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Abstract
Prosody plays an important role in characterizing
the style of a speaker or an emotion, but most
non-parallel voice or emotion style transfer al-
gorithms do not convert any prosody informa-
tion. Two major components of prosody are pitch
and rhythm. Disentangling the prosody informa-
tion, particularly the rhythm component, from the
speech is challenging because it involves break-
ing the synchrony between the input speech and
the disentangled speech representation. As a re-
sult, most existing prosody style transfer algo-
rithms would need to rely on some form of text
transcriptions to identify the content information,
which confines their application to high-resource
languages only. Recently, SPEECHSPLIT (Qian
et al., 2020b) has made sizeable progress towards
unsupervised prosody style transfer, but it is un-
able to extract high-level global prosody style in
an unsupervised manner. In this paper, we pro-
pose AUTOPST, which can disentangle global
prosody style from speech without relying on any
text transcriptions. AUTOPST is an Autoencoder-
based Prosody Style Transfer framework with a
thorough rhythm removal module guided by self-
expressive representation learning. Experiments
on different style transfer tasks show that AU-
TOPST can effectively convert prosody that cor-
rectly reflects the styles of the target domains.

1. Introduction
Speech contains many layers of information. Besides the
speech content, which can roughly be transcribed to text
for many languages, prosody also conveys rich information
about the personal, conversational, and world context within
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which the speaker expresses the content. There are two
major constituents of prosody. The first is rhythm, which
summarizes the sequence of phone durations, and expresses
phrasing, speech rate, pausing, and some aspects of promi-
nence. The second is pitch, which reflects intonation.

Recently, non-parallel speech style transfer tasks have
achieved rapid progress thanks to the advancement of non-
parallel deep style transfer algorithms. Speech style transfer
refers to the tasks of transferring the source speech into the
style of the target domain, while keeping the content un-
changed. For example, in voice style transfer, the domains
correspond to the speaker identities. In emotion style trans-
fer, the domains correspond to the emotion categories. In
both of these tasks, prosody is supposed to be an important
part of the domain style — different speakers or emotions
have distinctive prosody patterns. However, few of the state-
of-the-art algorithms in these two applications can convert
the prosody aspect at all. Typically, the converted speech
would almost always maintain the same pace and pitch con-
tour shape as the source speech, even if the target speaker
or emotion has a completely different prosody style.

The fundamental cause of not converting prosody is that dis-
entangling the prosody information, particularly the rhythm
aspect, is very challenging. Since the rhythm information
corresponds to how long the speaker utters each phoneme,
deriving a speech representation with the rhythm informa-
tion removed implies breaking the temporal synchrony be-
tween the speech utterance and the representation, which
has been shown difficult (Watanabe et al., 2017; Kim et al.,
2017) even for supervised tasks (e.g. automatic speech
recognition (ASR)), using state-of-the-art asynchronous
sequence-to-sequence architectures such as Transformers
(Vaswani et al., 2017).

Due to this challenge, most existing prosody style transfer
algorithms are forced to use text transcriptions to identify
the content information in speech, and thereby separate out
the remaining information as style (Biadsy et al., 2019).
However, such methods are language-dependent and cannot
be applied to low-resource languages with few text tran-
scriptions. Although there are some sporadic attempts to
disentangle prosody in an unsupervised manner (Polyak &
Wolf, 2019), their performance is limited. These algorithms
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typically consist of an auto-encoder pipeline with a resam-
pling module at the input to corrupt the rhythm information.
However, the corruption is often so mild that most rhythm
information can still get through. SPEECHSPLIT (Qian et al.,
2020b) can achieve a more thorough prosody disentangle-
ment, but it needs access to a set of ground-truth fine-grained
local prosody information in the target domain, such as the
exact timing of each phone and exact pitch contour, which
is unavailable in the aforementioned style transfer tasks that
can only provide high-level global prosody information. In
short, global prosody style transfer without relying on text
transcriptions or local prosody ground truth largely remains
unresolved in the research community.

Motivated by this, we propose AUTOPST, an unsupervised
speech decomposition algorithm that 1) does not require text
annotations, and 2) can effectively convert prosody style
given domain summaries (e.g. speaker identities and emo-
tion categories) that only provide high-level global informa-
tion. As its name indicates, AUTOPST is an Autoencoder-
based Prosody Style Transfer framework. AUTOPST in-
troduces a much more thorough rhythm removal module
guided by the self-expressive representation learning pro-
posed by Bhati et al. (2020), and adopts a two-stage training
strategy to guarantee passing full content information with-
out leaking rhythm. Experiments on different style transfer
tasks show that AUTOPST can effectively convert prosody
that correctly reflects the styles of the target domains.

2. Related Work
Prosody Disentanglement Several prosody disentangle-
ment techniques are found in expressive text-to-speech
(TTS) systems. Skerry-Ryan et al. (2018) introduced
a Tacotron based speech synthesizer that can disentangle
prosody from speech content by an auto-encoder based rep-
resentation. Wang et al. (2018) further extracts global styles
by quantization. Mellotron (Valle et al., 2020) is a speech
synthesizer that captures and disentangles different aspects
of the prosody information. CHiVE (Kenter et al., 2019) ex-
plicitly extracts and utilize prosodic features and linguistic
features for expressive TTS. However, these TTS systems
all require text transcriptions, which, as discussed, makes
the task easier but limits their applications to high-resource
language. Besides TTS systems, Parrotron (Biadsy et al.,
2019) disentangles prosody by encouraging the latent codes
to be the same as the corresponding phone representation
of the input speech. Liu et al. (2020) proposed to disentan-
gle phoneme repetitions by vector quantization. However,
these systems still require text transcriptions. Polyak &
Wolf (2019) proposed a prosody disentanglement algorithm
that does not rely on text transcriptions, which attempts to
remove the rhythm information by randomly resampling the
input speech. However, the effect of their prosody conver-

sion is not very pronounced. SPEECHSPLIT (Qian et al.,
2020b) can disentangle prosody with better performance,
but it relies on fine-grained prosody ground-truth in the
target domain.

Voice Style Transfer Many style transfer approaches
have been proposed for voice conversion. VAE-VC (Hsu
et al., 2016) and VAE-GAN (Hsu et al., 2017) directly learns
speaker-independent content representations using a VAE.
ACVAE-VC (Kameoka et al., 2019) encourages the con-
verted speech to be correctly classified as the target speaker
by classifying the output. In contrast, Chou et al. (2018)
discourages the latent code from being correctly classified
as the source speaker by classifying the latent code. Inspired
by image style transfer, Gao et al. (2018) and Kameoka et al.
(2018) adapted CycleGan (Kaneko & Kameoka, 2017) and
StarGan (Choi et al., 2018) respectively for voice conver-
sion. Later, CDVAE-VC was extended by directly applying
GAN (Huang et al., 2020) to improve the degree of disentan-
glement. Chou & Lee (2019) uses instance normalization
to further disentangle timbre from content. StarGan-VC2
(Kaneko et al., 2019) refines the adversarial network by con-
ditioning the generator and discriminator on both the source
and the target speaker. AUTOVC (Qian et al., 2019) disen-
tangles the timbre and content by tuning the information-
constraining bottleneck of a simple autoencoder. Later, Qian
et al. (2020a) fixed the pitch jump problem of AUTOVC by
F0 conditioning. Besides, the time-domain deep generative
model is also gaining popularity (Niwa et al., 2018; Nach-
mani & Wolf, 2019; Serrà et al., 2019). However, these
methods only focus on converting timbre, which is only one
of the speech components.

Emotion Style Transfer Most existing emotion style
transfer algorithms disentangle prosody information using
parallel data. Early methods (Tao et al., 2006; Wu et al.,
2009) use classification and regression tree to disentangle
prosody. Later, statistical methods, such as GMM (Aihara
et al., 2012) and HMM (Inanoglu & Young, 2009), and
deep learning methods (Luo et al., 2016; Ming et al., 2016)
are applied. However, these approaches use parallel data.
Recently, non-parallel style transfer methods (Zhou et al.,
2020a;b) are applied to emotion style transfer to disentangle
prosody. However, these methods are unable to explicitly
disentangle rhythm information.

3. The Challenges of Disentangling Rhythm
In this section, we will provide some background informa-
tion on why disentangling rhythm has been difficult.

3.1. Rhythm Information

Figure 1 shows two utterances of the same word “Please

call Stella”, with the phone segments marked on the x-axis.
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Figure 1. Mel-spectrograms of two utterances of “Please call

Stella” with different speech rates. The phone segments are marked
on the x-axis. The grey dashed lines between the two spectrograms
mark the phone alignment, which shows that the changes in dura-
tion are disproportional across different phones.

As shown, although the content is almost the same across
the two utterances, each phone in the second utterance is
repeated for more frames than in the first utterance. In this
paper, we will measure rhythm as the number of frame-
aligned repetitions of each phone symbol.

Formally, denote X(t) as the spectrogram of a speech utter-
ance, where t represents the frame index. Denote S as the
vector of phone symbols contained in an utterance, which
we also refer to as the content information. Denote R as
a vector of the number of repetitions of each phone sym-
bol in S, which we also refer to as the rhythm information.
Then S and R represent two information components in
X(t). Therefore, the task of disentangling rhythm involves
removing phone repetitions while retaining phone identities.
Formally, we would like to derive a hidden representation
Z̃ from the speech X, i.e. Z̃ = f(X), according to the
following objective

min
Z̃=f(X)

I(R; Z̃), (1)

s.t. I(S; Z̃) = I(S;X), (2)

where I(·; ·) denotes mutual information. If the text tran-
scriptions were available, this objective could be achieved
by training an asynchronous sequence-to-sequence model,
such as the Transformer (Vaswani et al., 2017), to predict
the phone sequence from input speech. However, without
the phonetic labels, it remains an unresolved challenge to
uncover the phonetic units in an unsupervised manner.

3.2. Disentangling Rhythm by Resampling

Existing unsupervised rhythm disentanglement techniques
seek to obscure the rhythm information by temporally re-

sampling the speech sequence or its hidden representation
sequence. One common resampling strategy, as proposed by
Polyak & Wolf (2019), involves three steps. First, the input
sequence is separated into segments of random lengths. Sec-
ond, for each segment, a sampling rate is randomly drawn
from some distribution. Finally, the corresponding segment
is resampled at this sampling rate.

To gauge how much rhythm information the random re-
sampling can remove, consider two hypothetical speech
sequences, X(t) and X 0(t), with the same content infor-
mation S, but with different rhythm information R and R0

respectively. If random resampling is to reduce the rhythm
information in each utterance, there must be a non-zero
probability that the random resampling temporally aligns
them (hence making them identical because their only dif-
ference is rhythm). Thus, the original rhythm information
distinguishing the two utterances is removed. Formally, de-
note Z̃(t) and Z̃0(t) as the resampled outputs of the two
unaligned but otherwise identical sequences. Then a neces-
sary condition for reduction in rhythm information is that

Pr(Z̃(t) = Z̃0(t)) > 0. (3)

Higher probability removes more rhythm information. If the
probability is zero, then I(R; Z̃) will reach its upper bound,
which is I(R;X). If the probability is one, then I(R; Z̃)

would reach its lower bound, which is I(R;S). Please refer
to Appendix A for a more formal analysis.

Therefore, we argue that the above random resampling algo-
rithm does not remove much rhythm information, because
it has a low probability of aligning any utterance pairs with
the same content but different rhythm patterns. Figure 1 is a
counterexample, where the duration of each phone changes
disproportionally. The vowel “ea” gets more stretched than
the consonants. Consider the case where the entire sequence
falls into one random segment in the first step of the resam-
pling algorithm. Then, due to the disproportional stretch
among the phones, it is impossible to simultaneously align
all the phones by uniformly stretching or squeezing the two
utterances. If the utterances are broken into multiple random
segments, it is possible to achieve the alignment, but this
requires the number of random segments is greater than or
equal to the number of phones, with at least one segment
boundary between each pair of phone boundaries, whose
probability of occurring is extremely low. In short, to over-
come the limitation of the existing resampling scheme, we
need better ways to account for the disproportional varia-
tions in duration across different phones.

4. The AUTOPST Algorithm
In this section, we will introduce AUTOPST, which can
effectively overcome the aforementioned limitations.
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Figure 2. The framework of AUTOPST. “Enc”, “Res” and “Dec”
denote the encoder, the resampling module, and the decoder re-
spectively; “Spect” represents the spectrogram. Each block in Z(t)
and Z̃(t) represents a frame. The blocks with similar color shades
denote that the corresponding frames have a high similarity.

4.1. The Framework Overview

As shown in Figure 2, AUTOPST adopts a similar autoen-
coder structure as AUTOVC (Qian et al., 2019). The decoder
aims to reconstruct speech based on the output of the ran-
dom resampling module and the domain identifiers, e.g., the
speaker identity. AUTOVC has been shown effective in dis-
entangling the speaker’s voice via its information bottleneck,
but it does not disentangle pitch and rhythm.

Therefore, AUTOPST introduces three changes. First, in-
stead of spectrogram, AUTOPST takes the 13-dimensional
MFCC having little pitch information. Second, AUTOPST
introduces a novel resampling module guided by self-
expressive representation learning (Bhati et al., 2020), which
can overcome the challenges mentioned in the previous sec-
tion. Finally, AUTOPST adopts a two-stage training scheme
to prevent leaking rhythm information.

Formally, denote X(t) as the speech spectrogram, C(t) as
the input MFCC feature, and D as the domain identifier.
The reconstruction process is described as follows

Z(t) = Enc(C(t)), Z̃(t) = Res(Z(t)),

X̂(t) = Dec(Z̃(t), D) !X(t)
(4)

where Enc, Res, Dec stand for the encoder, the resampling
module and the decoder, respectively. Sections 4.2 to 4.4
will introduce the random resampling module, and Sec-
tion 4.6 will discuss the training scheme.

4.2. Similarity-Based Downsampling

Our resampling scheme capitalizes on the observation that
the relatively steady segments in speech tend to have more
flexible durations, such as the “ea” segment in Figure 1.
We thus modify the self-expressive autoencoder (SEA) al-
gorithm proposed by Bhati et al. (2020) into a similarity-
based downsampling scheme. SEA derives a frame-level
speech representation, which we denote as A(t), that con-
trastively promotes a high cosine similarity between frames
that are similar, and a low cosine similarity between dissim-
ilar frames. We then create a Gram matrix, G to record the
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(b) The upsampling case (⌧ > 1)

Figure 3. The resampling module (left) and realignment module
(right) of AUTOPST. Merging arrows denote mean-pooling. Split-
ting arrows denote copying the input into multiple replicates. The
blocks with similar color shades denote that the corresponding
frames have a high similarity. According to the shade, frames 2
and 3 are similar, while the others frames are very dissimilar. (a)
When ⌧  1, the sequence is segmented based on similarity, and
each segment is merged to one code by mean-pooling. (b) When
⌧ > 1, each segment contains only one code. In addition, empty
segments are inserted where the inter-temporal similarity is high,
whose corresponding output positions replicate the previous codes.

cosine similarities between any frame pairs:

G(t, t0) =
AT (t)A(t0)

kA(t)k2kA(t0)k2
. (5)

More details of the SEA algorithm can be found in Ap-
pendix B.1 and the original paper (Bhati et al., 2020).

As shown in the left panel of Figure 3(a), our downsampling
scheme for Z(t) involves two steps. First, we break Z(t)

into consecutive segments, such that the cosine similarity
of A(t) are high within each segment, and that the cosine
similarity drop across the segment boundaries. Second, each
segment is merged into one code by mean-pooling.

Formally, denote the tm as the left boundary for the m-th
segment. Boundaries are sequentially determined. When all
the boundaries up to tm are determined, the next boundary
tm+1 is set to t if t is the smallest time in (tm,1) where the
cosine similarity between t and tm drops below a threshold:

8t0 2 [t : t+ 1], G(tm, t
0))  ⌧(t). (6)

⌧(t) is a pre-defined threshold that can vary across t. Sec-
tion 4.3 will discuss how to set the threshold. After all the
segments are determined, each segment is reduced to one
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Figure 4. Segmentation results of the downsampling algorithm of
the two utterances in Figure 1. The vertical dashed lines repre-
sent the segment boundaries. The dashed lines between the two
spectrograms show good content alignment among the segments.

code by mean pooling, i.e.

Z̃(m) = meanpool
�
Z(tm : tm+1 � 1)

�
. (7)

Figure 3(a) shows a toy example, where the input sequence
of length four. The second and the third codes are very sim-
ilar. Then with a proper choice of ⌧(t), the downsampling
would divide the input sequence into three segments, and
collapse each segment into one code by mean-pooling. Note
that the threshold ⌧(t) governs how tolerant the algorithm is
to dissimilarities. If ⌧(t) = 1, each code will be assigned to
an individual segment, leading to no length reduction.

Figure 4 shows the segmentation result of the two utter-
ances shown in Figure 1, where the vertical dashed lines
denote the segment boundaries. We can see that despite their
significant difference in length, the two utterances are bro-
ken into approximately equal number of segments and the
segments have a high correspondence in terms of content.
Since the downsampled output is obtained by mean-pooling
each segment, we can expect that their downsampled out-
put would be very similar and temporally-aligned, which
implies that the necessary condition for rhythm information
loss (Equation (3)) is approximately satisfied.

4.3. Randomized Thresholding

For any fixed threshold ⌧ in Equation (6), there is a trade-
off between rhythm disentanglement and content loss. The
lower the ⌧ , the more rhythm information is removed, but
the more content is lost as well. Ideally, during testing,
we would like to set the threshold to 1 to pass full content
information to Z̃(t), and make the decoder ignore all the
rhythm information in Z̃(t). This can be achieved with a
randomized thresholding rule.

To see why, notice that if the decoder were to use the rhythm
information in Z̃(t), it must know the value of ⌧ , because
how the decoder (partially) recovers the rhythm information
depends on how the rhythm information is collapsed, which
is governed by ⌧ . However, the large variations in speech
rate, utterance length and rhythm patterns in the training
speech would overshadow the variations in ⌧ , making it
extremely hard to estimate the value of ⌧ . Thus, the decoder
will ignore whatever rhythm information remains in Z̃(t).

We adopt a double-randomized thresholding scheme. We
first randomly draw a global variable G ⇠ U [ul, ur] that is
shared across the entire utterance, where U [ul, ur] denotes
the uniform distribution within the interval [ul, ur]. Then
to determine if time t should be the next segment boundary
(i.e., tm+1 in Equation (6)), we draw a local variable L(t) ⇠
U [G� 0.05, G+ 0.05]. Then

⌧(t) = L(t)�quantile
⇥
G(tm, tm � b : tm + b)

⇤
. (8)

q�quantile[·] denotes taking the q-quantile, and b denotes
the length of the sliding window within which the threshold
is computed, which is set to 20 in our implementation.

The motivation for setting the two levels of randomization
is that G can obscure the global speech rate information and
L(t) can obscure the local fine-grained rhythm patterns.

4.4. Similarity-Based Upsampling

To further obscure the rhythm information, we generalize
our resampling module to accommodate upsampling. Just
as downsampling aims to mostly shorten segments with
higher similarity (hence decreasing the disproportionality),
upsampling aims to mostly lengthen segments with higher
similarity (hence increasing the disproportionality).

In the downsampling case, ⌧ = 1 implies no length reduction
at all. We thus seek to extrapolate the case to ⌧ > 1, where
the higher the ⌧ , the more the sequence gets lengthened.
Our upsampling algorithm achieves this by inserting new
codes in between adjacent codes. Specifically, suppose all
the boundaries up to tm are determined. When ⌧(t) > 1,
according to Equation (6), tm+1 will definitely be set to t. In
addition to this, we will add yet another sentence boundary
to t, i.e. tm+2 = t, if

8t0 2 [t : t+ 1], G(tm, t
0) � 1� ⌧(t). (9)

In other words, we are inserting an empty segment for the
(m + 1)-th segment (because tm+1 = tm+2). During the
mean-pooling stage, this empty segment will be mapped to
the code at its left boundary, i.e.,

Z̃(m) = Z(tm), if tm = tm+1. (10)

The non-empty segments will still be mean-pooled the same
way as in Equation (7).
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(a) Synchronous training. (b) Asynchronous training.

Figure 5. The two-stage training scheme of AUTOPST. “Align” denotes the re-alignment module. The striped encoder in (b) means that
the parameters in it are frozen. The blocks with similar color shades denote that the corresponding frames have a high similarity.

The left panel of Figure 3(b) illustrates the upsampling
process with the length-four toy example. Similar to the
case of ⌧ = 1, all the codes are individually segmented. The
difference is that a new empty segment is inserted after the
third code, which is where the cosine similarity is very high.
At the mean-pooling stage, this empty segment turns into
an additional code that copies the previous code.

4.5. Summary of the Resampling Algorithm

To sum up, our resampling algorithm goes as follows.

• For each frame, a random threshold ⌧(t) is drawn from
the distribution specified in Equation (8).

• If ⌧(t) < 1, the current frame would be either merged
into the previous segment, or start a new segment, depending
on whether its similarity with the previous segment exceeds
the ⌧ , hence achieving downsampling (as elaborated in Sec-
tion 4.2).

• If ⌧(t) � 1, the current frame would form either one new
segment or two new segments (by duplicating the current
frame), depending on whether its similarity with the previ-
ous segment exceeds 1� ⌧(t), hence achieving upsampling
(as elaborated in Section 4.4).

• Move onto the next frame and repeat the previous steps.

Because the threshold for each frame is random, an utter-
ance could be downsampled at some parts, while upsam-
pled at others. This would ensure the rhythm information
is sufficiently scrambled. As a final remark, the random
threshold distribution (Equation (8)) is governed by the
percentile of the similarity, because the percentile has a
direct correspondence to the length of the utterance after
resampling. Appendix D.1 provides a visualization of how
different thresholds affect the length of the utterance after
resampling.

4.6. Two-Stage Training

Despite the resampling module, it is still possible for the
encoder and decoder to find alternative ways to communi-
cate the rhythm information that is robust against temporal
resampling. Thus we introduce a two-stage training scheme

to prevent any possible collusion.

The first stage of training, called the synchronous training,
realigns Z̃(m) with Z(m), as shown in the right panels of
Figure 3. Specifically, for the downsampling case, we copy
each Z̃(m) to match the length of the original segment from
which the code is mean-pooled; for the upsampling case, we
delete the newly inserted Z̃(m). The network is then trained
end-to-end to reconstruct the input with the realignment
module, as shown in Figure 5(a). Since the decoder has
full access to the rhythm information, the encoder will be
trained to pass the content information and not the rhythm
information. The second stage, called asynchronous train-

ing, removes the realignment module, freezes the encoder,
and only updates the decoder, as shown in Figure 5(b).

5. Experiments
We evaluate AUTOPST on speech style transfer tasks. Addi-
tional experiment results can be found in Appendix D. We
encourage readers to listen to our online demo audios1.

5.1. Configurations

Architecture The encoder consists of eight 1⇥ 5 of con-
volution layers with group normalization (Wu & He, 2018).
The encoder output dimension is set to four. The decoder
is a Transformer with four encoder layers and four decoder
layers. The spectrogram is converted back to waveform
using a WaveNet vocoder (Oord et al., 2016). More hyper-
parameters setting details can be found in Appendix C.

Dataset Our dataset is VCTK (Veaux et al., 2016), which
consists of 44 hours of speech from 109 speakers. We
use this dataset to perform the voice style transfer task,
so the domain ID is the speaker ID. We use 24 speakers
for training and follow the same train/test partition as in
(Qian et al., 2020b). We select the two fastest speakers and
two slowest speakers from the seen speakers for evaluating
rhythm style transfer. For further evaluation, we select two
other speaker pairs with smaller rhythm differences. The

1https://auspicious3000.github.io/
AutoPST-Demo

https://auspicious3000.github.io/AutoPST-Demo
https://auspicious3000.github.io/AutoPST-Demo
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One showing mainly red and yellow

Source

AutoVC

RR
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(a) Fast-to-slow conversion. (b) Slow-to-fast conversion.

Figure 6. Mel-spectrograms of the converted utterances of “One showing mainly red and yellow” between a fast speaker and a slow
speaker. AUTOPST is the only algorithm that can significantly change the rhythm to match the target speakers’ styles.

first pair consists of speakers whose speech rates are at 25%
and 75% percentiles among all the test speakers; the second
pair at 40% and 60%, respectively. More details can be
found in Appendix C.

Baselines We introduce two baselines. The first is the
F0-assisted AUTOVC (Qian et al., 2020a), an autoencoder-
based voice style transfer algorithm. For the second baseline,
we replace the AUTOPST’s random resampling module with
that of the SPEECHSPLIT (as introduced in Section 3.2). We
refer to this baseline as RR (random resample).

5.2. Spectrogram Visualization

For a fast-slow speaker pair and one of their parallel sen-
tences, “One showing mainly red and yellow”, Figure 6
shows the spectrograms of conversions from the slow
speaker to the fast (left panel), and from the fast speaker
to the slow (right panel). The word alignment is marked
on the x-axis. As shown, all the algorithms can change the
voice to the target speaker, as indicated by the average F0
and formant frequencies. However, only AUTOPST signif-
icantly changes the rhythm towards the desired direction.

AUTOVC and RR barely change the rhythm. It is also worth
noting that AUTOPST indeed learns the disproportionality
in duration changes across phones, most duration changes
occur in the steady vowel segments, e.g., “ow” in “yellow”.
This verifies that our similarity-based resampling scheme
can effectively obscure the relative length of each phone.

5.3. Relative Duration Difference

To objectively measure the extent to which each algorithm
modifies rhythm to match the style of the target speaker,
for each test sentence and each fast-slow speaker pair (the
test set is a parallel dataset), we generate a fast-to-slow
and a slow-to-fast conversion. If an algorithm does not
change the rhythm at all, then the fast-to-slow version should
have a shorter duration than its slow-to-fast counterpart; in
contrast, if an algorithm can sufficiently obscure and ignore
the rhythm information in the source speech, then it can flip
the ordering. We compute relative duration difference as

Relative Duration Difference = (LF2S � LS2F)/LS2F, (11)

where LF2S and LS2F denote the lengths of fast-to-slow and
slow-to-fast conversions, respectively. If the rhythm disen-
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(a) VCTK (100% vs 0%)

(b) VCTK (75% vs 25%)

(c) VCTK (60% vs 40%)

(d) Emo-VDB

Figure 7. The box plot of the relative duration difference between
low-to-fast conversion and fast-to-slow conversion of utterance
pairs with the same content. Positive duration differences indi-
cate more sufficient rhythm disentanglement. Percentiles in the
subcaptions denote rankings in speech rate from fast to slow.

Table 1. Subjective evaluation results.
AUTOPST RR AUTOVC

Timbre 4.29 ± 0.032 4.07 ± 0.037 4.26 ± 0.034
Prosody 3.61 ± 0.053 2.97 ± 0.063 2.64 ± 0.066
Overall 3.99 ± 0.036 3.63 ± 0.045 3.49 ± 0.052

tanglement is sufficient, this difference should be positive.

Figure 7(a) shows the box plot of the relative duration dif-
ferences across all test sentences and all the top four fastest-
slowest speaker pairs. Figure 7(b) and Figure 7(c) show
the results on speaker pairs with smaller rhythm differences
(75% vs 25% and 60% vs 40% respectively). As shown,
only AUTOPST can achieve a positive average relative du-
ration difference, which verifies its ability to disentangle
rhythm. AUTOVC gets the most negative relative duration
differences, which is expected because it does not modify du-
ration at all. RR achieves almost the same negative duration
differences, which verifies that its rhythm disentanglement
is insufficient.

5.4. Subjective Evaluation

To better evaluate the overall quality of prosody style trans-
fer, and whether prosody style transfer improves the percep-
tual similarity to the target speaker, we performed a subjec-
tive evaluation on Amazon Mechanical Turk. Specifically,
in each test unit, the subject first listens to two randomly
ordered reference utterances from the source and target
speaker respectively. Then the subject listens to a converted
utterance from the source to the target speaker by one of the
algorithms. Note that the content of the converted utterance
is different from that in the reference utterances. Finally,
the subject is asked to assign a score of 1-5 to describe the
similarity to the target speaker in one of the three aspects:
prosody similarity, timbre similarity, and overall similarity.
A score of 5 means entirely like the target speaker; 1 means
completely like the source speaker; 3 means somewhat be-
tween the two speakers. Each algorithm has 79 utterances,
where each utterance is assigned to 5 subjects.

Table 1 shows the subjective similarity scores. As shown,
AUTOPST has a significant advantage in terms of prosody
similarity over the baselines, which further verifies that AU-
TOPST can generate a prosody style that is perceived as
similar to the target speaker. In terms of timbre similarity,
AUTOPST performs on-par with AUTOVC, and the gaps
among the three algorithms are small because all three algo-
rithms apply the same mechanism to disentangle timbre.

For the overall similarity, it is interesting to see how the sub-
jects weigh the different aspects in their decisions. Specifi-
cally, although AUTOVC can satisfactorily change the tim-
bre, it is still perceived as only very slightly similar to the
target speaker, because the prosody is not converted at all.
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In contrast, the AUTOPST results, with all aspects trans-
ferred, are perceptually much more similar to the target
speaker. This result shows that prosody indeed plays an
important role in characterizing a speaker’s style and should
be adequately accounted for in speech style transfer.

5.5. Restoring Abnormal Rhythm Patterns

So far, our experiments have mostly focused on the overall
speech rate. One question we are interested in is whether
AUTOPST can recognize fine-grained rhythm patterns, or
can only adjust speech rate globally. To study this question,
we modify the utterance “One showing mainly red and

yellow” in Figure 6(a) by stretching “yellow” by two times,
creating an abnormal rhythm pattern. We then let RR and
AUTOPST reconstruct the utterance from this abnormal
input. If these algorithms can recognize fine-grained rhythm
patterns, they should be able to restore the abnormality.

Figure 8 shows the reconstructed spectrogram from the ab-
normal input. As shown, RR attempts to reduce the overall
duration, but it seems unable to reduce the abnormally long
word “yellow” more than the other words. In contrast, AU-
TOPST not only restores the overall length, but also largely
restores the word “yellow” to its normal length. This shows
that AUTOPST can indeed capture the fine-grained rhythm
patterns instead of blindly adjusting the speech rate.

5.6. Emotion Style Transfer

Although AUTOPST is designed for voice style transfer, we
nevertheless also test AUTOPST on the much harder non-
parallel emotion style transfer to investigate the generaliz-
ability of our proposed framework. We use the EmoV-DB
dataset (Adigwe et al., 2018), which contains acted expres-
sive speech of five emotion categories (amused, sad, neutral,
angry, and sleepy) from four speakers. During training, two
emotion categories are randomly chosen for each speaker
and held out, for the purpose of evaluating generalization to
unseen emotion categories for each speaker.

Among the five emotions, neutral has the fastest speech rate
and sleepy has the slowest. We thus follow the same step
in Section 5.3 to compute the relative duration difference
between fast-to-slow and slow-to-fast emotion conversions
for each speaker. Figure 7(d) shows the box plot. Consis-
tent with the observations in Section 5.3, AUTOPST can
bring most of the relative duration differences to positive
numbers, whereas the baselines cannot. This result shows
that AUTOPSTcan generalize to other domains. Additional
results can be found in Appendix D.

6. Conclusion
In this paper, we propose AUTOPST an autoencoder based
prosody style transfer algorithm that does not rely on text

yellow

yellow

yellow

yellow

Original

Abnormal

RR

AutoPST

Figure 8. Mel-spectrograms of reconstruction from “One show-

ing mainly red and yellow” with an abnormally long “yellow”.
AUTOPST can largely restore the duration to its original length.

transcriptions or fine-grained local prosody style informa-
tion. We have empirically shown that AUTOPST can effec-
tively convert prosody, particularly the rhythm aspect, to
match the target domain style. There are still some limita-
tions of AUTOPST. Currently, in order to disentangle the
timbre information, AUTOPST introduces a very harsh limi-
tations on the dimension of the hidden representations. How-
ever, this would compromise the quality of the converted
speech. How to strike a better balance between timbre dis-
entanglement, prosody disentanglement, and audio quality
remains a challenging future direction. Also, it has been
shown by Deng et al. (2021) that AUTOVC performs poorly
when given in-the-wild audio examples. Since AUTOPST
inherits the basic framework of AUTOVC, it is unlikely to
generalize well to in-the-wild examples either. Improving
the generalizability to audios recorded in different environ-
ments is a future direction.
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