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1. Proof of Theorem 2.1
Proof of Theorem 2.1. We prove this theorem with a stan-
dard coupling argument. Without loss of generality, we
assume sf = 1. Let x = (x1, . . . , xm) and x′ =
(x′1, . . . , x

′
m) be adjacent, i.e., ‖x − x′‖∞ ≤ 1. Let S

be an arbitrary k-subset of {1, . . . ,m} and G consist of all
(g1, . . . , gm) such thatMos with input x reports S. Simi-
larly we have G′ for x′. It is clear that G − 2 · 1S ⊂ G′,
where 1S ∈ {0, 1}m satisfies 1S(i) = 1 if and only if i ∈ S.
Here {0, 1}m stands for the set of m-elements sets which
only contain 0 and 1 as elements. Therefore, the standard
coupling argument gives

P(Mos(x) = S) =

∫
G

1

2mλm
e−
‖g‖1
λ dg

≥
∫
G′+2·1S

1

2mλm
e−
‖g‖1
λ dg =

∫
G′

1

2mλm
e−
‖g+2·1S‖1

λ dg

≥
∫
G′

e−2k/λ

2mλm
e−
‖g‖1
λ dg = e−εP(Mos(x′) = S) .

On the opposite side, we have P(Mos(x) = S) ≤
eεP(Mos(x′) = S), which completes the proof since S
is arbitrary.

2. Proof of Theorem 2.3
We begin by proving the following lemma.

Lemma 2.1. Let X and Y be independent identically
Lap(λ) distributions and Z = X − Y , then the density
function of random variable Z has the form

fZ(z) =
λ+ |z|

4λ2
· exp

(
−|z|
λ

)
.
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Proof of Lemma 2.1. Notice that

fZ(z) =

∫ ∞
−∞

fX(x)fY (x− z)dx,

by applying the convolution formula above, when z ≥ 0 we
have

4λ2fZ(z)

=

∫ ∞
−∞

exp

(
−|x|
λ

)
exp

(
−|x− z|

λ

)
dx

=

∫ 0

−∞
exp

(x
λ

)
exp

(
x− z
λ

)
dx+∫ z

0

exp
(
−x
λ

)
exp

(
x− z
λ

)
dx+∫ ∞

z

exp
(
−x
λ

)
exp

(
−x− z

λ

)
dx+

=
λ

2
exp

(
− z
λ

)
+ z exp

(
− z
λ

)
+
λ

2
exp

(
− z
λ

)
= (λ+ z) exp

(
− z
λ

)
.

Therefore, with z ≥ 0, we have

fZ(z) =
λ+ z

4λ2
exp

(
− z
λ

)
.

Since the pdfs of random variables X and Y are symmetric
around the origin, the pdf of Z must be symmetric around
the origin. From this we get that

fZ(z) =
λ+ |z|

4λ2
exp

(
−|z|
λ

)
.

With the lemma above, we start to prove Theorem 2.3. Let
g1, g2, · · · , gm be i.i.d. Lap(λ) distributions. We define the
event

A = {Moneshot reports the index set of true top-k elements}

and consider the extreme case when yi’s follow the exact
same order as fi(D)’s, i.e.,

f(1)(D) + g1 ≤ f(2)(D) + g2 ≤ · · · ≤ f(m)(D) + gm.
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Thus we can lower bound P (A) by the extreme case above,

P(A) ≥ P(f(1)(D) + g1 ≤ · · · ≤ f(m)(D) + gm)

= P(f(1)(D) + g1 ≤ f(2)(D) + g2,

f(2)(D) + g2 ≤ f(3)(D) + g3, · · · ,
f(m−1)(D) + gm−1 ≤ f(m)(D) + gm)

= P(g1 − g2 ≤ f(2)(D)− f(1)(D),

g2 − g3 ≤ f(3)(D)− f(2)(D), · · · ,
gm−1 − gm ≤ f(m)(D)− f(m−1)(D))

≥ P(g1 − g2 ≤ ∆, g2 − g3 ≤ ∆, · · · ,
gm−1 − gm ≤ ∆) .

Recall the Bonferroni lower bound that for events
X1, · · · , Xn, we have

P(X1, · · · , Xn) ≥ max

{
0, 1−

m∑
i=1

(1− P(Xi))

}
.

Combining the calculation above, we have

P(A) ≥ 1−
m−1∑
i=1

(1− P(gi − gi+1 ≤ ∆))

= 1−
m−1∑
i=1

P(gi − gi+1 ≤ −∆)

= 1−
m−1∑
i=1

∫ −∆

−∞
fZ(z)dz

= 1− (m− 1)(2λ+ ∆)e−∆/λ

4λ
,

this completes the proof of Theorem 2.3.

3. Proof of Theorem 3.5
Proof of Theorem 3.5. We only need to prove the sensitivity
part s = 2

dL(1−ρ) . For two adjacent databases D, D′ where
they only differ in only one data item, we assume their
corresponding sufficient statistics are y and ỹ. To capture
the definition of adjacent databases, we assume one sample
y

(l0)
i0,j0

of the edge (i0, j0) in database D and D′ is different.

Without loss of generality, we assume that y(l0)
i0,j0

= 0 in D

and ỹ(l0)
i0,j0

= 1 in D′. Note that

Pij =


1
dyi,j if (i, j) ∈ E,
1− 1

d

∑
k:(i,k)∈E yi,k if i = j,

0 otherwise,

two transition matrices P and P̃ only differ in four elements
in positions (i0, j0), (j0, i0), (i0, i0) and (j0, j0). To find
the maximum possible value of ||P − P̃ ||∞, for i 6= i0 and

i 6= j0,
m∑
j=1

|Pij − P̃ij | = 0 .

In the case when i = i0,

m∑
j=1

|Pij − P̃ij |

=
|yi0,j0 − ỹi0,j0 |

d
+ |Pi0i0 − P̃i0i0 |

=
|yi0,j0 − ỹi0,j0 |

d
+∣∣∣∣∣∣

1− 1

d

∑
k:(i0,k)∈E

yi0,k

−
1− 1

d

∑
k:(i0,k)∈E

ỹi0,k

∣∣∣∣∣∣
=
|yi0,j0 − ỹi0,j0 |

d
+

1

d
|yi0,j0 − ỹi0,j0 |

=
2

d
|yi0,j0 − ỹi0,j0 |

=
2

dL
.

When i = j0, we can follow the exact same calculation and
get
∑m
j=1 |Pij − P̃ij | =

2
dL . Therefore,

||P − P̃ ||∞ = max
1≤i≤m

m∑
j=1

|Pij − P̃ij | =
2

dL
.

By the definition of sensitivity, we have s = 2
dL(1−ρ) .

4. Proof of Lemma 4.3
Proof of Lemma 4.3. By mean value theorem, there exists
a point z̃ between z and z′ such that

|g(z̃)| =
∣∣∣∣G(z′)−G(z)

z′ − z

∣∣∣∣ ,
where g denotes the density function of the standard Laplace
distribution. Hence, we only need to prove

|g(z̃)|
G(z)(1−G(z))

≤ 2e|z
′−z| .

Now we prove this inequality in different cases.

Case 1: when max(z, z′) ≤ 0. In this case,

|g(z̃)|
G(z)(1−G(z))

=
ez̃−z

1− 1
2ez
≤ 2e|z̃−z| ≤ 2e|z

′−z| .

Case 2: when min(z, z′) ≥ 0. With a similar argument in
Case 1, we have

|g(z̃)|
G(z)(1−G(z))

=
ez−z̃

1− 1
2e−z

≤ 2e|z−z̃| ≤ 2e|z
′−z| .
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Case 3: when min(z, z′) < 0 < max(z, z′). The triangle
inequality gives

|g(z̃)|
G(z)(1−G(z))

=
e|z|−|z̃|

1− 1
2e−|z|

≤ 2e|z−z̃| ≤ 2e|z
′−z| .

In summary, combining all the cases above gives the lemma.

5. Proof of Lemma 4.5
The proof of the Lemma 4.5 is based on the classical Ben-
nett’s inequality stated below.

Bennett’s inequality: Let Z1 . . . , Zn be independent ran-
dom variables with all means being zero. In addition,
assume |Zi| ≤ a almost surely for all i. Denoting by
σ2 =

∑n
i=1 Var(Zi), we have

P

(
n∑
i=1

Zi > t

)
≤ exp

(
−σ

2h(at/σ2)

a2

)

for any t ≥ 0, where h(u) = (1 + u) log(1 + u)− u.

Proof of Lemma 4.5. By the Bennett’s inequality stated
above, we have

P(
∑
i

Zi ≤ k)

= P

(∑
i

Zi −
∑
i

qi ≤ −tk

)
≤ e−σ

2h(tk/σ2),

Note that P(
∑
i Zi ≤ k) is a decreasing function with re-

spect to
∑m
i=1 qi, hence we can assume

∑m
i=1 qi = (1+t)k.

In this case, we have σ2 =
∑m
i=1 qi(1 − qi) ≤ (1 + t)k.

Making use of the fact that σ2h(tk/σ2) is a monotonically
decreasing function with respect to σ2 gives

P(
∑
i

Zi ≤ k) ≤ e−σ
2h(tk/σ2)

≤ exp

(
−(1 + t)kh

(
t

t+ 1

))
.

Hence, the first part of Lemma 4.5 is proved. In order
to prove the second part of the lemma, we need to take
advantage of the conclusion from the first part. Note
that h(u)/u2 is a decreasing function of u, by setting

t = c
√

log(m/δ)
k ≤ c√

C0
, we get

(1 + t)kh

(
t

t+ 1

)
≥ (1 + t)k

(
t

t+ 1

)2 h( c
c+
√
C0

)

( c
c+
√
C0

)2

≥ k

(
c

√
log(m/δ)

k

)2
1

1 + c√
C0

h( c
c+
√
C0

)

( c
c+
√
C0

)2

≥ 1.099 log
(m
δ

)
> log

(m
δ

)
.

Therefore, when
∑m
i=1 qi ≥ (1 + t)k, we have

P(
∑
i

Zi ≤ k) ≤ exp

(
−(1 + t)kh

(
t

t+ 1

))
≤ δ

m
.


