Density Constrained Reinforcement Learning

A. Proofs of Statements and Theorems
A.1. Equivalent Expression of the Density Function

In Section 3, we point out that the state density function p™

has two equivalent expressions, which we prove as follows:
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A.2. Proof of Lemma 1
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The Lagrangian of (3) is
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where 1 : S x A — R is the Lagrange multiplier. The key
step is by noting that
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By the KKT condition and taking () = p, the optimality
condition satisfies (1) exactly.
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A.3. Proof of Theorem 1

The solution 7 to the primal problem is the optimal policy
for the modified MDP with reward  + o0_ — o, which
means 7 is the optimal solution to:
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m is also the optimal solution to:
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Therefore, for any feasible policy 7’ the following inequality
holds:
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By complementary slackness, if o_(s) > 0, then p™(s) =
Pmin(8). The same applies to oy and p,q.- Since p™ (s) >
Pmin(8) and p™ (8) < pPmax(s), we have:
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Then we use (11) to eliminate the o_(s) — o (s) in (10)
and derive:
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which means 7 is the optimal solution maximizing Jj
among all the solutions satisfying the density constraints.
As aresult, 7 is the optimal solution to the DCRL problem.
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A.4. Proof of Lemma 2

The proof of Lemma 2 follows from the proof of Theo-
rem 2.2.7 in Rockafellar (1970). For simplicity, let g =
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Taking o/, = O’i and utilizing the fact that J_IT_H — Uﬁ =ag

gives the result.

A.5. Proof of Theorem 2

Let ¢(0+) = ming, ep- ||o4(s) — o’ [|. Based on the The-
orem 4.1 of Luo and Tseng (1993), there exists a constant 7

such that
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This shows that the distance to P* decreases linearly with
g. From Lemma 2, it is clear that d(o4) monotonically
increases for a sequence generated by Algorithm 1 when

|91l > 24/ 35, and the imperfect dual ascent would reach

a 6 satisfying ||§(64,a)|| < 2, /%. From the fact that
projection does not increase the distance between vectors,
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B. Supplementary Experiments

In this section, we provide additional case studies that
are not covered in the main paper. We mainly compare

with RCPO (Tessler et al., 2019) and the unconstrained
DDPG (Lillicrap et al., 2016), which serves as the upper
bound of the reward that can be achieved if the constraints
are ignored.

B.1. Express Delivery Service

Figure 9. An example of the express delivery service company’s
transportation network with one ship center (red) and 29 service
points (gold). (a) The vans start from the service points bounded
by squares with equal probability, then visit other service points
following a transition probability (policy), and finally reach the
ship center (goal). (b) The standard Q-Learning method finds a
policy that drives the vans directly to the goal without visiting any
other service points, which minimizes the cost (traveling distance).
The sizes of gold nodes represent the state density.

An express delivery service company has several service
points and a ship center in a city. An example configuration
is illustrated in Figure 9 (a). The company uses vans to
transport the packages from each service point to the ship
center. The vans start from some service points following an
initial distribution, travel through some service points and
finally reach the ship center. The cost is formulated as the
traveling distance. The frequency that each service point is
visited by vans should exceed a given threshold in order to
transport the packages in the service points to the ship cen-
ter. Such frequency constraints can be naturally viewed as
density constraints. A policy is represented as the transition
probability of the vans from one point to surrounding points.
The optimal policy should satisfy the density constraints
and minimize the transportation distance.

This case study is proposed to further understand Algo-
rithm 1 and its key steps. In Algorithm 1, our approach adds
Lagrange multipliers to the original reward in order to com-
pute a policy that satisfies density constraints. The update of
Lagrange multipliers follows the dual ascent, which is key
to satisfying the KKT conditions. In this experiment, we
try to update the Lagrange multipliers using an alternative
approach and see how the performance changes. We replace
the dual ascent with the cross-entropy method, where a set
of Lagrange multipliers ¥ = [01,02,03, -] are drawn
from an initial distribution ¢ ~ Z(o) and utilized to ad-
just the reward respectively, after which a set of policies
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Table 1. Results of the express delivery service transportation task. The maximum allowed running time to solve for a feasible policy is
600s. The cost is the expectation of traveling distance from initial states to the goal.

Density space Method Pmin = 0.1 Pmin = 0.3 pmin = 0.5
Solved Time (s) Cost Solved Time (s) Cost Solved Time (s) Cost
c R10 CERS True 163.69 3.85 True 183.81 5.36 True 466.32 5.12
Ps DCRL True 1.35 291 True 2.05 2.66 True 4.31 4.28
€ R20 CERS True 227.15 5.80 True 527.26 6.00 False Timeout -
Ps DCRL True 341 5.58 True 3.99 6.16 True 5.28 6.27
c R100 CERS True 161.62 10.26 False Timeout - False Timeout -
Ps DCRL True 3.53 10.23 True 116.24 12.13 True 153.86 14.06
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Figure 10. Visualization of the behavior of three methods in the safe electrical motor control task.

[mr1, 7o, 73, - - -] are obtained following the same procedure
in Algorithm 1. A small subset of 3 whose 7 has the least
violation of the density constraints are chosen to compute a
new distribution Z (o), which is utilized to sample a new X.
The loop continues until we find a ¢ whose 7 completely
satisfies the density constraints. We call this cross-entropy
reward shaping (CERS). We experiment with 10D, 20D and
100D state spaces (corresponding to 10, 20 and 100 service
points in the road network), whose density constraints lie
in R'%, R2Y and R'9 respectively. The density constraint
vector ppin + S — R is set to identical values for each state
(service point). For example, ppi, = 0.1 indicates the min-
imum allowed density at each state is 0.1. In Algorithm 1,
we use Q-Learning to update the policy for both DCRL and
CERS since the state and action space are discrete.

From Table 1, there are two important observations. First,
our computational time of finding the policy is significantly
less than that of CERS. When p, € R'% and p,,;, = 0.1,
our approach is at least 100 times faster than CERS on the
same machine. When p, € R'% and p,,,;,, = 0.5, CERS
cannot solve the problem (no policy found can completely
satisfy the constraints) in the maximum allowed time (600s),
while our approach can solve the problem in 153.86s. Sec-
ond, the cost reached by our method is generally lower
than that of CERS, which means our method can find better
solutions in most cases.

B.2. Safe Electrical Motor Control (Section 5.3)

To gain more insight on the behavior of our DCRL agent,
we visualize the trajectories and actions (duty cycles) taken
at different temperatures and reference angular velocities in
Figure 10. In Figure 10 (a), The trajectory using DCRL can
be divided into three phases. In Phase 1, as the reference
angular velocity grows, the duty cycle also increases, so the
motor temperature goes up. When the temperature is too
high, the algorithm enters Phase 2 where it reduces the duty
cycle to control the temperature, even though the reference
angular velocity remains high. As the temperature goes
down, the algorithm enters Phase 3 and increases the duty
cycle again to drive the motor angular velocity closer to the
reference. In Figure 10 (b), when the temperature is high,
the RCPO algorithm will stop increasing the duty cycle but
will not decrease it as Algorithm 1 does. So the temperature
remains high and thus the density constraints are violated. In
Figure 10 (c), the unconstrained DDPG algorithm continues
to increase the duty cycle in spite of the high temperature.

B.3. Agricultural Spraying Drone (Section 5.4)

In the agricultural pesticide spraying problem, we examine
the methods with different pesticide density requirements
and drone configurations to assess their capability of gen-
eralizing to new scenarios. In our main paper, from area
0 to 4, the minimum and maximum pesticide density are
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Figure 11. Results of the agricultural spraying problem with minimum pesticide density (0, 1, 1,0, 1) and maximum density (0, 2, 2, 0, 2)
from area 0 to 4. Left: Percentage of the entire area that satisfies the pesticide density requirement. Middle: Time consumption in steps.
Whiskers in the left and middle plots denote confidence intervals. Right: visualization of the velocity densities using different methods.
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Figure 12. Results of the agricultural spraying problem with minimum pesticide density (0, 0, 1, 1, 0) and maximum density (0, 0, 2, 2, 0)
from area 0 to 4. Left: Percentage of the entire area that satisfies the pesticide density requirement. Middle: Time consumption in steps.
Whiskers in the left and middle plots denote confidence intervals. Right: visualization of the velocity densities using different methods.

(1,0,0,1,1) and (2,0,0, 2, 2) respectively. In this supple-
mentary material, we evaluate with two new configurations.
In Figure 11, the minimum and maximum density are set to
(0,1,1,0,1) and (0, 2, 2,0, 2) from area O to 4. In Figure 12,
the minimum and maximum density are set to (0,0, 1,1, 0)
and (0,0,2,2,0) from from area 0 to 4.

Although the settings are different from our main paper, the
results convey consistent information. In Figure 11 and 12,
DCRL and RCPO demonstrates similar performance in con-

trolling pesticide densities to be within the minimum and
maximum thresholds, while DCRL demands less time to
finish the task. DDPG only minimizes the time consumption
and thus requires the least time among the three methods,
but cannot guarantee the pesticide density is satisfied. In
terms of the velocity control, both DCRL and RCPO can
avoid the high-speed movement. These observations sug-
gest that when both DCRL and RCPO finds feasible policies
satisfying density constraints, the policy found by DCRL
can achieve lower cost or higher reward defined by the orig-
inal unconstrained problem, which is the time consumption
of executing the task in this case study.

Figure 13. The mars rover environment. The agent starts from a
random location in area 1 and is required to reach area 3. Area 2
is considered dangerous and the constraint is set on the total time
that the agent is within area 2.

B.4. Mars Rover

We consider a mars rover task where the agent must con-
strain the amount of time within the dangerous region. The
environment is shown in Figure 13, where there are three
areas marked in yellow. The agent starts from a random lo-
cation in area 1 and needs to reach area 3. At each timestep,
the agent will receive a negative reward proportional to the
energy consumption rate, and will receive a +10 reward after
it reaches area 3. Area 2 is considered dangerous and the
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Figure 14. Results of the mars rover task.

amount of time that the agent stays in area 2 is constrained
by an upper bound. In the RCPO method, the agent receives
a negative reward if it is inside area 2, and the magnitude
of this negative reward is automatically tuned by RCPO
itself. In our DCRL method, the constraint is converted to
an equivalent state density constraint in area 2.

The objective is to minimize the energy consumption while
respecting the time constraint in area 2. Figure 14 shows the
performance of the 3 methods. It is shown that DCRL and
RCPO have similar energy consumption and both satisfy
the density constraint. DDPG only minimizes the energy
consumption and does not consider the constraint in area 2.



