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Abstract
Being able to efficiently and accurately select the
top-k elements with differential privacy is an in-
tegral component of various private data analy-
sis tasks. In this paper, we present the oneshot
Laplace mechanism, which generalizes the well-
known Report Noisy Max (Dwork & Roth, 2014)
mechanism to reporting noisy top-k elements.
We show that the oneshot Laplace mechanism
with a noise level of Õ(

√
k/ε) is approximately

differentially private. Compared to the previous
peeling approach of running Report Noisy Max k
times, the oneshot Laplace mechanism only adds
noises and computes the top k elements once,
hence much more efficient for large k. In addi-
tion, our proof of privacy relies on a novel cou-
pling technique that bypasses the use of composi-
tion theorems. Finally, we present a novel appli-
cation of efficient top-k selection in the classical
problem of ranking from pairwise comparisons.

1. Introduction
Modern statistical analyses have increasingly relied on sen-
sitive data from individuals and, accordingly, there is a
growing recognition that privacy constraints should be in-
corporated into consideration in data analysis. In response,
a mathematically rigorous framework called differential
privacy (Dwork et al., 2006a;b) was introduced for privacy-
preserving data analysis. Roughly speaking, a differen-
tially private procedure ensures that the released informa-
tion is not influenced significantly by any individual record
in the dataset. As a consequence, the privacy of the individ-
uals will not be revealed based on the released information.

This paper is concerned with the top-k problem, one of the
most important primitives in differential privacy: reporting
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k items with (approximately) the maximum values among
m given values. The problem of privately reporting the
k largest elements is an essential building block in many
machine learning tasks and has gained continued popular-
ity in the literature (McSherry & Mironov, 2009; Fried-
man & Schuster, 2010; Banerjee et al., 2012; McSherry &
Mironov, 2013; Shen & Jin, 2014; Qin et al., 2016; Bafna
& Ullman, 2017; Steinke & Ullman, 2017; Dwork et al.,
2018; Durfee & Rogers, 2019). The common peeling so-
lution Hardt & Roth (2013) and Dwork et al. (2018) is by
iteratively applying the Report Noisy Max algorithm and
then resorting to the composition theorem for computing
the privacy loss. In general, this results in the noise level of
O(k/ε) for ε pure privacy and Õ(

√
k/ε)1 for (ε, δ) privacy

loss. While the peeling algorithm has good privacy guar-
antee, it requires to run Report Noisy Max k times, hence
incurring a high computational cost for large k.

In this paper, we show that by adapting Report Noisy Max
to reporting noisy top-k items, we can still achieve com-
parable utility but with a much more efficient procedure as
we only need to run the selection once. We call the re-
sulted algorithm the oneshot Laplace mechanism. More
precisely, in the oneshot Laplace mechanism, we add the
Laplace noise to each count and then report the set of items
with the top-k noisy counts. In this paper, we show that
the oneshot Laplace mechanism can achieve utility com-
parable to those obtained from the peeling procedure (see
Theorems 2.1 and 2.2 for the precise statements).

It is relatively straightforward to show that by adding
Laplace noise of level k/ε, the mechanism is ε purely dif-
ferentially private (Theorem 2.1).2 However, it turns out
to be much more challenging to show that with Õ(

√
k/ε)

noise, it is (ε, δ)-differentially private. Indeed, the proof
of this fact is the main contribution of our paper (Theo-
rem 2.2).

Our proof directly bounds the privacy loss without the help
of the composition theorems. The difficulty of this ap-
proach is in untangling the complex distribution depen-
dence of the k selected items, as opposed to the condi-

1Throughout the paper, we use Õ to hide dependence on log-
arithmic factors.

2This is probably a folklore but since we could not find a ref-
erence, we include its proof for completeness.
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tional dependence in other existing mechanisms, which al-
lows us to use the advanced composition theorem (Dwork
et al. (2010), see also Kairouz et al. (2017)). To deal with
this difficulty, we introduce a novel theoretical technique
that, in effect, reduces the oneshot problem to a multino-
mial distribution problem to bypass the use of composition
theorems. To shed light on our proof, consider the case of
many similar or equal values. This is the case where the
true top-k set can be extremely sensitive to the change of
input values. In order to privately report the top-k set in this
case, we add independent Laplace noises centered at zero to
these values, which yields an approximately equal chance
that the noisy values of two adjacent inputs will “go up” or
“go down”, leading to the cancellation of certain first-order
terms in the (logarithms of) the probabilities of events and
hence a tight control between their ratio.

Circumventing composition theorems, however, may have
its advantage. Since it relies on the direct analysis so may
avoid the slackness introduced by the generic composition
theorems. Indeed, there have been recent work on explor-
ing the special properties of the privacy mechanisms to im-
prove upon the generic composition theorem (Abadi et al.,
2016; Bun & Steinke, 2016; Dong et al., 2021).

One closely related previous work is the oneshot Gumbel
mechanism proposed in Durfee & Rogers (2019). In that
paper, the authors show that adding Gumbel noise and re-
porting the top-k items is equivalent to the peeling proce-
dure of the exponential mechanism for reporting the max-
imum item (Dwork & Roth, 2014). This elegant connec-
tion immediately provides privacy guarantees through the
well understood composition of exponential mechanisms
and can benefit from any improvement of the composition
property (Dong et al., 2019). In addition, their mechanism
reports the noisy rank of the top-k selections. However,
it is important to note that their analysis goes through the
composition theorem, whereas our paper takes an entirely
different angle by employing a composition-free analysis.
The comparison between these two approaches, both in
theory and in practice, remains an interesting future work.

1.1. Preliminaries

Before continuing, we pause to revisit some basic concepts
in differential privacy.

Definition 1.1. Data setsD,D′ are said to be neighbors, or
adjacent, if one is obtained by removing or adding a single
data item.

Differential privacy, sometimes called pure differential pri-
vacy now, was first defined and constructed in Dwork et al.
(2006b). The relaxation of pure differential privacy defined
next is sometimes referred to as approximate differential
privacy or (ε, δ)-differential privacy.

Definition 1.2 (Differential privacy (Dwork et al., 2006b)).
A randomized mechanismM is (ε, δ)-differentially private
if for all adjacentD,D′, and for any subset of possible out-
puts S: P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ. Pure
differential privacy is the special case of approximate dif-
ferential privacy in which δ = 0.

In differential privacy problems, privacy law protects indi-
vidually identifiable data, and the parameters ε and δ in the
definition above measure the degree of privacy protected.
Let f = f(D) be a statistic on a database D. In any
randomized (ε, δ)-differentially private mechanismM, the
perturbed response f(D)+Z is reported instead of the true
answer f(D), where Z is the random noise to guarantee in-
distinguishability between two datasets. The sensitivity of
the statistic, or query function f , is the largest change in its
output when we change a single data item and is defined
below.

Definition 1.3 (Sensitivity). Let f = (f1, · · · , fm) be m
real valued functions that take a database as input. The
sensitivity of f , denoted as s, is defined as

sf = max
D,D′

max
1≤i≤m

|fi(D)− fi(D′)| ,

where the maximum is taken over any adjacent databases
D and D′.

In the Laplace Mechanism, the output f(D) is perturbed
with noise generated from the Laplace distribution Lap(λ)
with probability density function: fLap(λ)(z) = 1

2λe−|z|/λ,
where the scale λ should be calibrated to the sensitivity of
the statistics f .

2. The Oneshot Laplace Mechanism
In this section, we introduce the oneshot Laplace mecha-
nism in full detail, along with its privacy guarantees. Con-
sider the problem of privately reporting the minimum k lo-
cations of m values x1, . . . , xm and their estimated values.
Here two input values (x1, . . . , xm) and (x′1, . . . , x

′
m) are

called adjacent if ‖x−x′‖∞ ≤ 1, i.e., |xi−x′i| ≤ 1 for all
1 ≤ i ≤ m. In this definition, x can be considered as the
counts of each of m-attributes of the population in some
database D and, therefore, changing any individual in D
may in the worst case change each count xi by 1.

As a special case when k = 1, the solution relies on the
Report Noisy Min algorithm (Dwork & Roth, 2014; Dwork
et al., 2018), which takes as input a function f , databaseD,
and privacy parameter ε, and outputs the index of the mini-
mum element and its estimated value. The Report Noisy
Min algorithm adds independently sampled Lap(2sf/ε)
noise to each element of f(D) and reports the index i∗ of
the minimum noisy count. The algorithm further reports
its estimated value by adding noise freshly sampled from
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Lap(2sf/ε) to fi∗(D). In Dwork & Roth (2014); Dwork
et al. (2018), the Report Noisy Min algorithm is proved to
be (ε, 0)-differentially private. Notably, in order to avoid
violation of differential privacy, we shall not report the min-
imum noisy element as its estimated value. Hence, we need
to add fresh random noise to fi∗(D) in the last step.

To efficiently solve the top-k problem where k can be larger
than 1, we introduce the oneshot Laplace mechanismMos,
which is one of our main contributions in this paper. In
Mos, we add noise Lap(λ) once to each value and report
the indices and approximations of the minimum k noisy
values (Algorithm 1).

Algorithm 1 The Oneshot Laplace Mechanism Mos for
Privately Reporting Minimum k Elements
Input: database D, functions f = (f1, · · · , fm) with sen-

sitivity sf , parameter k, and the noise scale λ
Output: indices i1, . . . , ik and approximations to

fi1(D), · · · , fik(D)
1: for i = 1 to m do
2: set yi = fi(D) + gi where gi is sampled i.i.d. from

Lap(λ)
3: end for
4: sort y1, . . . , ym from low to high, yi1 ≤ yi2 ≤ · · · ≤
yim

5: return the set {i1, . . . , ik} and fij (D) + g′ij , where
1 ≤ j ≤ k and g′ij are fresh independent random noise
sampled from Lap(λ)

We provide the following theorem for pure differential pri-
vacy of the oneshot Laplace mechanism. Its proof uses a
standard coupling argument and it is given in the supple-
mentary material.

Theorem 2.1. The oneshot Laplace mechanism is (ε, 0)-
differentially private if we set λ = 2ksf/ε or larger.

However, it is surprisingly challenging to prove the privacy
guarantees for the oneshot Laplace mechanism in the ap-
proximate differential privacy framework. Here we state
the theorem and leave the technical sketches and intuition
to Section 4 and the complete proof to the supplementary
material.

Theorem 2.2 (Privacy guarantees). Given ε ≤ 0.2, δ ≤
0.05 and m ≥ 2, the oneshot Laplace mechanism is (ε, δ)-

differentially private if we set λoneshot =
8sf
√
k log(m/δ)

ε or
larger.

We remark that ε can be set up to O(log(m/δ)) (Dwork
et al., 2015), and the constant in λoneshot is for ease of
analysis. We also point out that our result includes a
higher multiplicative factor of O(

√
log(m/δ)) compared

to O(
√

log(1/δ)) in the other results, which only incurs

a small constant factor since δ is typically required to be
o(1/m). The next result is concerned with the utility of the
oneshot Laplace mechanism.
Theorem 2.3 (Utility). Let f(1)(D) ≤ f(2)(D) ≤ · · · ≤
f(m)(D) denote the order statistics of the counts. Write
∆ := min1≤i≤m−1

{
f(i+1)(D)− f(i)(D)

}
. Then with

probability at least

p(∆) = max

{
0, 1− (m− 1)(2λ+ ∆)e−∆/λ

4λ

}
,

the oneshot Laplace mechanism returns the index set of the
true top-k elements.

The proof of Theorem 2.3 is mainly based on the appli-
cation of Bonferroni bound and is left to the supplemen-
tary material. The form of p(∆) guarantees that when
the gaps of fi(D)’s are significantly large, the oneshot
Laplace mechanism can return the true index set of top-
k elements almost surely. Specifically, when ∆ ≥ 20λ and
m ≤ 8 × 106, then with probability at least p(∆) > 0.99
the oneshot Laplace mechanism correctly returns the index
set of the true top-k elements.

3. Application to Differentially Private
Pairwise Comparison

Our work was first motivated by and used for the pri-
vate false discovery rate control mechanism (Dwork et al.,
2018). Here we present another application in ranking n
objects from partial binary comparisons, a problem with
many important applications in Statistics and Computer
Science.

Given a large collection of m items, and only part of the
comparisons {Xij}1≤i 6=j≤m between pairs of the m items
are revealed. Our goal is to privately recover the set of k
items with the highest ranks through the information re-
leased by pairwise comparison. One of the most widely
used parametric models for pairwise comparison discov-
ered is the Bradley-Terry-Luce (BTL) model (Bradley &
Terry, 1952; Luce, 2012).

The BTL model was introduced to derive a full ranking
when one only has access to pairwise comparison informa-
tion. The basic idea of the Bradley-Terry-Luce paramet-
ric model is to assume that there exists a latent preference
score ω∗i (i = 1, · · · ,m) assigned to the m items of inter-
est, and given a pair of items (i, j) from the population, one
can estimate the winning probability of item j over item i
in the pairwise comparison as

Pji = P{item j is preferred over item i} =
ω∗j

ω∗i + ω∗j
.

To define a comparison graph G = (V, E) for the Bradley-
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Terry-Luce model, we define the vertices set V = [m] of
the graph G to represent the m items we aim to compare,
and each edge (i, j) included in the edge set E indicates
that items i and j are compared and the comparison in-
formation is included in y. We further assume that the
comparison graph G is drawn from the Erdös-Rényi ran-
dom graph (Erdos & Rényi, 1960), such that each edge be-
tween any two vertices is present independently with some
probability that captures the fraction of paired items being
compared. For each edge (i, j) ∈ E, we obtain L indepen-
dent paired comparison sampled from items i and j, and
for the lth comparison y(l)

i,j , where 1 ≤ l ≤ L, we build the
pairwise comparison model by assigning

y
(l)
i,j =

{
1, with probability

ω∗j
ω∗i +ω∗j

,

0, otherwise,
(3.1)

and y(l)
j,i = 1− y(l)

i,j for all (i, j) ∈ E. The sufficient statis-
tics of this model are given by

y := {yi,j |(i, j) ∈ E} ,

where yi,j := 1
L

∑
1≤l≤L y

(l)
i,j . We remark that in the

regime of differential privacy, the comparison graphs of
two adjacent datasets only differ in one data item, i.e., only
one sample of a specific edge in the adjacent datasets is
different.

Two algorithms tailored to the Bradley-Terry-Luce model
that attract most attention are the spectral method (rank
centrality) and the maximum likelihood estimator method
(Chen et al., 2017), the former of which we will focus on
due to the applicability of the oneshot Laplace mechanism.
To adopt the spectral method, we make use of the pairwise
comparison information y to establish a random walk over
the graph G by defining its time-independent transition ma-
trix Pm×m = [Pij ], where Pij = P(Xt+1 = j|Xt = i) is
defined as

Pij =


1
dyi,j if (i, j) ∈ E,
1− 1

d

∑
k:(i,k)∈E yi,k if i = j,

0 otherwise.
(3.2)

Here d > 0 is some given normalization factor which is on
the same order of the maximum vertex degree of graph G,
and in general, we can assume that the normalization fac-
tor d becomes larger as the number of vertices in graph G
grows. The spectral method is summarized in Algorithm 2.

The intuition behind the spectral method is based on the
fact that, assuming the sample size is sufficiently large,
the stationary distribution π of the transition matrix P de-
fined in (3.2) is a reliable estimate of the preference scores
[ω∗1 , ω

∗
2 , · · · , ω∗m] up to some scaling (Chen et al., 2017).

We notice that the result derived from the spectral method

Algorithm 2 The spectral method for pairwise comparison
Input: comparison graph G = ([m], E), sufficient statis-

tics y and the normalization factor d > 0
Output: the rank of {π(i)}i∈[m]

1: define the defined transition matrix P as in (3.2)
2: compute the stationary distribution π of P
3: sort π1, · · · , πm from low to high, π(1) ≤ π(2) ≤
· · · ≤ π(m)

of pairwise comparison only takes advantage of the station-
ary distribution and, therefore, the oneshot Laplace mech-
anism can be applied to report top-k elements via pairwise
comparison information privately. We pause to introduce
some definitions and a lemma to find the sensitivity of the
statistic that maps the pairwise information to the stationary
distribution. Throughout this paper, the∞-norm ‖P ‖∞ of
a matrix P is its maximum absolute row sum.

Definition 3.1 (Ergodicity coefficient of a stochastic ma-
trix (Ipsen & Selee, 2011)). For a m×m stochastic matrix
A, the ergodicity coefficient τ1(A) of matrix A is defined
as

τ1(A) ≡ sup
‖v‖1=1

v>e=0

‖v>A‖1 ,

where e is the vector of all ones.

Definition 3.2 (Conditional number of a Markov
Chain (Cho & Meyer, 2001)). Let P denote the transi-
tion probability matrix of an m state Markov chain C,
and π denotes the stationary distribution vector. The
perturbed matrix P̃ is the transition probability matrix
of another n state Markov chain C̃ with stationary distri-
bution vector π̃. The conditional number κ of a Markov
chain C is defined by the following perturbation bound
‖π − π̃‖∞ ≤ κ‖P − P̃ ‖∞ .

In Ipsen & Selee (2011), the authors stated the result that
for every transition matrix P , the ergodicity coefficient of
P always falls between 0 and 1, and τ1(P ) = 1 if and
only if the rank of matrix P equals 1. There is also a vast
literature on exploring the form of the conditional number
κ (Cho & Meyer, 2001). With all these preparations, we
will build our private spectral method based on the fol-
lowing conclusion from Seneta (1988) and Cho & Meyer
(2001).

Lemma 3.3 (Sensitivity of stationary distribution (Seneta,
1988; Cho & Meyer, 2001)). SupposeP and P̃ arem×m
transition matrices with unique stationary distributions π>

and π̃>. If the ergodicity coefficient of transition matrix P
satisfies τ1(P ) < 1, then ‖π> − π̃>‖∞ ≤ 1

1−τ1(P )‖P̃ −
P ‖∞ .

Motivated by Lemma 3.3, the mapping f has a bound sen-
sitivity when the ergodicity coefficient of the transition ma-
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trix P is upper bounded by a constant ρ < 1. In light of
this observation, we can build our oneshot algorithm based
on the following definition.

Definition 3.4 (ρ-constrained comparison graph). A com-
parison graph G = (V, E) is said to be ρ-constrained if: (1)
the transition matrix P of the Markov Chain defined as in
(3.2) has unique stationary distribution π>. (2) there exists
a constant ρ < 1 such that τ1(P ) ≤ ρ.

Definition 3.4 implies that if the comparison graph G de-
fined by the database D is ρ-constrained, then the mapping
f : P → π has a sensitivity bounded by (1 − ρ)−1. Mak-
ing use of this fact, the oneshot Laplace mechanism for pri-
vately reporting the maximum k elements through pairwise
comparison information is stated in Algorithm 3.

Algorithm 3 The oneshot differentially private spectral
method
Input: ρ-constrained comparison graph G = ([m], E),

sufficient statistics y, parameter L, normalization fac-
tor d > 0, k ≥ 1 and privacy parameters ε, δ

Output: i1, · · · , ik
1: define the transition matrix P as in (3.2)
2: compute the stationary distribution π =

(π1(G), · · · , πm(G))) of P
3: apply oneshot Laplace mechanism Mos to
−π1(G), · · · ,−πm(G) with noise scale λ to ob-
tain (i1, y1), (i2, y2), · · · , (ik, yk)

4: return the set {i1, . . . , ik}

Now we establish the differential privacy of Algorithm 3
in Theorem 3.5 stated below, and the proof is left to the
supplementary material.

Theorem 3.5. Given ε ≤ 0.2 and δ ≤ 0.05, assume
that the comparison graph G = ([m], E) is ρ-constrained,
then Algorithm 3 is (ε, δ)-differentially private if λ =
8s
√
k log(m/δ)

ε or larger, where the sensitivity s = 2
dL(1−ρ) .

4. Proofs and Intuition
In this section, we introduce a novel technique to prove the
privacy of the oneshot Laplace mechanism. At a high level,
the proof proceeds by considering the “bad” events, which
have a large probability bias between two neighboring in-
puts. We show that those “bad” events happen when the
sum of some dependent random variables deviates from its
mean. We first partition the event space to remove the de-
pendence between the random variables and, therefore, we
can apply a concentration bound directly. Furthermore, we
apply a coupling technique to pair up the partitions for the
two neighboring inputs. For each pair, we apply a concen-
tration inequality to bound the probability of “bad” events.
The technical tools developed for proving the privacy of

the oneshot top-k algorithm in this section can be applied
in many other settings. We provide the proof sketch to our
main result and leave most of the technical details to the
supplementary material.

Our goal is to reduce the dependence on k to
√
k for (ε, δ)-

differential privacy in the oneshot Laplace mechanism. We
note that in the oneshot Laplace mechanism Mos, only a
subset of k elements, but not their ordering, is returned.
The privacy proof of the oneshot Laplace mechanism cru-
cially depends on this fact. We remark that one can further
obtain the relative ranks and scores by running a second
ranking phase in either mechanism to the reported k ele-
ments. For example, by utilizing the Gaussian mechanism,
one can publish more accurate scores, and hence their rel-
ative ranks, with the maximum noise of O(

√
k log k) by

paying slightly more privacy cost.

We start by providing the following lemma that directly es-
tablishes the privacy part of the oneshot Laplace mecha-
nism in Theorem 2.2.

Lemma 4.1. For any k-subset S of {1, · · · ,m} and any
adjacent x, x′, we have

P(Mos(x) ∈ S) ≤ eεP(Mos(x′) ∈ S) + δ .

The key idea of the proof is to divide the event space by fix-
ing the kth smallest noisy element j together with the noise
value gj . For each partition, whether an element i 6= j is se-
lected byMos only depends on whether xi+gi ≤ xj +gj ,
which happens with probability qi = G((xj +gj−xi)/λ).
Here G denotes the cumulative distribution function of the
standard Laplace distribution. As a result, we consider
the following mechanism M instead: given (q1, . . . , qm)
where 0 < qi < 1, output a subset of indices where each
index i is included in the subset with probability qi. In the
following proof, we will first understand the sensitivity of
qi dependent on the change of xi and then show thatM is
“private” with respect to the corresponding sensitivity on
q. In order to prove Lemma 4.1, we present the definition
of τ -closeness for vectors and two other lemmata we shall
also use.

Definition 4.2 (τ -closeness for vectors). For two vectors
q = (q1, . . . , qm) and q′ = (q′1, . . . , q

′
m), we say q is τ -

close with respect to q′ if for each 1 ≤ i ≤ m, |qi − q′i| ≤
τqi(1− qi).

Lemma 4.3. For any z, z′, we have

|G(z′)−G(z)| ≤ 2e|z
′−z||z′ − z|G(z)(1−G(z)),

here G denotes the cumulative distribution function of the
standard Laplace distribution.

The following lemma is the key step that constitutes the
privacy guarantee of the mechanismM with respect to the
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sensitivity on q, and the proof of Lemma 4.1 is largely
based on this result combined with Lemma 4.3.

Lemma 4.4. Assume C0 = 3.92, C1 = 1.95. Un-
der the conditions ε ≤ 0.2, δ ≤ 0.05, m ≥ 2 and
k ≥ C0 log(m/δ), and if q is τ -close with respect to q′

with τ ≤ ε

C1

√
k log(m/δ)

, then for any set S of k-subsets of

{1, · · · ,m}, we have

P(M(q) ∈ S) ≤ eεP(M(q′) ∈ S) + δ/m .

The proof of Lemma 4.3 is relatively straightforward and
is relegated to the supplementary material. To prove
Lemma 4.4, notice that if k ≤ C0 log(m/δ), then accord-
ing to Theorem 2.1, the mechanism is (ε, 0)-private. Thus
we assume k ≥ C0 log(m/δ). Since S consists of k-sets,
we first show that if

∑
i qi � k, then P(M(q) ∈ S) is

small. This can be done by applying the standard concen-
tration bound in the following lemma.

Lemma 4.5. Let Z1, . . . , Zm be m independent Bernoulli
random variables with P(Zi = 1) = qi. Suppose∑m
i=1 qi ≥ (1 + t)k for any t > 0. Then P (

∑
i Zi ≤ k) ≤

exp
(
−(1 + t)kh

(
t
t+1

))
, where h(u) = (1 + u) log(1 +

u)−u. Specifically, by settingK = (1+c
√

log(m/δ)/k)k
and c = 1.9, if we have

∑m
i=1 qi ≥ K, then

P(

m∑
i=1

Zi ≤ k) ≤ δ

m
.

The proof of Lemma 4.5 is based on the classical Bennett’s
inequality and is left to the supplementary material. By
Lemma 4.5, we only need to consider the case of

∑
i qi ≤

K, which is more difficult than the case above. We first rep-
resent a set S ⊆ {1, . . . ,m} by a binary vector z ∈ {0, 1}m
and write Pq(z) as Pq(z) =

∏
i:zi=1 qi

∏
i:zi=0(1 − qi) .

Our goal is to show that for any S consisting of weight k
vectors in {0, 1}m,∑

z∈S
Pq(z) ≤ eε

∑
z∈S

Pq′(z) +
δ

m
.

By defining the set S∗ = {z : Pq(z) ≥ eεPq′(z)}, to
prove Lemma 4.4, it suffices to show that

∑
z∈S∗ Pq(z) ≤

δ
m . By the form of Pq(z), z ∈ S∗ holds if and only if∏
i:zi=1

qi
∏
i:zi=0

(1− qi) ≥ eε
∏
i:zi=1

q′i
∏
i:zi=0

(1− q′i) . (4.1)

Let ∆i = q′i − qi. The τ -closeness of q with respect to q′

implies |∆i| ≤ τqi(1 − qi). Taking the logarithm of both
sides of (4.1) and rearranging gives∑
i:zi=1

log(1 + ∆i/qi) +
∑
i:zi=0

log(1−∆i/(1− qi)) ≤ −ε .

To bound
∑
z∈S∗ Pq(z), we consider indepen-

dent Bernoulli random variables Z1, . . . , Zm,
where for each i, Zi = 1 with probability qi
and Zi = 0 with probability 1 − qi. We set
ζi = Zi log(1 + ∆i/qi) + (1− Zi) log(1−∆i/(1− qi)).
Note that

∑
z∈S∗

Pq(z) =
∑
z

1{∑ ζi≤−ε}Pq(z) = P

(∑
i

ζi ≤ −ε

)
,

where 1{·} denotes the indicator function and
the last probability is over the distribution of
Z1, . . . , Zm. Combine this with previous arguments,
we need to prove that P(

∑
i ζi ≤ −ε) ≤ δ/m.

It is easy to check that ζ1 + . . . + ζm has mean∑m
i=1 (qi log(1 + ∆i/qi) + (1− qi) log(1−∆i/(1− qi)))

and variance σ2 =
∑m
i=1 qi(1 − qi) log2 1+∆i/qi

1−∆i/(1−qi) .
To apply Bennett’s inequality, we also need to check that
the ranges of the centered random variables ζ̃i := ζi −
qi log(1+∆i/qi)−(1−qi) log(1−∆i/(1−qi)) are bounded
in absolute value by max1≤i≤m

∣∣∣log 1+∆i/qi
1−∆i/(1−qi)

∣∣∣. To see
why this is true, observe that∣∣∣ζ̃i∣∣∣ =

∣∣∣∣(Zi − qi) log
1 + ∆i/qi

1−∆i/(1− qi)

∣∣∣∣
≤ max

1≤i≤m

∣∣∣∣log
1 + ∆i/qi

1−∆i/(1− qi)

∣∣∣∣ .
Therefore, according to Bennett’s inequality we can assert
that for any t ≥ 0,

m∑
i=1

ζi ≥
m∑
i=1

(
qi log(1 +

∆i

qi
) + (1− qi) log(1− ∆i

1− qi
)

)
− t

with probability at least 1− exp
(
−σ

2h(At/σ2)
A2

)
, where

A = max
1≤i≤m

| log
1 + ∆i/qi

1−∆i/(1− qi)
|.

Furthermore, by taking t = ε +∑m
i=1 (qi log(1 + ∆i/qi) + (1− qi) log(1−∆i/(1− qi))),

Bennett’s inequality implies that P(
∑
i ζi ≤ −ε) ≤

exp
(
−σ2h(At/σ2)/A2

)
. Hence, the case of

∑
i qi ≤ K

can be established by proving

σ2h(At/σ2)

A2
≥ log

m

δ
. (4.2)

Now we seek to bound t, ε, A and σ using the fact that
|∆i| ≤ τqi(1 − qi). We start with exploring the relation-
ship between t and ε by applying the standard results that
log(1 + u) ≤ u , and when |u| ≤ 1

2 , log(1 + u) ≥ u− u2 .
Notice that
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max

{∣∣∣∣∆i

qi

∣∣∣∣ , ∣∣∣∣ ∆i

1− qi

∣∣∣∣} ≤ τ ≤ ε

C1

√
k log(m/δ)

≤ ε

C1

√
C0 log(m/δ)

≤ 0.2

1.95× 3.9× log(2/0.05)
<

1

2
.

We distinguish two cases. When ∆i ≥ 0, we see that
qi log(1+∆i/qi) > 0 and (1−qi) log(1−∆i/(1−qi)) < 0.
If |qi log(1 + ∆i/qi)| ≥ |(1− qi) log(1−∆i/(1− qi))|,
these relations yield that

|qi log(1 + ∆i/qi) + (1− qi) log(1−∆i/(1− qi))|
≤ |qi(∆i/qi + (∆i/qi)

2) + (1− qi)(−∆i/(1− qi)
+ (∆i/(1− qi))2)|

= qi(∆i/qi)
2 + (1− qi)(∆i/(1− qi))2

≤ τ2
(
qi(1− qi)2 + q2

i (1− qi)
)

≤ τ2qi .

Similarly, in the case that |qi log(1 + ∆i/qi)| <
|(1− qi) log(1−∆i/(1− qi))|, it follows that

|qi log(1 + ∆i/qi) + (1− qi) log(1−∆i/(1− qi))|
≤ |qi(∆i/qi − (∆i/qi)

2) + (1− qi)(−∆i/(1− qi)
− (∆i/(1− qi))2)|

= qi(∆i/qi)
2 + (1− qi)(∆i/(1− qi))2

≤ τ2
(
qi(1− qi)2 + q2

i (1− qi)
)

≤ τ2qi .

To proceed, note that
∑
i qi ≤ K ≤ (1 + c√

C0
)k, and thus

∣∣∣∣∣
m∑
i=1

(qi log(1 + ∆i/qi) + (1− qi) log(1−∆i/(1− qi)))

∣∣∣∣∣
≤

m∑
i=1

|qi log(1 + ∆i/qi) + (1− qi) log(1−∆i/(1− qi))|

≤ τ2
m∑
i=1

qi ≤
(

1 +
c√
C0

)
τ2k .

When ∆i < 0, by using the same arguments, we can also
obtain∣∣∣∣∣

m∑
i=1

(qi log(1 + ∆i/qi) + (1− qi) log(1−∆i/(1− qi)))

∣∣∣∣∣
≤
(

1 +
c√
C0

)
τ2k .

Making use of the assumption τ ≤ ε/(C1

√
k log(m/δ)),

we observe

|t− ε|

=

∣∣∣∣∣
m∑
i=1

(
qi log(1 +

∆i

qi
) + (1− qi) log(1− ∆i

1− qi
)

)∣∣∣∣∣
≤

1 + c√
C0

C2
1

ε2

log(m/δ)
≤

1 + 1.9
3.9

1.952
× 0.2ε

log(2/0.05)

≤ 0.0213ε .

Rearranging the inequality above gives

0.9787 ≤ t

ε
≤ 1.0213 .

Furthermore, note that

τ ≤ ε

C1

√
k log(m/δ)

≤ ε

C1

√
C0 log(m/δ)

≤ 0.2

1.95× 3.9× log(2/0.05)
< 0.0072 .

Hence, ∣∣∣∣log
1 + ∆i/qi

1−∆i/(1− qi)

∣∣∣∣ ≤ ∣∣∣∣log
1 + τ(1− qi)

1− τqi

∣∣∣∣
≤ τ

1− τqi
≤ τ

1− 0.0072
< 1.0073τ ,

which implies
A ≤ 1.0073τ . (4.3)

Combining the relations above implies that

σ2 =

m∑
i=1

qi(1− qi) log2 1 + ∆i/qi
1−∆i/(1− qi)

≤ 1.00732
m∑
i=1

qi(1− qi)τ2

≤ 1.509τ2k . (4.4)

Since uh(a/u) is a decreasing function in u, from (4.4) it
follows that

σ2h(At/σ2) ≥ 1.509τ2kh(At/(1.509τ2k)) ,

we set τ = ε/(C1

√
k log(m/δ)). Recognizing k ≥

C0 log(m/δ), it is clear that

At

1.509τ2k
≤ 1.0073

1.509
· t
τk

=
1.0073× 1.95

1.509

t

ε

√
log(m/δ)

k

≤ 1.0073× 1.95

1.509
× 1.0213× 1

3.9
≤ 0.3409 .

Finally, by taking advantage of the fact that h(u)/u2 is a
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decreasing function in u, we see that

σ2h(At/σ2)

A2

≥ 1.509τ2kh(At/(1.509τ2k))

A2

≥ 1.509τ2k

A2
· h(0.3409)

0.34092
·
(

At

1.509τ2k

)2

≥ 1.509 · h(0.3409)

0.34092
· 1

1.5092
· 1.952 · t

2 log(m/δ)

ε2

≥ 1.509 · h(0.3409)

0.34092
· 1

1.5092
· 1.952 · (0.9787)2 log

(m
δ

)
≥ 1.08 log

(m
δ

)
> log

(m
δ

)
.

This completes the proof of inequality (4.2), and therefore,
also completes the proof of Lemma 4.4. We now prove
Lemma 4.1. The proof follows from Lemma 4.3 combined
with Lemma 4.4.

Proof of Lemma 4.1. Without loss of generality, we as-
sume sf = 1. First, notice that if k < C0 log(m/δ),

λ >
8
√
k log(m/δ)

ε
≥ 8√

C0

· k
ε
>

2k

ε
.

Therefore, Theorem 2.1 immediately implies the mecha-
nism is (ε, 0)-private. Now we assume k ≥ C0 log(m/δ).
Throughout we use Jk to denote the random variable of
the index of the kth smallest element in terms of the noisy
count x, and we use gj to denote the noise added to the jth
element of x. We also define J ′k and g′j in terms of x′, re-
spectively. For any given Jk = j and the noise gj = g, we
have

P(i ∈Mos(x)) = G((xj + g − xi)/λ) := qi.

Setting q = q(g) = (qi) for 1 ≤ i ≤ m and i 6= j, and
Sj = {s/{j} : s ∈ S and j ∈ s}, then we have

P(Mos(x) ∈ S, Jk = j|gj = g) = P(M(q) ∈ Sj).

Making use of the fact that ‖x − x′‖∞ ≤ 1, we conclude
that for any i,

∣∣∣∣xj + g − xi
λ

−
x′j + g − x′i

λ

∣∣∣∣ ≤ 2

λ
.

By Lemma 4.3, this implies

|q − q′|

≤ 2q(1− q)e|
xj+g−xi

λ −
x′j+g−x

′
i

λ |·∣∣∣∣xj + g − xi
λ

−
x′j + g − x′i

λ

∣∣∣∣
≤ 2e|

2
λ |
∣∣∣∣ 2λ
∣∣∣∣ q(1− q) ≤ 4

λ
e2ε/8

√
k log(m/δ)q(1− q)

≤ 4

λ
eε/4

√
C0 log(m/δ)q(1− q)

<
4.014

λ
q(1− q) .

Hence q is 4.014/λ-close with respect to q′. We also notice
that

λ ≥
8
√
k log(m/δ)

ε
=
C1

√
k log(m/δ)

1.95ε/8
,

which implies that q is 0.9785ε

C1

√
k log(m/δ)

-close with respect

to q′. We write P(Mos(x) ∈ S, Jk = j|gj = g) and
P(Mos(x′) ∈ S, J ′k = j|g′j = g) as Px and Px′ respec-
tively. Applying Lemma 4.4 to q and q′ with parameters ε
and δ, we have

Px ≤ e0.9785εPx′ + δ/m .

Let lgj (g) stands for the probability when the jth noise is
taking value of g. Noting that

λ ≥ 8
√
C0 log(m/δ)

ε
≥ 8× 3.9× log(2/0.05)

ε
>

115

ε
.

The conclusion is now one step away. To show that the
algorithm is (ε, δ)-differentially private, note that

P(Mos(x) ∈ S) =

∫ m∑
j=1

lgj (g)Pxdg

≤
∫ m∑

j=1

lgj (g)
[
e0.9785εPx′ + δ/m

]
dg

≤ e0.9785ε

∫ m∑
j=1

(
lgj (g)

lg′j (g)

)
· lg′j (g) · Px′dg + δ

= e0.9785ε

∫ m∑
j=1

(
e
|g−x′j |−|g−xj |

λ

)
· lg′j (g) · Px′dg + δ

≤ e0.9785ε+ 1
λ

∫ m∑
j=1

lg′j (g)Px′dg + δ

≤ e0.9785ε+ ε
115

∫ m∑
j=1

lg′j (g)Px′dg + δ

< e0.99εP(Mos(x′) ∈ S) + δ .

Therefore, Theorem 2.2 is proved given the completion of
the proof of Lemma 4.1.
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5. Discussion
In this paper, we provide a theoretical study of the clas-
sical top-k problem in the regime of differential privacy.
We propose a fast, low-distortion, statistically accurate,
and differentially private algorithm to tackle this question,
which we refer to as the oneshot Laplace mechanism. We
provide a novel coupling technique in proving its privacy
without taking advantage of the advanced composition the-
orems, thereby circumventing the linear dependence on
k in the privacy loss compared to the existing results in
the literature. We further provide the applications of the
oneshot Laplace mechanism in multiple hypothesis testing
and pairwise comparison. Our contributions in the theoret-
ical framework have the potential to impact many essential
areas in machine learning in both theory and practice.

This study leaves a number of open questions that we hope
will inspire further work. Through the proof of differen-
tial privacy on the oneshot Laplace mechanism, there is
nothing to prevent us from achieving better bounds for λ.
From a different angle, we wonder if the coupling tech-
nique would lead to tighter privacy analysis using other no-
tions of privacy such as concentrated differential privacy,
Rényi differential privacy, and Gaussian differential pri-
vacy (Dwork & Rothblum, 2016; Bun & Steinke, 2016;
Mironov, 2017; Dong et al., 2021; Bu et al., 2020). Fi-
nally, an important direction for further research is to ob-
tain sharp asymptotic properties of the oneshot mechanism
and use the results to give a more comprehensive compar-
ison between the oneshot Laplace mechanism and existing
approaches in the literature.
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