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Abstract

We study constrained reinforcement learning
(CRL) from a novel perspective by setting con-
straints directly on state density functions, rather
than the value functions considered by previous
works. State density has a clear physical and math-
ematical interpretation, and is able to express a
wide variety of constraints such as resource limits
and safety requirements. Density constraints can
also avoid the time-consuming process of design-
ing and tuning cost functions required by value
function-based constraints to encode system speci-
fications. We leverage the duality between density
functions and Q functions to develop an effec-
tive algorithm to solve the density constrained RL
problem optimally and the constrains are guaran-
teed to be satisfied. We prove that the proposed
algorithm converges to a near-optimal solution
with a bounded error even when the policy update
is imperfect. We use a set of comprehensive exper-
iments to demonstrate the advantages of our ap-
proach over state-of-the-art CRL methods, with a
wide range of density constrained tasks as well as
standard CRL benchmarks such as Safety-Gym.

1. Introduction
Constrained reinforcement learning (CRL) (Altman, 1999;
Achiam et al., 2017; Dalal et al., 2018; Paternain et al., 2019;
Tessler et al., 2019; Yang et al., 2020; Zhang et al., 2020;
Stooke et al., 2020) aims to find the optimal policy that
maximizes the cumulative reward signal while respecting
certain constraints such as safety requirements and resource
limits. Existing CRL approaches typically involve construct-
ing suitable cost functions and value functions to take into
account the constraints. Then a crucial step is to choose
appropriate parameters such as thresholds for the cost and
value functions to encode the constraints. However, one
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Figure 1. Autonomous electric vehicle routing in Manhattan: Con-
trol the electric vehicles to reach the goals and always keep the
remaining energy above a threshold. Vehicles can be charged at
the charging stations. The vehicle density at each charging station
is constrained by an upper bound due to resource limits. The roads
and charging stations are from the real-world data (Blahoudek
et al., 2020).

significant gap between the use of such methods and solving
CRL problems is the correct construction of the cost and
value functions, which is typically not solved systematically
but relies on engineering intuitions (Paternain et al., 2019).
Simple cost functions may not exhibit satisfactory perfor-
mance, while sophisticated cost functions may not have
clear physical meanings. When cost functions lack clear
physical interpretations, it is difficult to formally guarantee
the satisfaction of the performance specifications, even if
the constraints on the cost functions are fulfilled. More-
over, different environments generally need different cost
functions, which makes the tuning process time-consuming.

In this work, we study CRL from a novel perspective by im-
posing constraints on state density functions, which avoids
the use of cost or value function-based constraints in pre-
vious CRL literature. Density is a measurement of state
concentration in the state space, and is directly related to
the state distribution. A variety of real-world constraints are
naturally expressed as density constraints in the state space.
For example, safety constraints is a special case of density
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constraints where we require the entire density distribution
of states being contained in safe regions. Resource limits
can also be encoded by imposing maximum allowed density
on certain states. For instance, consider the electric vehi-
cle routing problem (Blahoudek et al., 2020) in Figure 1.
In order to keep the remaining energy above a predefined
threshold, vehicles can be charged at the charging stations.
Due to resource limits, the vehicle density at each charging
station is constrained by an upper bound. In our exper-
iments, we will demonstrate that density constraints can
be used in more general examples, which also include the
standard value function-based constraints as special cases.

We cannot directly apply existing CRL optimization meth-
ods based on constraining cost or value functions to solve
density constrained reinforcement learning (DCRL) prob-
lems, because the resulting solution cannot guarantee the
satisfaction of required density constraints. Instead, we pro-
pose a novel general model-free algorithm (Algorithm 1)
that exploits the duality between density functions and Q
functions. Such algorithm enables us to incorporate state
density constraints straightforwardly in CRL. Our proposed
algorithm is applicable of handling both discrete and contin-
uous state and action spaces, and can be flexibly combined
with off-the-shelf RL methods to update the policy. We also
prove that our algorithm can converge to a near-optimal so-
lution with a bounded error even when the RL-based policy
update is imperfect (Theorem 2).

Comprehensive experiments are conducted on various den-
sity constrained problems, which demonstrate the advan-
tages of our approach over state-of-the-art CRL methods in
terms of satisfying system specifications and improving the
cumulative reward. A notable achievement is that although
our method can handle much more general constraints than
safety constraints, our DCRL algorithm still shows consis-
tent improvement over existing CRL approaches on standard
CRL benchmarks from MuJoCo and Safety-Gym (Ray et al.,
2019) where constraints are primarily about safety.

Our main contributions are: 1) We are the first to in-
troduce the DCRL problem with density constraints as a
promising way to encode system specifications, which dif-
fers from the value function-based constraints in existing
CRL literature. 2) We propose a general algorithm for solv-
ing DCRL problems by leveraging the duality between den-
sity functions and Q functions, and prove that our algorithm
is guaranteed to converge to a near-optimal solution with
a bounded error even when the policy update is imperfect.
3) We use an extensive set of experiments to examine the
advantages of our method over leading CRL approaches,
in a wide variety of density constrained tasks as well as
standard CRL benchmarks.

2. Related Work
Constrained reinforcement learning (Garcıa & Fernández,
2015) primarily focuses on two approaches: modifying
the optimality criteria by combining a risk factor (Heger,
1994; Nilim & El Ghaoui, 2005; Howard & Matheson, 1972;
Borkar, 2002; Basu et al., 2008; Sato et al., 2001; Dotan
Di Castro & Mannor, 2012; Kadota et al., 2006; Lötjens
et al., 2019) and incorporating extra knowledge to the ex-
ploration process (Moldovan & Abbeel, 2012; Abbeel et al.,
2010; Tang et al., 2010; Geramifard et al., 2013; Clouse
& Utgoff, 1992; Thomaz et al., 2006; Chow et al., 2018).
Our method falls into the first category by imposing con-
straints and is closely related to constrained Markov deci-
sion processes (Altman, 1999) (CMDPs). CMDPs has been
extensively studied in robotics (Gu et al., 2017; Pham et al.,
2018), game theory (Altman & Shwartz, 2000), and commu-
nication and networks (Hou & Zhao, 2017; Bovopoulos &
Lazar, 1992). Most previous works consider the constraints
on value functions, cost functions and reward functions (Alt-
man, 1999; Paternain et al., 2019; Altman & Shwartz, 2000;
Dalal et al., 2018; Achiam et al., 2017; Ding et al., 2020).
Instead, we directly impose constraints on the state density
functions. Chen et al. (2019) and Chen et al. (2019) study
the duality between density functions and value functions
in CMDPs when the full model dynamics are known, while
we consider the model-free reinforcement learning and take
a further step to prove the duality of density functions to
Q functions. In Geibel and Wysotzki (2005) density was
studied as the probability of entering error states and thus
has fundamentally different physical interpretations from
us. In Dai et al. (2017) the duality was used to boost the
actor-critic algorithm. The duality is also used in the policy
evaluation community (Nachum et al., 2019; Nachum &
Dai, 2020; Tang et al., 2019). The offline policy evaluation
method proposed by Nachum et al. (2019) can also be used
to estimate the state density in our paper, but their focus is
policy evaluation rather than constrained RL. Therefore, we
claim that this paper is the first work to consider density
constraints and use the duality property to solve CRL.

3. Preliminaries
Markov Decision Processes (MDP). An MDP M is a
tuple 〈S,A, P,R, γ〉, where (1) S is the (possibly infinite)
set of states; (2) A is the (possibly infinite) set of actions;
(3) P : S×A×S 7→ [0, 1] is the transition probability with
P (s, a, s′) the probability of transitioning from state s to s′

when action a ∈ A is taken; (4) R : S × A × S 7→ R is
the reward associated with the transition P under the action
a ∈ A; (5) γ ∈ [0, 1] is a discount factor.

A policy π maps states to a probability distribution over
actions where π(a|s) denotes the probability of choos-
ing action a at state s. Let a function φ : S 7→ R
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specifie the initial state distribution. The objective of an
MDP optimization is to find the optimal policy that maxi-
mizes the overall discounted reward Jp =

∫
S
φ(s)V π(s)ds,

where V π(s) is called the value function and satisfies
V π(s) = rπ(s) + γ

∫
A
π(a|s)

∫
S
P (s, a, s′)V π(s′)ds′da,

and rπ(s) =
∫
A
π(a|s)

∫
S
P (s, a, s′)R(s, a, s′)ds′da is the

one-step reward from state s following policy π. For every
state s with occurring as an initial state with probability
φ(s), it incurs a expected cumulative discounted reward of
V π(s). Therefore the overall reward is

∫
S
φ(s)V π(s)ds.

The formulation of value functions in MDP typically cannot
handle constraints on state distribution, which motivates the
density functions.

Density Functions. State density functions ρ : S 7→ R≥0

measure the state concentration in the state space (Chen
& Ames, 2019; Rantzer, 2001).1 We will show later that
generic duality relationship exists between density func-
tions and Q functions, which allows us to directly impose
density constraints in RL problems. For infinite horizon
MDPs, given a policy π and an initial state distribution φ,
the stationary density of state s is expressed as:

ρπ(s) =

∞∑
t=0

γtP (st = s|π, s0 ∼ φ),

which is the discounted sum of the probability of visiting s.
We prove in the supplementary material that the density has
an equivalent expression:

ρπ(s) = φ(s) + γ

∫
S

∫
A

π(a|s′)P (s′, a, s)ρπ(s′)dads′,

4. Density Constrained Reinforcement
Learning

In this section, we first formally define the novel DCRL
problem and clarify its benefits compared to value function-
based constraints. To solve DCRL, we will establish the
duality between Q functions and density functions, then
propose a general algorithm for DCRL with convergence
guarantees.

4.1. Problem Statement

Given an MDP M = 〈S,A, P,R, γ〉 and an initial state
distribution φ, DCRL finds the optimal policy π? to the
following optimization problem:

max

∫
S

φ(s)V π(s)ds

s.t. ρmin(s) ≤ ρπ(s) ≤ ρmax(s), ∀s ∈ S,
(1)

1ρ is not necessarily a probability density function, which
means

∫
S
ρ(s) = 1 is not enforced.

where
∫
S
φ(s)V π(s)ds is the expected cumulative reward.

The density constraints ρmin(s) and ρmax(s) are functions
of states, and different states can have different lower and
upper bound constraints on their densities.

The formulation in (1) is different from most of the previous
work (Achiam et al., 2017; Tessler et al., 2019; Yang et al.,
2020), which did not consider the density constraint but
instead used the cost (or reward) value as constraint:

max
∫
S
φ(s)V π(s)ds

s.t.
∫
S
φ(s)V πC (s)ds ≤ η, (2)

where V πC is the cost value function and η is the threshold
for the expected cumulative cost.

Benefits of the Density Constraint. The density con-
straint in (1) can bring at least two benefits. First, density
has a clear physical and mathematical interpretation as a
measurement of state concentration in the state space. A
wide range of real-world constraints can be conveniently
expressed as density constraints (e.g., the vehicle density
in certain areas, and the frequency of agents entering un-
desirable states). Second, the value function constraint in
(2) requires the time-consuming process of designing and
tuning cost functions, which are completely avoided by the
density constraint since no cost function tuning is needed.

4.2. Duality of Density Functions and Q Functions

To solve the DCRL problem in (1), we cannot directly apply
existing RL algorithms (Lillicrap et al., 2016; Schulman
et al., 2015; 2017), which are designed to optimize the
expected cumulative reward or cost, but not the state density
function. However, we will show that density functions are
actually dual to Q functions, and the density constraints can
be realized by modifying the formulation of Q functions.
Then the off-the-shelf RL algorithms can be used to optimize
the modified Q functions to enforce the density constraints.

We extend the stationary density ρπ to consider the action
taken at each state. Let ρ̄ : S × A → R≥0 be a stationary
state-action density function, which represents the amount
of state instances taking action a at state s. ρ̄ is related to ρ
via marginalization: ρ(s) =

∫
A
ρ̄(s, a)da. Under a policy

π, we also have ρ̄π(s, a) = ρπ(s)π(a|s). Let r(s, a) =∫
S
P (s, a, s′)R(s, a, s′)ds′. Consider the density function

optimization:

Jd = max
ρ̄,π

∫
S

∫
A

ρ̄π(s, a)r(s, a)dads

s.t. ρ̄π(s, a) = π(a|s)
(
φ(s)+

γ

∫
S

∫
A

P (s′, a′, s)ρ̄π(s′, a′)da′ds′
)

ρmin(s) ≤ ρπ(s) ≤ ρmax(s)

(3)
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Lemma 1. The optimization problems in (1) and (3) share
the same optimal policy π?.

The proof of Lemma 1 is provided in the supplementary
material. It shows that solving (1) is equivalent to solving
(3). Now we are ready to present the duality between den-
sity functions and Q functions, which reveals that (3) can
be solved via standard RL algorithms by modifying the Q
function. We use the Lagrangian method for (3) and denote
the Lagrange multipliers for ρπ ≥ ρmin and ρπ ≤ ρmax as
σ− : S 7→ R≥0 and σ+ : S 7→ R≥0. Then we consider the
following optimization problem:

Jp = max
Q,π

∫
S

φ(s)

∫
A

Qπ(s, a)π(a|s)dads

s.t. Qπ(s, a) = r(s, a) + σ−(s)− σ+(s)+

γ

∫
S

P (s, a, s′)

∫
A

π(a′|s′)Qπ(s′, a′)da′ds′

(4)

The difference between the Q function in (4) and the stan-
dard Q function is that the reward r(s, a) is modified to
r(s, a) + σ−(s)− σ+(s).
Theorem 1. The density constrained optimization objec-
tives Jd in (3) and Jp in (4) are dual to each other. If both
are feasible and the KKT conditions are satisfied, then they
share the same optimal policy π?.

The proof of Theorem 1 is provided in the appendix. The-
orem 1 reveals that when the KKT conditions are satisfied,
the optimal solution to the adjusted unconstrained primal
problem (4) is exactly the optimal solution to the dual prob-
lem (3) with density constraints. Such an optimal solution
not only satisfies the state density constraints, but also maxi-
mizes the the total reward Jd. Thus it is the optimal solution
to the DCRL problem. Note that (4) is solvable using stan-
dard RL algorithms (Lillicrap et al., 2016; Schulman et al.,
2015; 2017). However, the update of policy π will also
result in an update of state density function ρπ, which will
change the Lagrangian multipliers σ+ and σ− to in order to
satisfy the KKT conditions of (3). This motivates us to de-
velop an algorithm that iteratively update π, ρπ, σ+ and σ−,
which will be detailed in Section 4.3.

Remark 1. While the duality between density functions and
value functions has already been studied (Chen & Ames,
2019), we take a step further to show the duality property be-
tween the density functions and Q functions. We prove and
use the duality between density functions and Q functions
over continuous state space to solve density constrained RL
from a novel perspective, which has not been explored and
utilized by published RL literature.

Remark 2. The dual variables in Linear Programming are
different from ours and do not have a clear physical interpre-
tation. Technically, any non-negative dual variable satisfy-
ing the conservation law (Liouville PDE in the continuous

case, see Chen et al. (2019)) is a valid dual. However,
among all valid dual variables, the state density is associ-
ated with a clear physical interpretation as the concentration
of states, and we are able to directly apply constraints on
the density in RL.

Remark 3. The value function-based constraint in CMDPs
can be viewed as a special case of density constraint.∫
S
φ(s)V πC (s)ds ≤ η is equivalent to

∫
S
ρπ(s)rc(s)ds ≤ η.

Thus the value function-based CRL problems can also be
solved by the DCRL framework.

Remark 4. The general DCRL problem cannot be solved by
value function-based RL methods. One may argue that for
a single state sk, its visiting frequency can be constrained
by defining a cost function ck that returns 1 when sk is
visited and 0 otherwise. Then value function-based methods
can be used to constrain the expected value VCk of the
cost, as is in

∫
S
φ(s)VCk(s)ds ≤ ηk (∗). However, when

every state sj has unique density constraints ρmin(sj) and
ρmax(sj), every state sj needs a value function VCj (for
the cost of visiting sj) and an inequality (∗). In order to
cover all states, it would require an extremely large and even
infinite number (when the state space is continuous) of value
functions and inequalities, which can make the problem
intractable for value function-based methods. Furthermore,
we have explicitly mentioned in Remark 3 that the value
function-based constraint in CMDP is equivalent to a special
case of density constraint, and our general formulation of
state-wise density constraint is more expressive and cannot
be trivially converted into value function-based constraints.

4.3. The DCRL Algorithm

The density function optimization in continuous state space
is an infinite dimensional linear program and there is no
convenient approximation method. We thus turn to the
equivalent Q function optimization where standard RL tools
are applicable. By utilizing the duality between density func-
tion and Q function (Theorem 1) in the density constrained
optimization, the DCRL problem can be solved by alternat-
ing between the primal problem (4) and dual problem (3), as
is illustrated in Figure 2. In the primal domain, we solve the
adjusted primal problem (reward adjusted by Lagrange mul-
tipliers) in (4) using off-the-shelf unconstrained RL methods
such as TRPO (Schulman et al., 2015) and DDPG (Lillicrap
et al., 2016). Note that the density constraints are enforced
in dual domain and the primal domain is still an uncon-
strained problem, which means we can make use of existing
RL methods to solve the primal problem. In the dual do-
main, the policy is used to evaluate the state density function,
which is described in details in Section 4.5. If the KKT con-
ditions σ+ · (ρπ − ρmax) = 0, σ− · (ρmin − ρπ) = 0 and
ρmin ≤ ρπ ≤ ρmax are not satisfied, the Lagrange multi-
pliers are updated and enter the next loop. The key insight
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Figure 2. Illustration of the iterative optimization in DCRL. In the primal domain, we solve the adjusted primal problem in (4) to obtain
the policy π. Then in the dual domain, the π is used to evaluate the state density. The Lagrange multipliers σ+ and σ− are updated as
σ+ ← max(0, σ++α(ρπ−ρmax)) and σ− ← max(0, σ−+α(ρmin−ρπ)). In the next loop, since the reward r(s, a)+σ−(s)−σ+(s)
is updated, the primal optimization solves for the new π under the updated reward. The loop stops when the KKT conditions are satisfied.

is that the density constraints can be enforced in the dual
problem, and we can solve the dual problem by solving
the equivalent primal problem using existing algorithms.
Alternating between the primal and dual optimization can
gradually adjust the Lagrange multipliers until the KKT
conditions are satisfied.
Algorithm 1 Template of the DCRL algorithm

1: Input MDP M, initial condition distribution φ, con-
straints on the state density ρmax and ρmin

2: Initialize π randomly, σ+ ← 0, σ− ← 0
3: Generate experience Dπ ⊂ {(s, a, r, s′) | s0 ∼ φ, a ∼
π(s) then r and s′ are observed}

4: repeat
5: (s, a, r, s′)← (s, a, r+σ−(s)−σ+(s), s′) for each

(s, a, r, s′) in Dπ

6: Solve for π of (4) using Dπ via standard RL
7: Generate experience Dπ ⊂ {(s, a, r, s′) | s0 ∼

φ, a ∼ π(s) then r and s′ are observed}
8: Compute stationary density ρπ using Dπ

9: σ+ ← max(0, σ+ + α(ρπ − ρmax))
10: σ− ← max(0, σ− + α(ρmin − ρπ))
11: until σ+ · (ρπ − ρmax) = 0, σ− · (ρmin − ρπ) =

0 and ρmin ≤ ρπ ≤ ρmax
12: Return π, ρπ

A general template of the density constraint policy opti-
mization is provided in Algorithm 1. In Algorithm 1, the
Lagrange multipliers σ+ and σ− are used to adjust rewards,
which lead to an update of the policy π. Then the policy
is used to evaluate the stationary density, and the Lagrange
multipliers are updated following dual ascent. The iteration
stops when all the KKT conditions are satisfied.

4.4. Convergence Guarantee under Imperfect Updates

If every loop of Algorithm 1 gives the perfect (optimal) pol-
icy π of (4) under the current σ− and σ+, then the conver-
gence can be derived from the subgradient methods (Boyd
et al., 2003) and will not be detailed here. But in reality,
the policy update in each loop can be imperfect, which is
unavoidable for standard RL algorithms.

In light of this, we are interested in the case where the policy
solved at each iteration is imperfect, and will provide conver-

gence guarantees of Algorithm 1. We will also identify how
the error in policy updates propagates to the solution found
by Algorithm 1 and derive an upper bound of its distance to
the optimal solution. Denote the negative objective function
of (3) as f(ρπ) = −

∫
S

∫
A
ρπ(s)π(a|s)r(s, a)dads. We

assume f is strongly convex modulus µ. If this is not the
case, one can add a strongly convex regularization term to
the (already convex) objective function. Then (3) minimizes
f(ρπ) subject to the density constraints. For brevity, we
only consider the density upper bound in this convergence
analysis, and the same result exists for the density lower
bound. The Lagrangian dual function is formulated as

d(σ+) = min
ρπ

f(ρπ) +

∫
S

σ+(s)(ρπ(s)− ρmax(s))ds

(5)
Denote the feasible set of Lagrangian multipliers as P . The
dual ascent is to find maxσ+∈P d(σ+). We assume the pol-
icy update is imperfect and the suboptimality of the solution
ρ̂π to (3) is upper bounded as:

f(ρ̂π) +

∫
S

σ+(s)(ρ̂π(s)− ρmax(s))ds− d(σ+) ≤ ε

And the imperfect dual ascent takes the form σ+ ←
max(0, σ+ + α∇d̂(σ+)), where ∇d̂(σ+) = ρ̂π − ρmax.
Let ĝ(σ+, α) = 1

α (max(0, σ+ + α∇d̂(σ+))− σ+), which
is the residual of σ+ before and after the imperfect update
in a single loop of Algorithm 1.

Lemma 2. Following the imperfect dual ascent with step
size α ≤ µ, we have

d(σk+1
+ ) ≥ d(σk+) +

α

2
||ĝ(σk+, α)||2 −

√
2ε

µ
||ĝ(σk+, α)||

The superscript k denotes the kth loop of Algorithm 1. The
proof of Lemma 2 is provided in the supplementary material.
Let P? = {σ+|d(σ+) = maxσ+∈P d(σ+)} be the set of
optimal solutions to (5).

Theorem 2. There exists constants λ > 0 and ξ > 0 such
that Algorithm 1 with imperfect policy updates converges to
a dual solution σ̂+ that satisfies

min
σ′
+∈P?

||σ̂+(s)− σ′+|| ≤ λ
√
ε

µ
(6)
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The dual function also converges to a bounded neighbour-
hood of its optimal value:

min
σ′
+∈P?

||d(σ̂+)− d(σ′+)|| ≤ ξ ε
µ2

(7)

The proof of Theorem 2 is provided in the supplementary
material. Theorem 2 shows that Algorithm 1 is guaranteed
to converge to a near-optimal solution even under imperfect
policy updates.

4.5. Computational Approaches

Algorithm 1 requires computing the policy π, density ρπ,
Lagrange multipliers σ+ and σ−. For π, there are well-
developed representations such as neural networks and tabu-
lar methods. Solving π from experience Dπ is also straight-
forward via standard model-free RL. By contrast, the com-
putation of ρπ , σ+ and σ− need to be addressed.

Density Functions. In the discrete state case, ρπ is rep-
resented by a vector where each element corresponds to
a state. To compute ρπ from experience Dπ (line 1 of
Algorithm 1), let Dπ contain N episodes where episode
i ends at time Ti. Let sij represent the state reached at
time j in the ith episode. Initialize ρπ ← 0. For all
i ∈ {1, · · · , N} and j ∈ {0, 1, · · · , Ti}, do the update
ρπ(sij) ← ρπ(sij) + 1

N γ
j . The resulting vector ρπ ap-

proximates the stationary state density. In the continuous
state space, ρπ cannot be represented as a vector since
there are infinitely many states. We utilize the kernel den-
sity estimation method (Chen, 2017; Chen & Ames, 2019)
that computes ρπ(s) at state s using the samples in Dπ

with ρπ(s) = 1
N

∑N
i=1

∑Ti
j=0 γ

jKh(s − sij) where Kh

is the kernel function satisfying ∀s ∈ S,Kh(s) ≥ 0 and∫
S
Kh(s)ds = 1. There are multiple choices of the ker-

nel Kh, e.g. Gaussian, Spheric, and Epanechnikov ker-
nels (Chen, 2017), and probabilistic guarantee of accuracy
can be derived (Wasserman, 2019).

Lagrange Multipliers. If the state space is discrete,
both σ+ and σ− are vectors whose length equals to the
number of states. In each loop of Algorithm 1, after
the stationary density is computed, σ+ and σ− are up-
dated following Line 1 and Line 1 respectively in Algo-
rithm 1. If the state space is continuous, we construct
Lagrange multiplier functions σ+ and σ− from samples
in the state space leveraging linear interpolation. Let
s̄ = [s1, s2, · · · ] represent the samples in the state space. In
every loop of Algorithm 1, denote the Lagrange function
computed by the previous loop as σo+ and σo−. We com-
pute the updated Lagrange multipliers at states s̄ as σ̄+ =
[max(0, σo+(s1)+α(ρπ(s1)−ρmax(s1)),max(0, σo+(s2)+
α(ρπ(s2) − ρmax(s2)), · · · ] and σ̄− = [max(0, σo−(s1) +
α(ρmin(s1) − ρπ(s1)),max(0, σo−(s2) + α(ρmin(s2) −
ρπ(s2)), · · · ]. Then the new σ+ and σ− are obtained by

linearly interpolating σ̄+ and σ̄− respectively.

5. Experiment
We consider a wide variety of CRL benchmarks and demon-
strate how they can be effectively solve by the proposed
DCRL approach. The density constrained benchmarks in-
clude autonomous electrical vehicle routing (Blahoudek
et al., 2020), safe motor control (Traue et al., 2019) and
agricultural drone control. The standard CRL benchmarks
are from MuJoCo and Safety-Gym (Ray et al., 2019). The
definition of reward and constraint vary from task to task
and will be explained when each task is introduced.

Baseline Approaches. Three CRL baselines are com-
pared. PCPO (Yang et al., 2020) first performs an uncon-
strained policy update then project the action to the con-
strained set. CPO (Achiam et al., 2017) maximizes the re-
ward in a small neighbourhood that enforces the constraints.
RCPO (Tessler et al., 2019) incorporates the cost terms and
Lagrange multipliers with the reward function to encourage
the satisfaction of the constraints. We used the original im-
plementation of CPO and PCPO with KL-projection that
leads to the best performance. For RCPO, since the official
implementation is not available, we re-implemented RCPO
and made sure it matches the original performance. All
the three baseline approaches and our DCRL have the same
number of neural network parameters. Note that the baseline
approaches enforce the constraints by restricting values func-
tions while our DCRL restricts the state density functions.
When we train the value function-based CRL methods on
density constrained tasks, we convert the density threshold
to the value function threshold by duality between density
functions and value functions (Chen & Ames, 2019).

5.1. Autonomous Electrical Vehicle Routing

Figure 3. Vehicle densities at the charging stations. All results are
averaged over 10 independent trials. 16 charging stations with the
highest vehicle densities are kept for visualization.
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Figure 4. Average reward and remaining energy. All results are
averaged over 10 independent trials.

Our first case study is about controlling autonomous electric
vehicles (EV) in the middle of Manhattan, New York. It
is adopted from Blahoudek et al. (2020) and is shown in
Figure 1. While EVs drive to their destinations, they can
avoid running out of power by recharging at the fast charg-
ing stations along the roads. At the same time, the vehicles
should not stay at the charging stations for too long in order
to save resources and avoid congestion. An road intersec-
tion is called a node. In each episode, an autonomous EV
starts from a random node and drives to the goals. At each
node, the EV chooses a direction and reaches the next node
along that direction at the next step. The consumed electric
energy is assumed to be proportional to traveling distance.
There are 1024 nodes and 137 charging stations in total.
Denote the full energy capacity of the vehicle as cf and the
remaining energy as cr. When arriving at a charging station,
the EV chooses a charging time τ ∈ [0, 1], then its energy
increases to min(cf , cr + τcf ). The action space includes
the EV direction and the charging time τ . The state space
S ⊂ R3 is consisted of the current 2D location and the
remaining energy cr. The agent receives a negative reward
proportional to its traveling distance to restrict energy con-
sumption, and a +10 reward when it reaches the goal. In one
episode, a single agent starts from a random initial location
and reaches the goal. The density is accumulated for 2000
episodes, which is equivalent to having 2000 agents.

Two types of constraints are considered: (1) the minimum
remaining energy should keep close to a required threshold
and (2) the vehicle density at charging stations should be
less than a given threshold. Apparently, if the EV chooses a
larger τ , then the constraint (1) is more likely to be satisfied,
while (2) is more likely to be violated, since a larger τ
will increase the vehicle density at the charging station.
These contradictory constraints pose a greater challenge
to the RL algorithms. Both constraints can be naturally
expressed as density constraints. For constraint (1), we can
limit the density of low-energy states. For constraint (2), it is
straightforward to limit the EV density (a function of E[τ ])
at charging stations. The threshold of density constraints are
transformed to the threshold of value functions to be used by
the baseline methods. The conversion is based on the duality
of density functions and value functions (Chen & Ames,
2019). Figure 3 demonstrates that our DCRL can avoid

the vehicle densities from exceeding the thresholds, while
the baseline methods suffer from constraint violation. This
is because DCRL allows us to explicitly set state density
thresholds. Figure 4 shows that all the compared methods
can satisfy the constraint on remaining energy, and DCRL
can reach the highest reward.

5.2. MuJoCo Benchmark and Safety-Gym

Experiments are conducted on three tasks adopted from
CPO (Achiam et al., 2017) and two tasks from the Safety-
Gym (Ray et al., 2019), built on top of the MuJoCo sim-
ulator. The tasks include Point-Gather, Point-Circle, Ant-
Circle, Car-Goal and Car-Button. In the Point-Gather task,
a point agent moves on a plane and tries to gather as many
apples as possible while keeping the probability of gather
bombs below the threshold. In the Point-Circle task, a point
agent tries to follow a circular path that maximizes the re-
ward, while constraining the probability of exiting an given
area. The Ant-Circle task is similar to the Point-Circle task
except that the agent is an ant instead of a point. Detailed
configurations of the three benchmarks can be found in
Achiam et al. (2017). In the Car-Goal task, a car agent
tries to navigate to a goal while avoiding hazards. In the
Car-Button task, a car agent tries to press the goal button
while avoiding hazards, and not to press the wrong buttons.
Detailed descriptions of the Safety-Gym benchmark can be
found in Ray et al. (2019). The original value function con-
straints for these benchmarks are converted to state density
constraints for DCRL by duality between density functions
and value functions.

Figure 5 demonstrates the performance of the four methods.
In general, DCRL is able to achieve higher reward than
other methods while satisfying the constraint thresholds. In
the Point-Gather and Point-Circle environments, all the four
approaches exhibit stable performance with relatively small
variances. In the Ant-Circle environment, the variances
of reward and constraint values are significantly greater
than that in Point environments, which is mainly due to
the complexity of ant dynamics. In Ant-Circle, after 600
iterations of policy updates, the constraint values of the four
approaches converge to the neighbourhood of the threshold.
The reward of DCRL falls behind PCPO in the first 400
iterations of updates but outperforms PCPO thereafter.

5.3. Safe Motor Control

The safe motor control environment is adopted from Traue
et al. (2019) and shown in Figure 6 (a). The objective is to
control the direct current series motor and ensure its angular
velocity follows a random reference trajectory and prevent
the motor from overheating. The state space S ⊂ R6 and
consists of six variables: angular velocity, torque, current,
voltage, temperature and the reference angular velocity. The
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Figure 5. Performance on the constrained reinforcement learning tasks on the MuJoCo (Todorov et al., 2012) simulator. The first three
tasks are from CPO (Achiam et al., 2017) and the last two tasks are from the Safety-Gym (Ray et al., 2019). All results are averaged over
10 independent trials. The constraint thresholds are all upper bounds.
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Figure 6. Illustration of the safe motor control and drone applica-
tion environments. (a) Control the rotor to follow a reference
angular velocity trajectory while limiting the density of high-
temperature states. (b) Control the drones to spray pesticide over a
farmland which is divided into five parts and each requires different
densities of pesticide.

Figure 7. Reward and state density constraint in the safe motor
control task. Results are averaged over 10 independent trials.

action space A ⊂ R is the electrical duty cycle that controls
the motor power. The agent outputs a duty cycle at each
time step to drive the angular velocity close to the refer-
ence. When the reference angular velocity increases, the
required duty cycle will need to increase. As a result, the
motor’s power and angular velocity will increase and cause
the motor temperature to grow. The reward is defined as the
negative distance between the measured angular velocity
and the reference angular velocity. We consider the state
density w.r.t. the motor temperature as constraint. High-
temperature states should have a low density to protect the
motor. When we train the baseline methods, the density con-

Figure 8. Result of the agricultural spraying problem. (a) Percent-
age of the entire area that satisfies the pesticide density requirement.
(b) Time consumption in steps to reach the destination. Whiskers
in the plots denote confidence intervals. Results are calculated
with 10 independent trials after each method converges.

straints are converted to equivalent cost value constraints by
duality between density functions and value functions. Fig-
ure 7 shows the reward and state density for each method.
We find that DCRL is successful at reaching the highest
reward among the compared methods while respecting the
state density constraints. More experiments under different
settings can be found in the supplementary material.

5.4. Agricultural Spraying Drone

We consider the problem of using drones to spray pesticides
over a farmland in simulation. The farmland is shown in
Figure 6 (b), which is divided into 5 regions and different
regions require different pesticide densities represented by
a lower bound ρmin and an upper bound ρmax. The drone
starts from the top-left corner, flies over the farmland spray-
ing pesticides, and stops at the bottom-right corner. The
state space constrains the position and velocity of the drone,
as well as the required pesticide density of the current re-
gion. The action space contains the angular acceleration and
the vertical thrust to control the drone. The drone sprays a
constant volume of pesticide at each time step, and controls
the pesticide density on the land by adjusting its position
and velocity. A +1 reward will be given when the pesticide
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density of the area below the drone enters the required range,
and a -1 reward will be given when the density exists the
range. A +10 reward will be given when the drone reaches
the bottom-right corner that is the destination. Figure 8
shows the experimental results. With the DCRL method, we
can obtain the highest percentage of area that satisfies the
pesticide density constraint. Also, DCRL requires the least
steps to reach the destination. Details of the experiment
configurations and results under different settings can be
found in the supplementary material.

6. Conclusion and future works
We study a novel class of constrained reinforcement learning
problems where the constraints are imposed on state density
functions, rather than value functions considered by previ-
ous literature. State densities have clear physical meanings
and can express a variety of constraints of the environment
and the system. We prove the duality between density func-
tions and Q functions, then leverage the duality to develop
a general algorithm to solve the DCRL problems. We also
provide the convergence guarantee of our algorithm even
under imperfect policy updates. Note that our algorithm
does not guarantee the satisfaction of density constraints
during training, and we do see occasional violations at the
beginning iterations. In the future, we aim to improve the
algorithm to enforce the density constraints throughout the
entire training process.
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