask
M “

!

M1, . . . ,Ml,Mk P t0, 1u
dkˆdk´1

)

that prunes the

smallest tD1´α
k u entries of W˚

k , 1 ă k ă l based on magni-
tude is ε-close to F , i.e.

sup
xPBd0

}fpxq ´ F pxq}2 ď ε. (2)

Note that many activation functions, like ReLU and tanh,
hold for assumption (i) with Lk “ 1. In assumption (ii), we
assume that the width of the target neural network is larger
than the input and output dimensions. This is common in
most of the theoretical and practical deep learning results.
For assumption (iii), we take the upper/lower bound of
the uniform distribution to be ˘ K?

maxtdk,dk´1u
for a fixed

positive constant K so that the variance of this distribution
is of the same order as in the Xavier initialization (Glorot
& Bengio, 2010). We are aware of the fact that for many
trained networks, the weights in each layer do not fit a
uniform distribution well. We use the uniform distribution
since the closed-form of the order statistics is only available
for this distribution. We utilize these closed-form results
to give a precise relationship between the width d, error ε,
probability 1 ´ δ, and the compression ratio that depends
on α. Asymptotic results exist for order statistics of general
distributions and can be used to estimate such relationships.
We discuss more details on how to apply the results of
intermediate order statistics to generalize Theorem 1 to other
distributions in Appendix C.1. The weights are assumed
to be independent for simplicity. For the near-independent
and non-independent settings, please refer to Appendix E.1.
Same discussions about independency apply for Theorems
2 and 3.

4.2. Random Pruning of FCN

In this section, we present the result for random pruning
of FCNs. The key difference between random pruning and
magnitude-based pruning is that, given the target network
F , the mask corresponding to magnitude-based pruning is
fixed while the mask of random pruning is random.

Given the compression ratio γk (or the number of weights to
prune) in the k-th layer, a random pruning mask Mk can be
viewed as random selecting tγkDku entries of t0, 1udkˆdk´1

with replacement and setting them to zero. These random se-
lected masks are combined to form the mask tM1, . . . ,Mlu

that represents a random pruned weight-subnetwork of F .
This random property further complicates the proof, as we
need to consider the randomness from the entries of the
target network and the randomness from the mask at the
same time.

Besides the difference of the two pruning approaches, we
only assume that each entry of the weight matrix indepen-
dently follows a distribution with bounded second-order and
fourth-order moments, while in Theorem 1 we assume that
all the entries in the weight matrix are independently and
identically following a specific distribution.

Theorem 2. We are given a target network F as defined in
(1). Let us assume that

(i) σk is Lk-Lipschitz and satisfies σkp0q “ 0, k P rls;
(ii) d :“ min td1, . . . , dl´1u ě max td0, dlu;

(iii) pW˚
k qi,j independently follows a distribution X k

i,j; fur-
ther, there exist two positive constants K1 and K2

such that EX k
i,j “ 0, E

ˇ

ˇX k
i,j

ˇ

ˇ

2
ď K1

maxtdk,dk´1u
and

E
ˇ

ˇX k
i,j

ˇ

ˇ

4
ď K2

maxtdk,dk´1u
2 ;

(iv) for all k P rls, there exists a positive constant Nk such
that }W˚

k }2 ď Nk with probability at least 1´ δk.

Let ε ą 0, δ ą 0, and α P p0, 1q be such that

α ď 1´
log pdk`1 ` 1q ´ logp2q pdk`1q

log pdk`1q ` log pdkq
, 1 ă k ă l, (3)

α ď 1´
log pdk ` 1q ´ logp2q pdkq

log pdk`1q ` log pdkq
, 1 ă k ă l, (4)

δ0 :“ δ ´

«

δl `
l´1
ÿ

i“1

pl ´ iqδi

ff

ě 0, (5)

and

d ě max

#

C
4
α
1 ,

ˆ

C2

ε

˙ 4
α

,

ˆ

C3

δ0

˙3

,

ˆ

C4

δ0

˙ 4
α

+

,

for some positive constants C1, C2, C3 and C4 (depending
on l, Lk’s, and Nk’s) specified in the proof. Then with

probability at least 1´ δ ě
´

1´ d´
1
3

¯2pl´2q

p1´ δlq
”

1´
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pl ´ 2qc2d
´α4 ´

řl´1
i“1pl ´ iqδi

ı

over the randomness of
masks and weights for some positive constant c2 defined
in the proof, the subnetwork f of F with mask M “
!

M1, . . . ,Ml,Mk P t0, 1u
dkˆdk´1

)

that randomly prunes

tD1´α
k u entries of W˚

k , 1 ă k ă l is ε-close to F , i.e.,

sup
xPBd0

}fpxq ´ F pxq}2 ď ε. (6)

We next discuss the feasibility of these assumptions. As-
sumptions (i) and (ii) have already been used in Theorem
1. These two assumptions are common in both practice
and theory. Since the target network F is usually a trained
one, a universal distribution for all entries in a layer might
not be realistic. Thus we have assumption (iii) to allow
non-homogeneous distributions of the entries in the weight
matrices. The two bounds E

ˇ

ˇX k
i,j

ˇ

ˇ

2
ď K1

maxtdk`1,dku
and

E
ˇ

ˇX k
i,j

ˇ

ˇ

4
ď K2

maxtdk`1,dku
2 hold for a variety of distribu-

tions, like the uniform distribution, normal distribution, and
sub-Gaussian distribution, as long as the variance of the
distribution is set to O

`

1
d

˘

. This holds because, if we ini-
tialize the target network F following the Xavier initial-
ization and train the network properly, the variance of the
weights should remain of the same order, approximately.
We further verify that this assumption holds by checking
the distribution of some trained FCNs and CNNs. We train
a 5-hidden-layer FCN with 1024 neurons in each hidden
layer on the Covertype dataset (Blackard & Dean, 1998)
by randomly selecting initial weights. Figure 1 shows the
histogram of weights in different layers of the trained FCN.
They exhibit a sub-Gaussian distribution and the second-
order and fourth-order moments are well bounded by O

`

1
d

˘

and O
`

1
d2

˘

, respectively. See Appendix D.1 for more de-
tails. Assumption (iv) bounds the operator norm of the
weight matrices, which is an important term in the proof.
Without loss of generality, we assume that Nk ě 1. We can
also have δ ě δl `

řl´1
i“1pl ´ iqδi. This can be achieved by

increasing the value of Nk and thus reducing the value of
δk. However, we should carefully choose the values of Nk’s
and δk’s, as largerNk’s also increase the lower-bound of the
minimum number of neurons in the target network. In fact,
assumption (iv) with certain Nk’s and δk’s can be derived
from assumption (iii) with Lemma 4 and the Markov’s in-
equality. We use assumption (iv) as it allows possible tighter
values.

4.3. Further Discussions and Proof Outlines

In conclusion, under two different schemes, Theorems 1
and 2 show that, under certain conditions, we can prune
tD1´α

k u, α ą 0 entries in the k-th layer of F while keeping
the pruned network f to be ε-close to F with positive prob-
ability 1 ´ δ. It is obvious that we cannot set α “ 0 as it

makes the weight-subnetwork f to be the zero function.

By fixing α, our theorems show that a lower-bound of the
minimum width of the target network can be represented as
a polynomial in 1

ε ,
1
δ and log

`

1
δ

˘

. Note that the constants in
the theorems can be significantly improved by a finer analy-
sis, but this is not the focus of this work. For example, by
carefully discussing the independency of the events given in
(30) and (41) in Appendix B, we can improve the constants
related to δ greatly. We can also give a finer upper-bound of
the norm of the output of each layer by studying the corre-
sponding distribution as a whole; in this case, we can even
set the constant C2 “ 1 in Theorems 1 and 2. The same
argument holds for Theorem 3 (presented later) as well.

Next, we give a sketch on the universal framework for prov-
ing the theorems in this paper. For simplicity, we remove the
statement about probabilities and use C and C 1 to denote
universal positive constants which may vary by occurrence
in this section. The details of the probabilities and constants
are given in the full proof in Appendix B.

We use ykpxq and y˚k pxq to denote the output of the k-
th layer of f and F , respectively. The basic building
block of the proof is showing how to iteratively bound
the error between ykpxq and y˚k pxq. This is achieved by
inducting on the upper-bounds of }ykpxq ´ y˚k pxq}2 and
}y˚k pxq}2 at the same time. Intuitively, we expect the er-
ror }ykpxq ´ y˚k pxq}2 to be small and that the norm of the
output }y˚k pxq}2 is not exploding.

By the Lipschitz continuity of the activation functions and
several matrix norm inequalities, we show that the above
norms heavily depend on bounding two random variables
}W˚

k }2 and }Wk ´W
˚
k }2.

Recall that we assume different distributions for the weights
in the two theorems. For example, in Theorem 1 we assume
the entries in W˚

k are uniformly distributed. By Lemma 3
and the Markov’s inequality, we derive the probability that
}W˚

k }2 ď C. A similar approach, depending on the specific
distribution we assume, is applied in the other theorems to
upper-bound the probability.

We want to make sure that }Wk ´W
˚
k }2 is small so that

the gap between outputs can be small as well. In this sense,
we cannot bound the two matrices Wk and W˚

k separately.
Instead, we use the fact that Wk ´ W˚

k is a zero matrix
except for those pruned entries. In Theorem 1 we apply
the closed-form order statistics of the uniform distribution
to give a precise upper-bound of }Wk ´W

˚
k }2, which is

Opd´αq. In the other proofs, we rely on the results of
the “balls-into-bins” problem (Lemma 6) and the Latala’s
inequality (Lemma 4) to give similar upper-bounds.

The remaining part of the proofs are to estimate the proba-
bilities that each event happens, and to determine the condi-
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Figure 1: The histogram of entries of all the weight matrices from a trained FCN.

tions between variables d, ε, δ and α. For more details about
the proofs, please refer to Appendix B.

5. Pruning Convolutional Neural Networks
In this section, we study model pruning of CNNs. We
start with the mathematical definition of a single convolu-
tional layer of CNN following the notations of Sedghi et al.
(2018). We are given an input feature map X P Rdˆpˆp
where d denotes the number of input channels of the convo-
lutional layer and p is the height/width of the input feature
map5. The entry pXqt,i,j is the value of the input unit within
channel t at row i and column j. The convolutional layer
transforms X into an output feature map Y P Rd1ˆp1ˆp1 ,
which becomes the input to the next convolutional layer.
This is achieved by applying d1 3D filters Fs P Rdˆqˆq
on the d input channels of X , where each Fs generates the
s-th channel of Y, s P rd1s, and p ą q. Each filter Fs is
composed by d 2D convolutional kernels (we use kernels
for abbreviation in the sequel) Fs,t P Rqˆq, t P rds. All
the filters are combined to form the convolutional tensor
F P Rd1ˆdˆqˆq. Mathematically, we have Fs,t “ Fs,t,:,:
and Fs “ Fs,:,:,:, s P rd1s, t P rds.

Filter Fs is moved along the second and third axes of X to
get the output feature maps. We assume that the stride is 1,
i.e., we move the filter Fi by 1 pixel/element around every
time. Note that there are two types of padding: (i) zero

5We assume that the input feature map has the same width
and height for simplicity. All the statement in this section can be
generalized to fit different width and height.

padding where we wrap the input feature maps with zeros
around the edges; (ii) wrap-around padding where we pad
the input feature maps in such a way that, if a pixel/element
that is off the right end of the image is called by the filter,
we use the pixel/element from the left end of the image
instead; we do this similarly for all the edges and axes;
mathematically, we set Xt,i,j “ Xt,i%p,j%p. Throughout
the paper, we use the second approach for padding, as it
leads to a circulant representation of the filters6.

With wrap-around padding and stride 1, the width and height
of the output feature map are the same as the input feature
map, i.e. we have p “ p1. LetK be the d1ˆdˆpˆp tensor
such that

Ks,t,:,: “

„

Fs,t,:,: 0qˆpp´qq
0pp´qqˆq 0pp´qqˆpp´qq



, s P rd1s, t P rds. (7)

Then for s P rd1s, a, b P rps, we have

Ys,a,b “
ÿ

tPrds

ÿ

iPrps

ÿ

jPrps

Xt,pa`i´1q%p,pb`j´1q%pKs,t,i,j .

For vector a “ pa1, . . . , anqT , we define

circpaq :“

»

—

—

–

a1 a2 ¨ ¨ ¨ an
an a1 ¨ ¨ ¨ an´1

...
...

. . .
...

a2 a3 ¨ ¨ ¨ a1

fi

ffi

ffi

fl

.

6The first approach leads to the Toeplitz representation and
there exist numerous discussions regarding the error and (non-)
asymptotic relationship between these two approaches in the CNN
literature (Sedghi et al., 2018) and the matrix analysis literature
(Gray, 2006; Zhu & Wakin, 2017). The error gap can be bounded
by O

`

1
n

˘

, where n is the dimension of the matrix.
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Sedghi et al. (2018) show that a linear transformation
W P Rp2d1ˆp2d which satisfies vecpY q “ WvecpXq can
be represented by

W “

»

—

–

B1,1 ¨ ¨ ¨ B1,d

...
. . .

...
Bd1,1 ¨ ¨ ¨ Bd1,d

fi

ffi

fl

, (8)

where each Bs,t is a doubly block circulant matrix such that

Bs,t “

»

—

—

–

circ pKs,t,1,:q circ pKs,t,2,:q ¨ ¨ ¨ circ pKs,t,p,:q

circ pKs,t,p,:q circ pKs,t,1,:q ¨ ¨ ¨ circ pKs,t,p´1,:q

...
...

. . .
...

circ pKs,t,2,:q circ pKs,t,3,:q ¨ ¨ ¨ circ pKs,t,1,:q

fi

ffi

ffi

fl

.

(9)
Now we discuss the formulation of a convolutional neu-
ral network. Formally, consider a CNN F of depth l ě 3.
For 1 ď k ă l, the k-th convolutional layer of F takes
the input feature map of dimension dk´1 ˆ pk´1 ˆ pk´1,
and transforms it to an output feature map of dimen-
sion dk ˆ pk ˆ pk by applying the convolutional tensor
F pkq P Rdkˆdk´1ˆqk´1ˆqk´1 . Then we pass the output fea-
ture map through an activation function σ and feed it into
the next layer. The last layer is a fully-connected layer that
maps the output tensor of the previous layer with dimen-
sion dl´1 ˆ pl´1 ˆ pl´1 into a vector of dimension dl by
matrix W˚

l P R
dlˆdl´1p

2
l´1 . Mathematically, by reshaping

the convolutional tensor F pkq into the corresponding linear
mapping W˚

k “

”

B
pkq
s,t

ı

sPrdks,tPrdk´1s
, where Bpkqs,t is the

doubly block circulant matrix induced by Kpkqs,t,:,: as defined
in (7) – (9), we write the convolutional neural network as

F pxq “W˚
l σ

`

W˚
l´1σl p¨ ¨ ¨W

˚
2 σ pW

˚
1 xqq

˘

. (10)

Similar to the definition of weight- and neuron-subnetworks
of FCN, there are two analogous definitions for CNN. We de-
fine the channel-subnetwork of F as achieved by removing
several 3D channels from the 4D tensor F pkq, 1 ď k ă l7,
and the filter-subnetwork of F by removing several 2D fil-
ters from the 4D tensor F pkq. The channel-subnetwork of F
is equivalent to setting rows ofW˚

k in terms of equation (10)
(we are actually setting several rows of block matrices Bpkqs,t )
to be zero while the filter-subnetwork refers to setting some
block sub-matrices Bpkqs,t of W˚

k to be zero. In the follow-
ing, we focus on filter-subnetworks and present the result of
random pruning on CNNs. We discuss the magnitude-based
pruning of CNNs in Appendix C.2.

7In practice we usually remove the whole channel and hence
reduce the size of F pkq to Rd

1
kˆdk´1ˆqk´1ˆqk´1 with d1k ă dk.

The size of the input of the next layer is also reduced to d1kˆpkˆpk.
In the presentation of this paper, we set the pruned channels to
zero instead of removing them. It helps us to keep the dimension
of pruned and original tensors to be the same while not changing
any theoretical property of the CNNs.

For ease of presentation, in the theorem below, we assume
that the number of channels and the width/height of each
channel in all convolutional layers are equal, i.e., we define
d :“ d1 “ ¨ ¨ ¨ “ dl´1 and p :“ p1 “ ¨ ¨ ¨ pl´1. A similar
result can be derived by the same approach for the general
non-homogeneous setting.

Theorem 3. We are given a target network F as defined in
(10) and we denote by F pkq P Rdkˆdk´1ˆpkˆpk the convo-
lutional tensor corresponding to W˚

k , 1 ď k ă l. Let us
assume that

(i) σ is L-Lipschitz and σp0q “ 0;

(ii) d ě max td0, dlu;

(iii) for s P rdks, t P rdk´1s, i, j P rps, k P rl´ 1s, F pkqs,t,i,j

independently follows a distribution X k
s,t,i,j; further,

there exist two positive constants C1 and C2 such that
EX k

s,t,i,j “ 0, E
ˇ

ˇX k
s,t,i,j

ˇ

ˇ

2
ď C1

p2d and E
ˇ

ˇX k
s,t,i,j

ˇ

ˇ

4
ď

C2

p4d2 ; the weights in W˚
l follow distributions with the

same second-order and fourth-order moment upper-
bounds.

Let us consider the subnetwork f of F with mask M “

tM1, . . . ,Mlu that randomly prunes td2´αu, 0 ă α ď 2´
logpd`1q`logp2qpdq

logpdq filters in the k-th layer of F , 1 ă k ă l.
For any positive constants β1 P p0, 1q and β2 P

`

0, 14α
˘

,

with probability at least
´

1´ d´
1
3

¯2pl´2q

p, where p :“

1´ pl ´ 2qC4
q2

p d
´ 1

4α`β2 ´ l2´l´2
2 C3

q2

p1´β1
´ C5

p1´β1
over

the randomness of masks and weights, we have

sup
xPC

p20d0

}fpxq ´ F pxq}2 (11)

ď p´β1Ll´1p0
?
d

„

p´β1
´

p´β1 ` d´β2
¯l´2

´ p´pl´1qβ1



for some positive constants C3, C4 and C5 specified in the
proof.

The first two assumptions are common in all the theorems
we present. We next discuss the feasibility of assumption
(iii). Since we translate the target CNN into a FCN form and
there are p2d neurons (instead of d neurons) in the k-th layer
of F, 1 ă k ă l, we change the denominators in the upper-
bounds of moments accordingly. The mathematical defini-
tion of the masks is also revised to fit the CNN structure.
Here we set the mask Mk to be the 0-1 matrices such that its
sub-matrices are blocks of the zero matrices and all one ma-
trices based on (8). Condition α ď 2´ logpd`1q`logp2qpdq

logpdq is
used to guarantee that Lemma 6 holds. As d goes to infinity,
the left-hand side goes to 1 and then α becomes less and
less constrained. For example, for d “ 128 or 1, 024, the
bound reads 0.6729, 0.7205, respectively.
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We next argue that the probability
´

1´ d´
1
3

¯2pl´2q

p is

positive in many of the use cases. Note that q
2

d and q2

p are
close to zero as we usually take q “ 1, 3, 5 as the dimension
of the kernel, p “ 28 for images of MNIST (LeCun et al.,
1998) and p “ 32 for images of CIFAR-10 (Krizhevsky
& Hinton, 2009). For images with 4K resolution, we have
p “ 3, 840 or 2, 160. The number of channels d varies from
64 to 512 in famous CNN architectures, like VGG16 (Si-
monyan & Zisserman, 2014) and ResNet (He et al., 2016).
The closed-forms of constants C3, C4, and C5 are presented
in Appendix B.3. Similar to the discussions in Section 4.3,
these constants can be significantly improved by a finer
analysis, but this is not the focus of this work. It is easy to
see that the right-hand side of (11) is positive and it con-
verges to 0 as d goes to infinity. Thus, by taking β1 and
β2 appropriately small and d to be large, we can make sure

that the probability
´

1´ d´
1
3

¯2pl´2q

p is positive while the
upper-bound of the gap between the pruned and target net-

works is small. We also point out that
´

1´ d´
1
3

¯2pl´2q

is
the probability with respect to masks and p with respect to
weights. As a result, the statement holds “for almost all
masks.”

6. Discussion and Future Works
In this paper, we establish theoretical results of model prun-
ing for FCNs and CNNs under different schemes with mild
assumptions. For magnitude-based pruning, we show the
sub-network f of F , which prunes tD1´α

k u out of Dk small-
est entries of the k-th layer of F , can approximate the ex-
pressive power of F on the unit ball or the unit cube with
positive probability. For random pruning, we show that most
random masks, which prune tD1´α

k u out of Dk entries of
the k-th layer of F , approximate the expressive power of
F on the unit ball or the unit cube with positive probability.
Our results are enabled by many results from the random
matrix theory. The essential building block of our analysis
is to iteratively show that the gap between the pruned and
target weight matrices and the gap between the outputs of
the k-th layer of the pruned and target networks are small.

This is one of the rare theoretical works that discusses prun-
ing of FCNs and CNNs. We not only cover model pruning
of general FCNs, but also establish the results regarding
pruning CNNs. The results can be applied to a variety
of other network structures given the fact that almost all
networks can be represented by a stack of fully-connected
layers. Our theorems can provide precious insights to the
iterative magnitude-based pruning as suggested by Frankle
& Carbin (2018). For example, our results are able to de-
termine how many weights we can prune in each iteration
and the corresponding probability that the gap between the

pruned and target networks is smaller than a given error.

As discussed in Appendix C, a direct extension of this work
is to consider magnitude-based pruning for general distri-
butions. Appendix E.1 discusses the assumption about the
independency of weights in the target network and provide
many approaches to alleviate it, but a detailed and strict theo-
retical study is definitely attractive. Besides, we usually use
pooling layers and residual connections in practical CNN
models. It is interesting to consider the impact of such non-
parametric functions and skip connections on the theoretical
neural network pruning results. Another interesting problem
is trying to leverage additional information (e.g., gradients)
of the target network to improve our results. Besides, it
would be exciting if our results can provide guidance to
improve the existing magnitude-based and random pruning
algorithms.
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