
Efficient Differentiable Simulation of Articulated Bodies

Supplementary Information
A. Discussion of RL Applications
For the policy enhancement method used in n-link pendu-
lum, we use off-policy training and weigh the relevance of
each sample according to the distance to the current action:

w = exp(−‖a− a0‖) (16)

where a is the policy network output, and a0 is the action
sampled from the history pool. For every epoch, we sample
from the environment 1,000 times and train the model after
each sample. We train both models from the simplest 1-
link to the most difficult 7-link setting, each experiment
repeated 10 times to obtain stable statistics. In Table 4, we
report the statistics of the maximum return for pendulums of
different numbers of links. As mentioned in the main text,
the performance of MBPO degrades while ours does not.
The reason behind it is that, during the policy update, our
method does not need to fully depend on the critic function.
By making use of the gradients as shown in Eq. 14, the
policy network can first optimize the short-term reward
(∂r/∂a) before the critic is up to date. When the critic
network is able to reveal the true value of the state-action
pair, the policy can then converge as well to the long term
goal. On the other hand, traditional RL methods heavily
depend on the convergence of the critic network, thus having
a hard time searching for the best action in a large space,
especially when the links are attached sequentially.

In Fig. 5 that shows our MuJoCo Ant experiment results,
we observe an even faster convergence than MBPO, while
MBPO already outperforms most of the RL algorithms. This
is because by generating nearby samples, the feedback from
the environment is no longer a single point but a patch as an
approximation of the shape of the state transitioning func-
tion. It can greatly help the critic function learn the correct
estimation of the values not only for the observation point
but also nearby ones, thereby achieving faster convergence
on the value estimation and eventually the policy model.

Limitations and future directions. We also observe lim-
itations on these two proposed techniques. We observed
that the sample enhancement does not provide better overall
rewards in the ‘pendulum’ test, and the policy enhance-
ment does not provide faster convergence in the ‘ant’ test.
We attribute this to a number of possible causes. Sample
enhancement enriches the interaction history with the envi-
ronment, but it is inherently limited because extra samples
can only be generated near the true sample, it may not help
the agent jump out of the local minima. Policy enhancement
relies heavily on the assumption that the actions drawn from
the training batch are the same as or similar to the action
that the policy takes at the current moment: it is considered
as an on-policy learning algorithm. Therefore, it faces the

same limitation, which is poor sample efficiency, as other
on-policy algorithms as well. These two techniques cannot
be combined together because the generated samples from
the sample enhancement do not have accurate first-order
gradients at their location, as mentioned in the paper.

While we have shown the two techniques to be a proof-
of-concept demonstration that differentiable physics can
help improve performance of reinforcement learning using
an appropriate method depending on different scenarios,
there remain several directions to further explore. We hope
that our preliminary investigation on differentiable physics
integrated with RL, as presented in this paper, will stimulate
more study on the coupling of differentiable physics with
reinforcement learning.

B. Ablation Study for Checkpointing Scheme
In this section, we conduct an ablation study to show why
we choose to save the checkpoints each time step, instead
of having a lower frequency for checkpointing. We vary the
intervals between checkpoints and profile the peak memory
usage and backpropagation time per step. Our default design
is interval=1 such that checkpoints are stored every step.

If interval=k, our method needs to compute the gradients
xi, xi+1, .., xi+k−1 given the gradients xi+k and the check-
point xi. The intermediate variables in step i+k−1, i+k−
2, ..., i have to be resumed from xi, taking k, i−1, ..., 1 steps
of forward simulations, respectively. Therefore, the total
forward steps used to resume variables here are (k + 1)k/2.
If there are n simulation steps in total, the average time of
backpropagation per step should be

(k + 1)/2 · tforawrd + tbackward, (17)

where tsimulation, tadjoint are the time for one step of sim-
ulation and adjoint method, respectively. On the other hand,
the peak memory usage is

n/k ·mcheckpoint +msimulation, (18)

where mcheckpoint is the size of one checkpoint;
msimulation is the memory usage of one step, which is
the size of all intermediate variables. Since msimulation >>
mcheckpoint, the increase of k would not significantly re-
duce the memory usage but will slow down the backpropa-
gation linearly.

In Figure 8, the experiments have similar setup as in Sec-
tion 6.1 where we simulate 10 Laikago robots for 5,000
steps. The memory and the time scale linearly w.r.t. the num-
ber of the robots. When the checkpoint intervals get larger,
the memory usage decreases gradually to the lower bound
of msimulation, but the average backpropagation time in-
creases linearly. Since the memory usage is low enough
even for interval k = 1, we choose to checkpoint every step
to have a faster speed and set the interval k = 1.

Efficient Differentiable Simulation of Articulated Bodies

of links 1 2 3 4 5 6 7
Ours 0.49± 0.01 1.93± 0.08 4.28± 0.25 7.81± 0.19 12.31± 0.16 17.78± 0.24 24.34± 0.11
MBPO 0.49± 0.01 1.90± 0.02 4.28± 0.22 7.50± 0.57 11.13± 0.99 15.02± 1.45 19.97± 2.33
Maximum 0.5 2 4.5 8 12.5 18 24.5

Table 4. Maximum reward on n-link pendulum. Our method has higher reward scores than MBPO, as the system complexity increases.

1 2 3 4 5
of robots

10

20

30

40

m
em

m
or

y
(M

B
)

1 interval
2 interval
3 interval
4 interval
5 interval

1 2 3 4 5
of robots

0

2

4

6

8

10
tim

e
(m

s)
5 interval
4 interval
3 interval
2 interval
1 interval

(a) Memory (b) Time
Figure 8. Ablation study for the checkpointing scheme.

C. The Adjoints of Contact Solver
In the collision solver, we construct a Mixed Linear Com-
plementarity Problem (MLCP) (Stepien, 2013):

a = Ax + b

s.t. 0 ≤a ⊥ x ≥ 0 and c− ≤ x ≤ c+,
(19)

where x is the new collision-free state, A is the inertial
matrix, b contains the relative velocities, and c−, c+ are
the lower bound and upper bound constraints, respectively.
In the forward pass, A,b are known variables, and the
projected Gauss-Seidel (PGS) method is used to solve for
x. In Algorithm 1, we are computing the adjoint of A,b
given the adjoint x. For simplicity, we assume there are no
constraints c−, c+ and it is now a pure Gauss-Seidel method
which solves Ax + b = 0. Basically, we store variables
in Vd,Vx1, and Vx2. In the backward pass, we load the
variables and compute the adjoints in a reverse order.

D. Model Mismatch/Transplant
Our articulated body simulation has similar functionality
to MuJoCo (Todorov et al., 2012) in terms of physical and
contact modeling. We first trained the ‘MuJoCo Ant’ model
using our simulation as the environment. Upon convergence,
we directly tested our model in MuJoCo, while keeping all
robot configuration the same. As shown in Table 5, without
any retraining, the trained model is able to obtain non-trivial
reward in MuJoCo.

E. Other Limitations and Future Directions
In addition to some possible directions to further explore, as
mentioned in Appendix A, our method can benefit from ad-
ditional enhancement. The current simulator can potentially
provide more options for users. For example, we have not

Algorithm 1 Adjoint of Gaussian-Siedel Solver
Input: matrix A, vectorb, adjoint x, iterations niter
Output: adjoints A, b
Initialize vectors Vd(niter, rows(A)),
Vx1(niter, rows(A)), Vx2(niter, rows(A)).
forward pass
for t = 1 to niter do

Vx1(t) = x
for i = 1 to rows(A) do
d = 0
for j = 1 to rows(A) do

if j 6= i then
d = d+ A(i, i) ∗ x(j)

end if
end for
Vd(t, i) = d
x(i) = (b(i)− d)/A(i, i)

end for
Vx2(t, i) = x(i)

end for
start backward process
A = 0, b = 0
for tniter to 1 do

for i = rows(A) to 1 do
d = 0
d = d− x(i)/A(i, i)
b = b + x(i)/A(i, i)
A(i, i) = A(i, i)−x(i)∗ [b(i)−Vd(t, i)]/A(i, i)2

x(i) = 0
for j = rows(A) to i+1 do
A(i, j) = A(i, j)d+ d ∗Vx1(t, j)
x(j) = x(j) + d ∗A(i, j)

end for
for j = i− 1 to 1 do

A(i, j) = A(i, j)d+ d ∗Vx2(t, j)
x(j) = x(j) + d ∗A(i, j)

end for
end for

end for

provided options to select different contact models. The cur-
rent LCP formula using iterative solver is fast but sometimes
not accurate enough. Implementing extra contact models
like exact LCP solvers or convex soft contact model can
help the simulator adapt to more applications. Moreover,

Efficient Differentiable Simulation of Articulated Bodies

Method Reward in MuJoCo
w/o pretraining 868±77
w/ pretraining (Ours) 1735±1066

Table 5. Model transplant results on MuJoCo Ant. After pretrain-
ing in our simulation environment, the model can be directly trans-
planted to a new environment, MuJoCo, with non-trivial reward.
This shows that our simulator behaves similarly with MuJoCo.

we assume that each link is a rigid body. It would be natural
to extend this work to support deformable objects such as
cloth (Todorov et al., 2012; Qiao et al., 2020).

We also plan to build on top of the current simulator to
provide more comprehensive tool sets for users. Further-
more, it is worth exploring how differentiable physics can
improve the sampling strategies and optimization of deep
reinforcement learning models. Lastly, we hope to deploy
our algorithms on real-world robots to perform a wide range
of complex tasks.

F. Code for Profiling Autodiff Tools

ADF. We post below the code to run the backpropagation
of ADF (Leal et al., 2018). As we described in Section 6.1,
ADF can be used to run the forward simulation of articulated
body dynamics but fails to complete the backpropagation
in a reasonable time. We found out that ADF will greatly
slow down when the computation graph goes deeper. Here
is an example where we repeat a simple operation iteratively.
When the iteration number is 28, it already takes a long
time to backpropagate. In articulated body simulations, the
depth of computation is far larger than 28, so ADF fails to
compute the corresponding gradients.

i n c l u d e <a u t o d i f f / r e v e r s e . hpp>
us ing namespace a u t o d i f f ;

/ / The s i n g l e −v a r i a b l e f u n c t i o n f o r
/ / which d e r i v a t i v e s are needed
v a r f (v a r x)
{

i n t n u m i t e r = 2 8 ;
f o r (i n t i =0 ; i<n u m i t e r ; i ++)

x = x + 1 / x ;
re turn x ;

}

i n t main ()
{

v a r x = 2 . 0 ; / / t h e i n p u t v a r i a b l e x
v a r u = f (x) ; / / t h e o u t p u t v a r i a b l e u

/ / e v a l u a t e t h e d e r i v a t i v e o f u
/ / w i t h r e s p e c t t o x
auto [ux] = d e r i v a t i v e s (u , wr t (x)) ;

}

JAX. JAX is based on Python and is hard to integrate into
our C++ simulator. Therefore, we write simplified Python
code to do the profiling. The input parameters to this code
are the number of robots and simulation length. Each robot
in the simulation environment of Section 6.1 has 37 DoFs,
so we multiply 37 by the number of robots and get the
dimension of the states variable. The operations in one
simulation loop are far simpler than the articulated body
dynamics.

from j a x i m p o r t g r ad
i m p o r t j a x . numpy as j n p
from j a x i m p o r t j i t
i m p o r t numpy as np
i m p o r t s y s

c l a s s RunBW(o b j e c t) :
d e f i n i t (s e l f , dim , n s t e p) :

s e l f . dim = dim
s e l f . n s t e p = n s t e p

d e f t e s t (s e l f , x) :
dim = s e l f . dim
n s t e p = s e l f . n s t e p
f o r s i n r a n g e (n s t e p) :

v a r = []
f o r k i n r a n g e (dim) :

v a r . append (x [k])
f o r i i n r a n g e (dim) :

k = i % (dim −1) + 1
v a r [k] = v a r [k −1] + 1 / v a r [k]

v a r = [j n p . expand d ims (v , 0) f o r
v i n v a r]

x = j n p . c o n c a t e n a t e (var , 0)
re turn j n p . sum (x)

i f n a m e == ’ m a i n ’ :
dim = 37 * i n t (s y s . a rgv [1])
n s t e p = i n t (s y s . a rgv [2])
rb = RunBW(dim , n s t e p)
i n i s t a t e = np . ones ([dim])
g r a d t e s t = g rad (rb . t e s t)
r e s u l t = g r a d t e s t (i n i s t a t e)
r e s u l t = rb . t e s t (i n i s t a t e)

Efficient Differentiable Simulation of Articulated Bodies

G. Differentiation of Articulated Body Algorithm
This section describes the list of adjoint operations. We start with basic operators and go over all adjoints used in our
implementation. (·) is denoted as the adjoint of a variable.
Scalar multiply:

a = bc

∂φ

∂b
=
∂φ

∂a

∂a

∂b

b = ac, c = ba

(20)

Matrix vector multiply:

v = ma

mij = viaj ,aj =
∑

vkmkj

m = vaT

a = mTv

(21)

Matrix multiply:

c = ab

a = cbT

b = aT c

(22)

Matrix ATBA:

c = aTba

a = bTac + bacT

b = acaT

(23)

Matrix inverse:

b = a−1

∂b

∂q
= −b∂a

∂q
b = −

∑
k

∑
t

bij
∂ajk
∂q

bkt

ajk = −
∑
i

∑
t

bijbktbit

a = −bTbbT

(24)

Multiply three matrices:

m = abc

a = mcTbT

b = aTmcT

c = bTaTm

(25)

Vector cross product:

v = a× b = [a2b3 − a3b2,a3b1 − a1b3,a1b2 − a2b1]

a = [−v2b3 + v3b2,v1b3 − v3b1,−v1b2 + v2b1] = −v × b

b = [v2a3 − v3a2,−v1a3 + v3a1,v1a2 − v2a1] = v × a

(26)

Efficient Differentiable Simulation of Articulated Bodies

Vector norm:

a =
√
b · b

∂a

∂q
= −1

2

1√
b · b

(
∂b

∂q
· b + b · ∂b

∂q
) =

1

a

∂b

∂q
· b

b =
a

a
b

(27)

Spatial transform: apply(): [
b1

b2

]
= stapply(

[
E
r

]
,

[
a1

a2

]
) =

[
Ea1

E(a2 − r× a1)

]
(28)

[
E
r

]
=

[
a1b

T

1 + (a2 − r× a1)b
T

2

ETb2 × a1

]
,

[
a1

a2

]
=

[
ETb1 −ETb2 × r

ETb2

]
(29)

Spatial transform: apply-inv():[
b1

b2

]
= stapply−inv(

[
E
r

]
,

[
a1

a2

]
) =

[
ETa1

ETa2 + r× (ETa1)

]
(30)

[
E
r

]
=

[
a1(b1 + b2 × r)T + a2b

T

2

−b2 ×ETa1

]
,

[
a1

a2

]
=

[
E(b1 + b2 × r)

Eb2

]
(31)

Spatial transform: apply-trans():[
b1

b2

]
= stapply−trans(

[
E
r

]
,

[
a1

a2

]
) =

[
ETa1 + r× (ETa2)

ETa2

]
(32)

[
E
r

]
=

[
b1a

T
1 + (b1 × r + b2)aT2
−b1 ×ETa2

]
,

[
a1

a2

]
=

[
Eb1

E(b1 × r + b2)

]
(33)

Spatial transform: apply-invtrans():[
b1

b2

]
= stapply−invtrans(

[
E
r

]
,

[
a1

a2

]
) =

[
ET (a1 − r× a2)

ETa2

]
(34)

[
E
r

]
=

[
(a1 − r× a2)b

T

1 + a2b
T

2

Eb1 × a2

]
,

[
a1

a2

]
=

[
Eb1

−Eb1 × r + Eb2

]
(35)

Spatial transform: multiply(): [
E0

r0

]
= stmultiply(

[
E1

r1

]
,

[
E2

r2

]
) =

[
E1E2

r2 + ET2 r1

]
(36)

Efficient Differentiable Simulation of Articulated Bodies

[
E1

r1

]
=

[
E0E

T
2

E2r0

]
,

[
E2

r2

]
=

[
ET1 E0 + r1r

T
0

r0

]
(37)

Spatial motion: crossm():[
w0

v0

]
= smcrossm(

[
w1

v1

]
,

[
w2

v2

]
) =

[
w1 ×w2

w1 × v2 + v1 ×w2

]
(38)

[
w1

v1

]
=

[
−w0 ×w2 − v0 × v2

−v0 ×w2

]
,

[
w2

v2

]
=

[
w0 ×w1 + v0 × v1

v0 ×w1

]
(39)

Spatial motion: crossf(): [
w0

v0

]
= smcrossf (

[
w1

v1

]
,

[
w2

v2

]
) =

[
w1 ×w2 + v1 × v2

w1 × v2

]
(40)

[
w1

v1

]
=

[
−w0 ×w2 − v0 × v2

−w0 × v2

]
,

[
w2

v2

]
=

[
w0 ×w1

w0 × v1 + v0 ×w1

]
(41)

Spatial dyad: mul-ori(): [
w0

v0

]
= sdmul−inv(

[
m11 m12

m21 m22

]
,

[
w
v

]
) =

[
m11w + m12v
m21w + m22v

]
(42)

[
m11 m12

m21 m22

]
=

[
w0w

T w0v
T

v0w
T v0v

T

]
,

[
w
v

]
=

[
mT

11w0 + mT
21v0

mT
12w0 + mT

22v0

]
(43)

Spatial dyad: mul-inv():[
w0

v0

]
= sdmul−inv(

[
m11 m12

m21 m22

]
,

[
w
v

]
) =

[
mT

11w + mT
12v

mT
21w + mT

22v

]
(44)

[
m11 m12

m21 m22

]
=

[
wwT

0 vwT
0

wvT0 vvT0

]
,

[
w
v

]
=

[
m11w0 + m21v0

m12w0 + m22v0

]
(45)

Spatial dyad: vvT (): [
m11 m12

m21 m22

]
= sdvvT (

[
w1

v1

]
,

[
w2

v2

]
) =

[
w1w

T
2 w1v

T
2

v1w
T
2 v1v

T
2

]
(46)

[
w1

v1

]
=

[
m11w2 + m12v2

m21w2 + m22v2

]
,

[
w2

v2

]
=

[
mT

11w1 + mT
21v1

mT
21w1 + mT

22v1

]
(47)

Efficient Differentiable Simulation of Articulated Bodies

Spatial dyad: v×:  m00 m01 m02

m10 m11 m12

m20 m21 m22

 = ([v0,v1,v2]T)× =

 0 −v2 v1

v2 0 −v0

−v1 v0 0

 (48)

 v0

v1

v2

 =

 −m12 + m21

m02 −m20

−m01 + m10

 (49)

Spatial dyad: st2sd(): [
n11 n12

n21 n22

]
= sdst2sd(

[
E
r

]
) =

[
E 0
−Er× E

]
(50)

[
E
r

]
=

[
nT11 + nT22 − r×n21

−(En21)×

]
(51)

Spatial dyad: shift():

n = sdshift(

[
m11 m12

m21 m22

]
,

[
E
r

]
) = aTba(st2sd(

[
E
r

]
),

[
m11 m12

m21 m22

]
) (52)

Adjoints of shift() can be decomposed into the adjionts of ATBA() and st2sd().

Quaternion: mul vec():
q1.x
q1.y
q1.z
q1.w

 = qtmul vec(


q2.x
q2.y
q2.z
q2.w

 ,
 v.x

v.y
v.z

) =


q2.w ∗ v.x+ q2.y ∗ v.z − q2.z ∗ v.y
q2.w ∗ v.y + q2.z ∗ v.x− q2.x ∗ v.z
q2.w ∗ v.z + q2.x ∗ v.y − q2.y ∗ v.x
−q2.x ∗ v.x− q2.y ∗ v.y − q2.z ∗ v.z

 (53)


q2.x
q2.y
q2.z
q2.w

 =

 q1.x ∗ q.w − q1.y ∗ q.z + q1.z ∗ q.y − q1.w ∗ q.x
q1.x ∗ q.z + q1.y ∗ q.w − q1.z ∗ q.x− q1.w ∗ q.y
−q1.x ∗ q.y + q1.y ∗ q.x+ q1.z ∗ q.w − q1.w ∗ q.z

 (54)

 v.x
v.y
v.z

 =

 q1.x ∗ q2.w − q1.y ∗ q2.z + q1.z ∗ q2.y − q1.w ∗ q2.x
q1.x ∗ q2.z + q1.y ∗ q2.w − q1.z ∗ q2.x− q1.w ∗ q2.y
−q1.x ∗ q2.y + q1.y ∗ q2.x+ q1.z ∗ q2.w − q1.w ∗ q2.z

 (55)

Quaternion: mul qt():
q.x
q.y
q.z
q.w

 = qtmul qt(


q1.x
q1.y
q1.z
q1.w

 ,


q2.x
q2.y
q2.z
q2.w

) =


q1.w ∗ q2.x+ q1.x ∗ q2.w + q1.y ∗ q2.z − q1.z ∗ q2.y
q1.w ∗ q2.y + q1.y ∗ q2.w + q1.z ∗ q2.x− q1.x ∗ q2.z
q1.w ∗ q2.z + q1.z ∗ q2.w + q1.x ∗ q2.y − q1.y ∗ q2.x
q1.w ∗ q2.w − q1.x ∗ q2.x− q1.y ∗ q2.y − q1.z ∗ q2.z

 (56)


q1.x
q1.y
q1.z
q1.w

 =


q.x ∗ q2.w − q.y ∗ q2.z + q.z ∗ q2.y − q.w ∗ q2.x
q.x ∗ q2.z + q.y ∗ q2.w − q.z ∗ q2.x− q.w ∗ q2.y
−q.x ∗ q2.y + q.y ∗ q2.x+ q.z ∗ q2.w − q.w ∗ q2.z
q.x ∗ q2.x+ q.y ∗ q2.y + q.z ∗ q2.z + q.w ∗ q2.w

 (57)

Efficient Differentiable Simulation of Articulated Bodies


q2.x
q2.y
q2.z
q2.w

 =


q.x ∗ q1.w + q.y ∗ q1.z − q.z ∗ q1.y − q.w ∗ q1.x
−q.x ∗ q1.z + q.y ∗ q1.w + q.z ∗ q1.x− q.w ∗ q1.y
q.x ∗ q1.y − q.y ∗ q1.x+ q.z ∗ q1.w − q.w ∗ q1.z
q.x ∗ q1.x+ q.y ∗ q1.y + q.z ∗ q1.z + q.w ∗ q1.w

 (58)

Please refer to our code for more details.

