
Global Rhythm Style Transfer Without Text Transcriptions

A. Rhythm Disentanglement from an
Information-Theoretic Perspective

In this appendix, we will provide further explanation on
why Equation (3) is necessary for rhythm disentanglement,
i.e. reducing I(R; Z̃). Before the formal analysis, we state
the following assumption:

H(S|X) = 0, H(R|X) = 0, (12)

which means that the phonetic symbol and the rhythm infor-
mation is completely determined given the speech utterance.
In the following, we will show two theorems, which serve
as an elaboration of the brief discussion below Equation (3).

Theorem 1. Assume that Equations (2) and (12) hold. If

8X(t) and X 0(t) with the same content information S, but

with different rhythm information, R and R0
respectively,

Pr(Z̃ = Z̃0) = 0, (13)

then

I(R; Z̃) = I(R;X). (14)

Proof. According to (13), when S given, there forms an
injective mapping from R to Z̃, and thus

H(R|Z̃,S) = 0. (15)

On the other hand, according to Equation (2)

I(S; Z̃) = I(S;X) = H(S)�H(S|X) = H(S), (16)

where the last equality is due to Equation (12), and thus

H(S|Z̃) = I(S; Z̃)�H(S) = 0. (17)

Plug Equation (17) into Equation (15), we have

H(R|Z̃) = 0. (18)

Therefore
I(R; Z̃) = H(R)�H(R|Z̃)

= H(R)

= H(R)�H(R|X)

= I(R;X),

(19)

where the second line is given by Equation (18); the third
line is given by Equation (12).

Theorem 2. Assume that Equations (2) and (12) hold. If

8X(t) and X 0(t) with the same content information S, but

with different rhythm information, R and R0
respectively,

Pr(Z̃ = Z̃0) = 1, (20)

then

I(R; Z̃) = I(R;S). (21)

Proof. According to (20), when S given, Z̃ is a constant
regardless of the value of R, and thus

H(R|Z̃,S) = H(R|S). (22)

Plug Equation (17) into Equation (22), we have

H(R|Z̃) = H(R|S). (23)

Therefore
I(R; Z̃) = H(R)�H(R|Z̃)

= H(R)�H(R|S)

= I(R;S).

(24)

B. Additional Algorithm Details
In this appendix, we will cover the additional algorithm
details of AUTOPST. Our implementation is available
here https://github.com/auspicious3000/
AutoPST.

B.1. Self-Expressive Autoencoder (SEA)

SEA aims to derive an representation A(t), which is very
similar among similar frames, and very disimilar among dis-
imilar frames. SEA consists of one encoder, which derives
A(t) from input speech, and two decoders. One decoder
reconstructs the input based on A(t). The other decoder
reconstructs the input based on another representation B(t),
which is computed as follows

B(t) =
X

t0 6=t

✓
AT (t0)A(t)

kA(t0)k2kA(t)k2

◆
·A(t0). (25)

The entire pipeline is trained jointly to minimize the recon-
struction loss of both decoders. The intuition behind this
self-expressive mechanism is that in order to achieve good
reconstructions at both decoders, A(t) should be similar to
B(t). According to Equation (25), A0(t) is essentially a lin-
ear combination of the representation of all the other frames,
and the combination weight is the cosine similarity. If frame
t
0 is dissimilar to the current frame t to be expressed, the

weight has to be close to zero, otherwise B(t) would be
made dissimilar to A(t); if frame t

0 is similar to the current
frame t to be expressed, the weight has to be close to one to
ensure it is contributing sufficiently to B(t).

B.2. F0 and UV Conditioning

One of the biggest challenges of AUTOPST is to infer the F0
contour and voiced/unvoiced (UV) states of the utterances
based solely on the input MFCC features, because it is very
hard for the system to elicit lexical, semantic and syntactic
information without text transcriptions. To mitigate this
problem, we introduce two optional conditioning, one on

https://github.com/auspicious3000/AutoPST
https://github.com/auspicious3000/AutoPST

Global Rhythm Style Transfer Without Text Transcriptions

the input F0 contour and one on UV states. The sequence
being conditioned upon is concatenated with the encoder
output along the channel dimension before being sent to
the similarity-based resampling module. The concatenation
is valid because the conditioning sequence has the same
temporal length as the encoder output, which are both equal
to the temporal length of the input.

Although the F0 conditioning will largely resolve the am-
biguity of reconstructing the F0 contour, it will make the
algorithm unable to convert the F0 aspect of prosody, which
is undesirable in many applications. On the other hand, UV
conditioning can still resolve the ambiguity of reconstruct-
ing the F0 information to some extent, while maintaining
AUTOPST’s ability to disentangle the pitch aspect. In prac-
tice, we can choose F0 conditioning, UV conditioning, or
neither depending on different applications.

B.3. Domain Identity Conditioning

According to Equation (4), the decoder takes the domain
identity, D, as a second input. This is achieved by first feed-
ing D to a feedforward layer. Then, the feedforward layer
is appended to the first time step of the encoder output se-
quence, Z̃(t), as well as to the first time step of the memory
of the decoder (Our decoder is a Transformer; the memory
is the output of the Transformer encoder). In other words,
the total length of the encoder output and the memory will
increase by one after the appending, with the first time step
being the appended domain identity. Since the decoder is
a Transformer, it can elicit the domain identity information
by attending to the first time step.

B.4. Output and Losses

In addition to outputting the reconstructed spectrogram,
Ŝ(t), the AUTOPST decoder also outputs a stop token pre-
diction. Stop token, denoted as P (t), guides when the se-
quential spectrogram generation should stop. It is a scalar
sequence that equals zero at time steps within the lengths of
the ground truth spectrogram, and equals one at time steps
after the ground truth spectrogram has ended. Denote the
predicted stop token as P̂ (t). Then the total loss function
consists of the `2 loss for spectrogram prediction and the
cross-entropy loss for stop token prediction:

L =Etrain

h TX

t=1

kŜ(t)� S(t)k22+

T+kX

t=1

wP (t) log P̂ (t) + (1� P (t)) log(1� P̂ (t))
i
.

(26)

The expectation is taken over the training set. T denotes the
total length of the spectrogram. Notice that in the second
summation, t runs to from 1 to T + k, which k time steps
longer than the spectrogram. This is because the ground

truth stop token is always zero for t  T . It is only equal to
one for t > T . So we set k steps for the positive samples.

Nevertheless, the negative examples still occur much more
often than the positive examples. To fix the unbalanced label
problem, we add a positive weight, w, to the positive class.

C. Experiment Details
In this appendix, we will cover the additional details of our
experiments.

C.1. Architecture

The AUTOPST encoder is a simple 8-layer 1D convolutional
network, where each layer uses 5 ⇥ 1 filters with 1 stride,
SAME padding and ReLU activation. GroupNorm (Wu &
He, 2018) is applied to every layer. The number of filters is
512 for the first five layers, and the last three layers have 128,
32, and 4 filters respectively. The AUTOPST decoder is a
Transformer (Vaswani et al., 2017), which has four encoder
layers and four decoder layers. The model dimension is 256
and the number of heads is eight.

C.2. Training

We implement our model using Pytorch 1.6.0, and we train
our model on a single Tesla V100 GPU using Adam op-
timizer. Synchronous training takes 3 ⇥ 105 steps with a
batch size of 4. Asynchronous training takes 6⇥ 105 steps
with a batch size of 4. We use Pre-LN (Xiong et al., 2020)
without the warm-up stage.

C.3. Datasets

For the VCTK dataset, our test set consists of parallel utter-
ances from 24 speakers. In order to identify speakers with
the fastest and slowest speech rates, we take the average
of the log duration of the test utterances. Since all the ut-
terances are spoken in parallel by all of the speakers, the
speaker with the smallest log duration can be considered
as the fastest speaker, and the speaker with the largest log
duration can be considered as the slowest speaker. We use
the log duration instead of duration because the differences
between the average log duration can be nicely interpreted
as the average percentage difference in duration of the same
sentence uttered by the two speakers. We then select the two
fastest speakers (P231 and P239), and the two slowest speak-
ers (P270 and P245) for our main evaluation. For further
evaluation, we select two speaker pairs with smaller rhythm
differences, one with speakers ranking 25% and 75% (P244
and P226) in speech rate; the other with ranking 40% and
60% (P240 and P256) in speech rate. For the Emo-VDB
dataset, we follow a similar protocol of finding the fastest
emotion, which is neutral, and the slowest emotion, which

Global Rhythm Style Transfer Without Text Transcriptions

is sleepy, for our evaluation.

C.4. Subjective Evaluation

For the subjective evaluation, 18 sentences are generated
for each fast-slow speaker pair (9 for fast-to-slow conver-
sions and 9 for slow-to-fast conversions), and there are four
fast-slow speaker pairs, summing to 72 utterances for each
algorithm. Each utterance is assigned to five subjects. When
evaluating voice similarity, the subjects are explicitly asked
to focus only on voice but not on prosody; when evaluat-
ing prosody similarity, the subjects are asked to focus only
on prosody but not on voice; when evaluating the overall
speaker similarity, the subjects are asked to pay attention to
all the aspects of speech, including voice and prosody.

For each test, the reference utterances (one from the source
speaker and one from the target speaker) are randomized and
named speaker 1 and speaker 2. The reference utterances
are different from the test utterance in terms of content. The
subjects are asked to assign a score of 1-5 on whether the
aforementioned aspects sound more similar to speaker 1 or
speaker 2, with 1 meaning completely like speaker 1 and 5
meaning completely like speaker 2. These scores are then
converted to the similarity between the source and target
speakers, with 1 meaning completely like the source speaker
and 5 meaning completely like the target speaker.

D. Additional Experiment Results
In this section, we will present some additional visualization
and ablation study results.

D.1. Similarity-based Resampling Visualization

In order to intuitive show the effect of our similarity-based
resampling module, we design the following experiment.
We first train a variant of AUTOPST without the random
resampling module, so that it can generate a spectrogram
that is synchronous with the hidden representations. Then,
we performed the similarity-based random resampling on
the hidden representation, and generate a time-synchronous

spectrogram from the resampled representations. In this
way, we can intuitively see how much each segment is being
shortened/lengthened by observing the time-synchronous
spectrogram.

Figure 13 shows the reconstructed spectrograms from the
resampled code of the utterance “Please call Stella”. The
left figures corresponds to the downsampling case, with ⌧

dropping from 0.98 down to 0.9. The right figures corre-
sponds to the upsampling case, with ⌧ increasing from 1.02

up to 1.1. The top figure (Figure 13(a)) is the reference spec-
trogram without resampling. There are two observations.
First, the total length of the code decreases as ⌧ decreases,
and increases as ⌧ increases. Second, the relatively steady

Table 2. The relative duration difference with respect the original
utterance. F2S denotes fast-to-slow conversion; S2F denotes slow-
to-fast conversion. “No Up” denotes AUTOPST with upsampling
removed; “No Down” denotes AUTOPST with downsampling re-
moved. The numbers outside the parentheses represent the average;
the numbers in the parentheses represent the standard deviation.
The desired outcome should be a positive average for fast-to-slow
and a negative average for slow-to-fast.

AUTOPST No Up No Down
F2S 26.53 (23.05) 32.79 (12.68) -13.65 (6.46)
S2F -16.95 (23.70) 13.47 (21.96) -27.46 (5.00)

segments get stretched or shortened most, such as the “a”

segment in the second word.

D.2. Upsampling v.s. Downsampling

AUTOPST adopts both similarity-based upsampling (Sec-
tion 4.2) and similarity-based downsampling (Section 4.4).
This section shows why both are necessary. In particular,
we trained two variants of AUTOPST, one without upsam-
pling, and one without downsampling. All the other settings
remain the same. We then perform fast-to-slow and slow-to-
fast conversions the same way as in Section 5.3. For each
conversion, we compute the relative duration difference with
respect to the original source speech, i.e.

F2S Relative Duration Diff = (LF2S � Lsource)/Lsource

S2F Relative Duration Diff = (LS2F � Lsource)/Lsource.

(27)
Note that this is different from the relative duration dif-
ference computed in Equation (11). If an algorithm truly
converts rhythm to the correct direction, it should have a
positive F2S relative duration difference and a negative S2F
relative duration difference.

Table 2 shows the relative duration differences. As can be
seen, AUTOPST can correctly change the rhythm to the
desired direction. However, without either of the resam-
pling module, the rhythm conversion becomes incorrect. If
upsampling is removed, both fast-to-slow and slow-to-fast
will increase the duration. If downsampling is removed,
both fast-to-slow and slow-to-fast will decrease the duration.
One possible explanation for this is that random resampling
is only enforced during training. During testing, the ran-
dom resampling will be removed (equivalent to the ⌧ = 1

case). If either downsampling or upsampling is removed,
the test case, ⌧ = 1, becomes a corner case, undesirably
passing a duration bias. By having both upsampling and
downsampling, we can ensure ⌧ = 1 is a well-represented
mode among the training instances.

Global Rhythm Style Transfer Without Text Transcriptions

AutoPST AutoPST
1-Stage

RR
2-Stage

Re
la

tiv
e

D
ur

at
io

n
D

iff
er

en
ce

RR

Figure 9. Ablation study on two-stage training using the same rela-
tive duration difference experiment shown in Figure 7. AUTOPST
1-Stage denotes the AUTOPST algorithm trained in an end-to-end
manner (without two-stage training). RR 2-Stage denotes the RR
baseline with the two-stage training.

D.3. Removing Two-Stage Training

As discussed, there are two mechanisms that promote
prosody disentanglement. The first is similarity-based re-
sampling; the second is two-stage training. In this section,
we will explore how much each mechanism contributes to
the performance advantage of AUTOPST. In particular, we
implement two variants of the algorithms. The first variant,
called AUTOPST 1-Stage, removes the two-stage training
of AUTOPST, while all the other settings remain the same
as AUTOPST. The second variant, called RR 2-Stage, sup-
plements the RR baseline with two-stage training. We then
create the same box plot of relative duration difference as
discussed Section 5.3.

Figure 9 shows the results. As can be seen, without either
two-stage training or similarity-based random resampling,
the performance drops significantly, which implies that both
mechanisms are essential for a successful rhythm disentan-
glement.

D.4. Generalization to Unseen Emotions

As mentioned in Section 5.6, for the emotion conversion ex-
periment, we deliberately remove certain emotion categories
for each speaker from the training set. As a result, some
speakers do not have training examples of either neutral or
sleepy, or both. To examine whether AUTOPST generalize
to unseen speakers, we break the AUTOPST samples in
Figure 7(d) into three groups. The first group consists of
the speaker who has training examples of both neutral and
sleepy. The second group consists of speakers who have
training examples of only sleepy. The third group consists
of the speaker who has training examples of only neutral.

Figure 10 shows the box plot of the relative duration dif-

Both
Seen

Sleepy
Seen

Neutral
Seen

Re
la

tiv
e

D
ur

at
io

n
D

iff
er

en
ce

Figure 10. Breakdown of Figure 7(d) into 1) the speaker who has
training examples of both neutral and sleepy, 2) the speakers who
have training examples of sleepy only; and 3) the speaker who has
training examples of neutral only.

Figure 11. The box plot of the relative duration difference between
slow-to-fast conversion and fast-to-slow conversion of the same
utterance pairs as used in Figure 7(a). AUTOPST w/o Domain ID
denotes AUTOPST variant trained using domain embedding.

ference (same as Figure 7(d)) for these three groups. As
can be seen, there is a slight performance advantage if both
emotion categories are seen. However, even if there is one
unseen emotion, the performance is still pretty competitive,
demonstrating good generalizability to unseen emotions.

D.5. Training Domain Embedding

The domain ID is to assumed to present during testing, but
we would like to explore the possibility of doing zero-shot
conversion. Thus, we trained a variant of AUTOPST where
a domain encoder replaces the one-hot domain embedding.
During testing, we only need to feed the domain encoder
with a target speaker’s utterance without needing the domain
ID. Figure 11 shows the relative duration difference of this
variant, which performs slightly worse than the original AU-
TOPST due to the increased difficulty, but still significantly
better than the baselines.

Global Rhythm Style Transfer Without Text Transcriptions

Figure 12. The box plot of the relative duration difference between
slow-to-fast conversion and fast-to-slow conversion of the same
utterance pairs as used in Figure 7(a). SpeechSplit w/o

D.6. SPEECHSPLIT Baseline

Although SPEECHSPLIT can also perform prosody style
transfer, it requires ground truth target rhythm, i.e. the target
speaker speaking the source utterance. On the other hand,
AUTOPST seeks to perform prosody style transfer without
the ground truth, which is a much harder task. Nevertheless,
we show the relative duration difference of SPEECHSPLIT in
Figure 12. Note since the converted rhythm is very close to
the ground truth, SPEECHSPLIT is the performance upper-
bound of any prosody conversion, including AUTOPST.
However, when there is no ground truth available, SPEECH-
SPLIT becomes vulnerable. To show this, Figure 12 also
shows the result of SPEECHSPLIT with a random target
speaker utterance, instead of the ground truth target utter-
ance, fed into its rhythm encoder. As can be observed, the
relative duration difference almost completely concentrate
around zero, which indicates that SPEECHSPLIT completely
fails in this case.

Global Rhythm Style Transfer Without Text Transcriptions

(a) ⌧ = 1.0

(b) ⌧ = 0.98 (c) ⌧ = 1.02

(d) ⌧ = 0.96 (e) ⌧ = 1.04

(f) ⌧ = 0.94 (g) ⌧ = 1.06

(h) ⌧ = 0.92 (i) ⌧ = 1.08

(j) ⌧ = 0.90 (k) ⌧ = 1.10

Figure 13. Temporally-aligned spectrograms constructed from resampled hidden representation as a visualization of the resampling
operations. The utterance is Please call Stella.

