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Abstract

Heterogeneous treatment effect (HTE) estimation
is receiving increasing interest due to its impor-
tant applications in fields such as healthcare, eco-
nomics, and education. Current HTE estimation
methods generally assume the existence of abun-
dant observational data, though the acquisition of
such data can be costly. In some real scenarios, it
is easy to access the pre-treatment covariates and
treatment assignments, but expensive to obtain the
factual outcomes. To make HTE estimation more
practical, in this paper, we examine the problem
of estimating HTEs with a budget constraint on
observational data, aiming to obtain accurate HTE
estimates with limited costs. By deriving an in-
formative generalization bound and connecting to
active learning, we propose an effective and effi-
cient method which is validated both theoretically
and empirically.

1. Introduction

Treatment effect estimation is of great importance in many
applications, such as advertising (Sun et al., 2015; Wang
et al., 2015), recommendation (Schnabel et al., 2016), and
healthcare (Shalit, 2019). It aims to estimate the effects of
a treatment 7" (e.g., a kind of drug) on an outcome Y (e.g.,
whether the patient recovers) based on some pre-treatment
variables X (e.g., demographic characteristics). Among dif-
ferent levels of treatment effects, we focus on heterogeneous
treatment effects (HTEs), which captures treatment effects
at a subgroup level and therefore is useful for personalizing
treatment plans.

When the treatment is binary (e.g., taking a drug or not), the
group of individuals that receives the treatment is called the
treated group, and others the control group. 1deally, ana-
lysts can design and conduct randomized controlled trials
(RCTs) to estimate treatment effects. In RCTs, the treat-
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ment assignment is randomized, so the estimates can be
readily obtained. However, RCTs are often costly to run,
and sometimes they are even unethical or illegal. To over-
come this issue, researchers resort to observational data,
which is usually easy to access. Observational data mainly
consists of past pre-treatment variables, treatments, and out-
comes. Since the generating process of observational data
is uncontrolled, there exists a gap between the treated distri-
bution and the control distribution, which hinders accurate
estimation of treatment effects. In light of this, methods that
try to balance the two distributions were proposed and have
achieved impressive performance (Johansson et al., 2016;
Shalit et al., 2017; Kallus, 2020).

In some scenarios, however, observational data can be ex-
pensive to collect. E.g., to fight against COVID-19, each
individual can choose to receive free injection of vaccines
provided by the government. Now, the medical department
needs to collect factual data such as the antibody level, by
providing expensive medical tests, to evaluate the effective-
ness of the vaccines. In this case, the amount of potential
observational data is huge, but the cost of collecting all fac-
tuals is unacceptable. It would be better to obtain accurate
HTE estimates by using only a limited amount of factual
observational data. Therefore, we focus on estimating HTE
with a budget constraint on observational data.

In this problem, given a pool of observational data without
factual outcomes, we allow an algorithm to select a limited
subset of it and pay some costs to obtain the corresponding
outcomes, then use them as training data to estimate HTEs.
To obtain as accurate estimates as possible using limited
training data, we bring in active learning, which is a classical
machine learning paradigm. The key idea behind active
learning is that a machine learning algorithm can achieve
greater accuracy with fewer training labels if it is allowed to
select the data from which it learns (Settles, 2012), which
fits in our setting and thus can be helpful.

However, unlike supervised learning tasks, true HTEs are
not easily available due to unobserved counterfactuals. As a
result, it is impractical to directly apply active learning that
mainly focuses on supervised learning tasks. In light of this,
we need a criterion that measures the goodness of estimates
and also guides the selection of training data. Therefore, we
derive a generalization bound for HTE using the concept of
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core-sets (Tsang et al., 2005; Sener & Savarese, 2018). The
bound takes into account the representativeness of selected
training data, along with empirical regression losses and the
discrepancy between the treated and control distribution. In-
spired by the theoretical result, we propose a method called
QHTE (Query-based Heterogeneous Treatment Effect esti-
mation), which tries to minimize the generalization bound
using a neural network. Specifically, QHTE alternates be-
tween two steps. The first step is to minimizing the empirical
losses and distribution discrepancy on current training data.
The second step is to actively selecting the potentially most
beneficial data to query their outcomes to augment the train-
ing set. In this way, QHTE can obtain accurate estimates
with very limited yet representative training data.

The main contributions of this paper are threefold. First, we
resolve the problem of estimating HTEs with an observa-
tional data budget, which is a practical problem but lacks
relevant studies. Second, we derive an informative general-
ization error bound for HTE, which connects the problem
with active learning and is instructive for the selection of
training data. Finally, we propose a theory-guided method
QHTE based on the theoretical analysis. Experiments across
three datasets show that our method outperforms baselines
given a fixed observational data budget.

The remainder of the paper is structured as follows. Section
2 introduces related work. Section 3 presents background
knowledge about HTE estimation and formulates the bud-
geted HTE estimation problem. Section 4 and 5 describes
the generalization bound and the proposed QHTE method,
respectively. Section 6 presents empirical evaluation results.
Finally, we conclude in Section 7.

2. Related Work

Due to the flexibility and predictive ability of machine learn-
ing models, there has been considerable interest in bringing
machine learning techniques into HTE estimation, includ-
ing methods based on Bayesian additive regression trees
(Hill, 2011; Hahn et al., 2020), random forests (Wager &
Athey, 2018; Athey et al., 2019), neural networks (Shalit
et al., 2017; Yao et al., 2018; Yoon et al., 2018), etc. There
are also some meta-algorithms (Kiinzel et al., 2019; Nie
& Wager, 2020) that can take advantage of any supervised
learning or statistical regression methods to estimate HTEs.

Among various work on HTE estimation, Shalit et al. (2017)
proposed a generalization bound for HTE estimation, which
is expressed in terms of factual loss and the discrepancy
between the treated and control distribution. By minimizing
the upper bound, a neural network maps the treated and
control data into a common vector space, where the discrep-
ancy between two groups of data is reduced and thus better
estimates can be obtained. Our work refers to their general-

ization bound, but differs in that we consider a new problem
of estimating HTEs with a budget, hence our bound is not
described in terms of fully available observational data but
of selected core-sets, which informs us to actively query the
potentially most beneficial data to augment the training set.

Active learning attempts to achieve high accuracy using as
few labeled instances as possible by asking queries in the
form of unlabeled instances to be labeled by an oracle (e.g.,
a human annotator) (Settles, 2012). The key difference be-
tween active learning methods is the querying criterion. Ef-
fective and practical criteria includes informativeness (Roy
& McCallum, 2001; Guo & Schuurmans, 2007), representa-
tiveness (Yu et al., 2006; Chattopadhyay et al., 2013), and
both (Huang et al., 2014; Wang & Ye, 2015), etc.

There are studies considering budgets on various resources
that are allowed to be used in the learning process. For ex-
ample, storage budget (Zhou et al., 2009; Hou et al., 2017),
query budget (Huang et al., 2017), and cost budget (Wang
& Zhou, 2016), etc. These methods can control the resource
consumption before learning, and thus are of great impor-
tance in real applications such as online recommendation,
edge computing, and stream computing.

The work most relevant to ours is Deng et al. (2011) and
Sundin et al. (2019), both of which utilize the concept of
active learning to inform decision-making. Our work is very
different from theirs. First, their work focuses on decision-
making, which only cares about the signs of HTEs rather
than exact values. Second, we only query for factual out-
comes, which is more practical in real applications. Instead,
Deng et al. (2011) selected individuals to conduct experi-
ments to obtain new data, and Sundin et al. (2019) queried
for counterfactuals, which are difficult to obtain. More-
over, we start from a generalization bound and propose a
theoretically sound while effective and efficient method.

3. Problem Setup

HTE estimation aims to measure the effect of treatment ¢ €
T on the outcome y € Y of a specific subgroup described
by x € X. In this work, we focus on the binary treatment
case where 7 = {0, 1} and let the bounded set ) denote
the set of possible outcomes. A unit is treated if ¢ = 1 and
controlled if ¢ = 0. Under the potential outcome framework
(Neyman, 1923; Rubin, 1974), HTE is also known as the
conditional average treatment effect, and is defined as:

T($) £ E[Yl — YQ | ,I],

where Y; denotes the potential outcome for treatment ¢, i.e.,
the value that Y would obtain had x received treatment .
The challenge of this task lies in that in real applications,
we can only observe at most one factual outcome y, for a
unit, but never the counterfactual outcome 7 _;.
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Currently, most HTE estimation methods implicitly assume
that there exists plenty of fully observable data, which is
described as a dataset of (z, ¢, y) triplets. In contrast to this
assumption, we assume that only a dataset of (z, t) pairs is
available, and the request for factual outcomes is associated
with a cost, which may be related to the covariates and
treatments. E.g., in the scenario described in Section 1,
some extra medical tests might be necessary for some people
considering their health conditions and thus more costs are
needed to obtain the factuals. Under this setting, we seek to
achieve accurate HTE estimates within a query cost budget.

We formulate the above problem as follows. Let D =
{(xs,t;)}7, denote the training data, where each (z;, ;)
pair is collected from an observational study. Let L =
{(z,ti,y:)} ™, denote the corresponding set of full obser-
vational data with factual outcomes, which was assumed to
be available in previous studies when there was no concern
about the query costs. Whereas in this paper, we do not
assume it is readily available. Instead, we try to explore it in
a cost-effective way. We further write D = DU D1, where
D; = {(J)l,tz) | (.Z‘i,t,‘) eDANt; = t}, and L = Lo U Ly
analogously. Also, we denote the size of Dy and D1 by myg
and my, respectively. Let ¢ : X x T — R, be the cost
function, meaning that in order to obtain y; from L, we need
to pay a cost of ¢(x;, t;) for all (x;,t;) € D. Let S C L de-
note a set of data with factual outcomes, and hg(z) denote
the HTE estimate for unit = output by a learning algorithm
trained on data S. We can measure the quality of hg(z) us-
ing the expected Precision in Estimation of Heterogeneous
Effect (PEHE) loss (Hill, 2011):

epenE(hs) = /x (hs(z) — 7(x))° p(a)dz.

Assume that we have a budget of B € R, then estimating
HTE with a budget constraint can be formalized as:

i h
min epeuE(Rs)

s.t. Z c(z,t) < B. S

(z,t,y)€S

The difficulty of the above optimization problem lies in that
we do not have the full observational data L, and cannot
access hg without using S to train a learning algorithm.
A practical algorithm for this problem should be able to
determine which factual outcomes to query so that the cost
does not exceed B and training on them leads to small PEHE
loss before actually obtaining those outcomes.

For simplicity, in the rest of the paper, we consider the cost
function ¢(z,t) = 1 forallz € X and ¢t € 7. Then B
is equivalent to the maximum number of queries, i.e., the
maximum number of training samples that are associated

with factual outcomes. The problem in (1) becomes:

IsngllLl epeue(hs) .
st. |S] < B.

We make the following common assumptions under the
potential outcome framework (Imbens & Rubin, 2015).

Assumption 1 (SUTVA). The potential outcomes for any
unit do not vary with the treatment assigned to other units.
For each unit, there are no different forms or versions of each
treatment level, which lead to different potential outcomes.

Assumption 2 (Consistency). The potential outcome of
treatment t equals the observed outcome if the actual treat-
ment received is t.

Assumption 3 (Strong ignorability). Given pre-treatment
covariates X, the potential outcome variables are indepen-
dent of treatment assignment, i.e., {Yo,Y1} 1L T | X. For
any X, the probability to receive each treatment is positive,
e, 0< PT=t|X=z)<l,VteTandx € X.

With above assumptions, we have 7(z) = E[Y | 2, T =
1] = E[Y | #, T = 0], which only consists of quantities that
can be estimated from data, thus HTE is identifiable.

4. Theory

In this section, we derive a generalization bound that is
useful to inform an algorithm to select which data points to
query. We first present the generalization bound on HTE
estimation by Shalit et al. (2017), then generalize their result
by introducing the concept of core-sets.

Shalit et al. (2017) discussed one-to-one representation func-
tions of the form ® : X — Z, where Z is a representation
space. Their method first maps x € X to a new space Z
and then estimates HTE by predicting two potential out-
comes in Z and differentiating them. The idea is that the
distribution of training data becomes more similar in Z
and thus benefits the estimation. In the following analysis,
as in Shalit et al. (2017), we assume a joint distribution
p(x,t,yo0,y1) over X X T x Y x ). For simplicity, we
write ®(S) = {(®(z),t) | (x,t) € S} for S C D, and
O(S) = {(®(x),t,y) | (x,t,y) € S} for S C L.

Definition 1. Let ¢ : X — Z be a representation function,
f: Zx{0,1} — Y be a hypothesis predicting the outcome
of unit = given treatment ¢ using the mapped covariates
®(x). Letl : Y x Y — R, denote a loss function. The
expected factual treated and control losses with respect to
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® and f are:

er(f,2) 2 / Iy, f(®@(x), 1))p(e,y | T = 1)dady,

X XY

(£, #) 2 [ 1y, F@()0)play | T = 0)dndy,
xXxYy
Definition 2 (IPM). For two probability density functions

p, q defined over Z C R<, and for a function family G of
functions g : Z — R, the Integral Probability Metric is

IPM¢(p, g) £ sup
geG

[ 920 - ateaz|.
zZ

It can be seen that IPM measures the distance between two
distributions. For rich enough function families G, such as
the family of 1-Lipschitz functions (Sriperumbudur et al.,
2012) and the unit-ball of functions in a reproducing kernel
Hilbert space (Gretton et al., 2012), IPM is a true metric
over the corresponding set of probabilities. In the rest of
the paper, we consider an estimate for HTE in the form of
h(z) = f(®(x),1)— f(P(z),0). Next is the generalization
bound for i(z) derived in Shalit et al. (2017).

Proposition 1 (Shalit et al. (2017)). Let ® : X — Z
be a one-to-one representation function. Let f : Z X
{0,1} — Y be a hypothesis. Let G be a family of func-
tions g : 2 — Y. Assume thatl : Y x Y — Ry
is the V5 loss and that there exists a constant Cy > 0,
such that for fixed t € {0,1}, C%p lrao(z,t) € G,
where l; o (z,t) = Sy U(yes f(@(2), 1) p (ye | ©) dys. Let
h(z) = f(P(x),1) — f(D(x),0) be an estimate. Then,

epeae(h) < 2(e1(f, @) + eo(f, @)
+2Cy - IPM¢ (pT,p5) — Cy,

where p¥ = p(®(z) | t) and Cly is a constant related to the
expected variance of outcomes.

Proposition 1 bounds the PEHE loss of h(z) with standard
regression generalization error on treated and control data
and an IPM term measuring the dissimilarity between the
treated and control distribution. This bound indicates that
we should uniformly sample B data points in D to query
their outcomes to solve the problem in (2) since in that way
the selected data best mimics the underlying observational
data distribution, which is exactly the distribution that €;
is defined on. However, different training data can lead
to various gains in prediction performance, which is not
utilized by uniform random sampling.

In light of this, we need to guide the selection of query
targets in a more refined manner. We bring in the concept
of core-sets (Tsang et al., 2005), which can be seen as a

representative subset of a dataset. Sener & Savarese (2018)
adopted core-sets to formulate an active querying criterion
for convolutional neural networks in image classification.
However, their approach only applies to classification tasks,
and assumes training error is zero, which is reasonable in
classification but unrealistic in regression tasks. We derive
a new generalization bound for HTE using the concept of
core-sets and without the zero training error assumption,
which can be used as an effective querying criterion.

Definition 3 (r-cover and core-set). A set Z is a r-cover of
aset U if

UC | J{ulueUA|u—z|| <r}.
z2€Z

A r-cover Z is a core-set if all of its elements are from
the original set U. Note that in the rest of the paper, if the
elements of U are (z, ¢, y) triplets, we ignore the existence
of y when calculating the norm ||-||.

Definition 4 (Augmented r-cover). Let set Z be a r-
cover of a set U, the augmented r-cover w.rt. Z and
U is a multiset and denoted as Z4. Z4 is constructed
by the following procedure: initialize Z4 with (), then
for each v € U, randomly choose an element from
{2|2€ZAY2 € Z,||lu—z| <|u—2|}tojoin Z4.

All data points from the original set are covered by a set
of balls with radius r centered at each element of the r-
cover. Therefore, a r-cover of a dataset can be treated as a
representative subset of the whole dataset. An augmented
r-cover simply uses nearest neighbors in the r-cover to
construct a set that is similar to the original one. Intuitively,
a learning algorithm that performs well on an augmented r-
cover with a small covering radius r will probably generalize
to the original full dataset. We next give some definitions,
then state a theorem that bounds the difference between the
expected loss on training data and the expected loss on an
augmented r-cover, which matches the intuition.

Definition 5. Let ® : X — Z be a representation function,
f:Zx{0,1} — Y be a hypothesis predicting potential
outcomes, | : Y x Y — R, be a loss function. Given
S C D, the expected loss on Z = ®(5) is

A 1
EZ(f):@ Z

(z,t)eZ

/y Py | =61y, f(=.1))dy.

Definition 6. Under the conditions of Definition 5, given
S C L, the empirical loss on Z = ®(.5) is

1
2 1zl Z Wy, f(z,1)).

(2,t,y)€Z

It can be seen that e ( f) measures the expected loss on a
mapped empirical distribution induced by Z, while éz( f)
is the standard empirical regression loss on Z.
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Theorem 2. Let ® : X — Z be a one-to-one representa-
tion function, f : Z x {t} — Y be a hypothesis predicting
the outcomes for treatment t. Assume that the {5 loss func-
tion l(y, f(z,t)) : Z — Ry is N;-Lipschitz continuous for
fixed y, t and upper bounded by M, i.e., l(y,y') < M for
all y,y' € Y. Assume the conditional probability density
function p(y | z) : £ — Ry is A\p-Lipschitz for fixed y.
Then, given a r-cover Z, of ®(Dy), We have

3

€a,)(f) Sezalf) +r (Al + Ap%) . 3)
Proof. The key is to utilize the covering property of a -
cover. For every data point in ®(D;), there is at least an
element in Z;* such that the distance between them does not
exceed 7. Then the difference of the losses on ®(D;) and
Z#* can be bounded using the Lipschitzness assumptions.
The complete proof is in the appendix. O

Remark. Theorem 2 bounds the difference between the
expected loss on training data and the expected loss on an
augmented r-cover with a term of r, which confirms that an
augmented r-cover with a small r can be effectively used
as a surrogate of the whole dataset for training. Note that
the bound does not involve the size of the r-cover, so it is
possible to represent the whole dataset with a small r-cover.

Lemma 3. Under the conditions of Theorem 2, and l(y,y')
being \-Lipschitz for any fixed y' € Y, let Z; be a core-set
of ®(Ly) fort € {0, 1} with covering radius r. Let H be a
set of mappings from Z x {t} to Y, and f € H. Then,

In 3
([, ®) < ézn(f) + 1+ Car + 2ARn, (H) + 3M [ 2

th

holds with probability at least 1 — J, where Cpy = A\ +
3
Ap 1\432 and R, (M) is the Rademacher complexity of H.

Proof. The proof mainly utilizes Hoeffding’s inequality and
some results from Mohri et al. (2018). The complete proof
is in the appendix. O

Theorem 4. Under the conditions of Proposition 1 and
Lemma 3, with probability at least 1 — 6,

epeng(h) < 2 Z (ézg‘(f) + 2\ R, (7'[))

te{0,1}
+4r-Cup +2Cs - IPM¢ (p?7pg>) +C

holds, where C = 6 M <\/ ;I:n%o + ﬁ) —Cy.

Proof. The theorem follows by bounding the two ¢; terms
in Proposition 1 with the inequality in Lemma 3 and substi-
tuting § with §. O

Remark. Theorem 4 provides an upper bound for PEHE
loss, which mainly consists of the covering radius r, empiri-
cal regression losses on the augmented r-cover, IPM term
between treated and control distribution, and model com-
plexity terms, all of which can be empirically estimated or
approximated. The upper bound decreases as the covering
radius r gets small. Therefore, unlike Proposition 1, Theo-
rem 4 instructs us to query data points that form a core-set
of the observational data with a small covering radius. Note
that a set is a core-set of itself with a covering radius of 0,
so the result in Shalit et al. (2017) is a special case of ours.

5. The Proposed Method

Based on the theoretical analysis in Section 4, we propose a
method called QHTE (Query-based Heterogeneous Treat-
ment Effect estimation), which actively selects data points
to query to minimize the upper bound in Theorem 4.

We write the following optimization problem:
. D DD
te{0,1} (z,t,y)eZf
+afll+ 8+ IPMa(BY. 57)
s.t. Zt g q)(Lt), t= O7 1
|Z()| + ‘Z1| < B,

L f@@).) @

my

where r is the largest covering radius of Zy and 71, «, 5,y
are tunable hyperparameters and pY is the empirical dis-
tribution induced by ®(D;). It is a difficult optimization
problem involving the joint optimization over four variables,
two of which can have infinite dimensionality. Also, we
can obtain factual outcomes from L; only through explicit
queries, which means during the entire optimization process,
only B labeled data points can be utilized. To overcome
such difficulty, we propose to sequentially add elements to
Z, by alternating between optimizing the objective function
over f and ®, and selecting data points to query. We first
elaborate how to determine which points to join Z; and ob-
tain corresponding factual outcomes, then explicate how to
optimize over f and ®, and present the full method.

Let r; denote the covering radius of core-set Z;, the ob-
jective function requires us to minimize r = max{rg, r1 }.
Since we do not count the contribution of y when decid-
ing a r-cover, finding a core-set of ®(L;) is equivalent to
finding a core-set of ®(D;), which does not requires factual
outcomes. Formally, this core-set finding problem is:

Inax{ max min|z — z’||}
Z’E@(Dt) z2€0¢ tE{O,l}
s.t. Zt g (D(Df), t= 0, 1

|Zo| + |Z1‘ < B.

min
Zo,Z1

S

The special case of (5), where one set ®(D;) is empty, is
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known as the k-center problem in theoretical computer sci-
ence, and is NP-hard (Vazirani, 2003). So the problem
in (5) is at least as hard as NP-hard problems, and could
not be solved within polynomial time if P # NP. However,
the k-center problem has an efficient approximation algo-
rithm that greedily selects the point farthest from the current
core-set and achieves an approximation ratio of 2 (Vazi-
rani, 2003), i.e., the returned covering radius r < 2 - OPT,
where OPT is the minimum covering radius. Inspired by
that, we propose Algorithm 1 for the problem in (5), where
dist(s, Z) = min,cz||s — z||. The input Z; is a placeholder
for later use. For now, we just set Z; to an empty set. We
prove Theorem 5 to validate the algorithm.

Algorithm 1 CoreSet
Input: Initial core-sets: Zj, Z1; candidate sets: Sy, S1;
size constraint: B
1: target_size < |Zg| + |Z1| + B
2: fort € {0,1} do
if Z, = () then
4 Initialize Z; with a random element in S;
5 end if
6: end for
7
8
9

: while | Zy| 4 |Z1| < target_size do
© @< argmax,cg, dist(a, Zo)
© b argmaxyg, dist(b, Z1)

10:  if dist(a, Zy) > dist(b, Z1) then

11: Z() — Z() U {a}
12:  else

13: Zy + Zy U {b}
14:  end if

15: end while
Olltpllt! ZQ, Zl

Theorem 5. Let r* be the optimal objective value of the
problem in (5), r be the maximum covering radius of the
two core-sets returned by Algorithm 1, thenr < 2 - r*.

Proof. The proof is based on the observation that the output
Z, is identical to the k centers returned by the greedy algo-
rithm for the k-center problem with k = |Z;|. The complete
proof is in the appendix. O

Therefore, once f and ® are fixed, feasible Z, and Z; can
be efficiently found. We now consider minimizing the ob-
jective function in (4) with fixed Z;. Note that r is uniquely
determined by Z;, so the 3 - r term is a constant when
optimizing over f and ®. We parameterize both f and ®
with neural networks, and adopt the CFR (CounterFactual
Regression) network architecture and training procedure
described in Shalit et al. (2017). The upper half of Figure 1
shows the general architecture. The mapping ® is parame-
terized by the beginning representation part and is shared by

! !
"-
\
\
\

Query for outcomes

O M (5" 5))

hy
M Iy, f1(@(x), 1))

(D))

Figure 1. Network architecture and querying strategy.

both groups of data. The outcome prediction function f is
trained with separate heads using corresponding groups of
data. A simplified training process is in Algorithm 2. Note
that for better sample utilization, the gradient of the IPM
term at line 6 in Algorithm 2 can also be calculated using a
combination of labeled and unlabeled data.

Algorithm 2 CFR
Input: Factual data: Z = {(x;,t;,y;)}:; learning rate: n
hyperparameters: a, y

1: Initialize a neural network as in Figure 1

2: W <« parameters of ¢

3: 'V « parameters of f

4: while not converged do

5: Sample mini-batch {i1,i2,...,ix} C [|Z]]

6: g1 VwIPM({®(zi;)}i: =0, { (i)}, =1)
7 g2 < Vw2 Uiy, f(@(ai;) i) e,

8: g3 < VV% Zj l(yi_j’ f((I)(Sﬂl?), tij))/mtij

90 W,V W —n(yg1+92), V= nlgs + 2aV)

10: end while
Output: @, f

The full QHTE method is in Algorithm 3. An illustration of
the process is in Figure 1. We add a parameter b to control
the number of queries at each optimizing step. During each
iteration, QHTE first finds the core-sets for mapped treated
and controlled data, then queries an oracle to obtain the
corresponding factual outcomes (e.g., performing medical
tests to a patient to obtain her health condition), and re-train
the neural network with augmented core-sets. Note that
training on an augmented core-set can be efficiently done
by training on a weighted core-set, which contains much
less training samples. By performing a coordinate descent
style optimizing procedure — alternating between finding
core-sets and optimizing a neural network, QHTE actively
selects representative core-set data points. Based on very
limited yet representative training data, QHTE balances the
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distribution between the treated and controlled group, and
meanwhile preserves the predictive ability for unseen test
data. Implementation details can be found in Section 6 and
the appendix.

Algorithm 3 QHTE
Input: Training data: Dy = {(x;,0)}s, D1 = {(z;,1)};;
query budget: B; query batch size: b; oracle: O
learning rate: n; hyperparameters: «, y
Initialize ¢ with an identity mapping
Uy + 0,U; < 0 > core-sets without factual outcomes
Zo <+ 0,7y <0 > core-sets with factual outcomes
fori € [£]do
U{, U + CoreSet(Uy, Uy, ®(Dy), ®(D1),b)
Zo — Zo U O(Ué \ U()), VARSZARY, O(U{ \Ul)
Z§ + Augment(Zy, ®(Dy))
Z{# « Augment(Z;, ®(D;))
®, f + CFR(Z3' U Z{* 0, a, )
10: Uy, Uq (—U(/),U{
11: end for
12: b f(D(),1) - f((),0)
Output: h
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6. Experiments

Because of the nature of the HTE estimation problem, we
rarely have access to ground truth in real-world data. In
order to evaluate the proposed method, we conduct exper-
iments on three semi-synthetic datasets. Since the setting
discussed in this paper is new in the field of causal inference,
there are no published methods to be compared. Proposi-
tion 1 inspires a successful HTE estimation method (Shalit
et al., 2017), which also suggests random sampling under
the proposed setting as discussed in Section 4. Therefore,
we follow the implications of Proposition 1 and compare
QHTE with other HTE estimation methods accompanied by
a random querying strategy. We first describe three datasets,
then experimental settings, last the results and analysis.

IHDP. This is a common benchmark dataset introduced
by Hill (2011). It is from the Infant Health and Develop-
ment Program (IHDP), in which the covariates come from
a randomized experiment studying the effects of specialist
home visits on future cognitive test scores. An imbalanced
observational dataset is created by removing all children
with non-white mothers in the treated group. The dataset
consists of 747 units, 139 of which are treated and 608 are
controlled, and 25 covariates measuring the children and
their mothers. The treatment assignments and pre-treatment
covariates are from the experimental data, and the outcomes
are generated from the response surface B setting described
in Hill (2011). We average over 1,000 realizations of the
outcomes with 63/27/10 train/validation/test splits.

ACIC. The datasets were developed for 2016 Atlantic
Causal Inference Conference competition (Dorie et al.,
2019). They consist of 58 variables and 4,802 individu-
als. The treatments, factual outcomes, and counterfactual
outcomes are all generated by simulation, and selection bias
is created as in the [HDP dataset. We randomly choose one
dataset from them and average over 100 realizations with
63/27/10 train/validation/test splits.

IBM causal inference benchmark. This is a semi-
synthetic dataset created in Shimoni et al. (2018). It uses
the cohort of 100,000 samples in Linked Births and Infant
Deaths Database (LBIDD) and comprises 177 covariates.
We find that the HTEs in this dataset is a fixed constant,
which does not exhibit heterogeneity of treatment effects,
and it is comprised of datasets that only use a small portion
of data. In order to examine the performance of QHTE
with large scale data, we simulate the treatments and out-
comes for all 100,000 units. Specifically, we create selec-
tion bias using ¢ | z ~ Bern((1 + exp(—(w”z +b)))71),
where w ~ U((—0.1,0.1)*"">1 and b ~ N(0,0.1) as in
Yoon et al. (2018). The outcomes are simulated based on
Hill (2011), we set Yy ~ N (exp(u” (z + 0.5)/10),0.1),
Yy ~ N(uTx —v,0.1), where u is a vector of regression
coefficients (0,0.1,0.2,0.3,0.4) randomly sampled with
probabilities (0.6,0.1,0.1,0.1,0.1), v is set to make the av-
erage treatment effect on the treated group or on the control
group equals 4 with probability 0.5 respectively in each
simulation. We average over 100 realizations with 63/27/10
train/validation/test splits.

Implementation. We implement QHTE based on CFR
(Shalit et al., 2017). We use the same set of hyperparam-
eters for QHTE across three datasets. Specifically, QHTE
uses 3 layers to parameterize the representation mapping
function ®, and 3 layers for the outcome prediction function
f. Layer sizes are 200 for each of the first 3 layers, and
100 for others. All but the output layer use ReLU (Rectified
Linear Unit) (Agarap, 2018) as activation functions, and use
batch normalization (Ioffe & Szegedy, 2015) to facilitate
training. We use stochastic gradient descent with an initial
learning rate of 0.001 and a batch size of 100 to train the
network. The learning rate decays with a factor of 0.1 when
the validation error plateaus. The family of 1-Lipschitz func-
tions is used in the IPM term, which makes the IPM term
the Wasserstein distance (Villani, 2008). We approximate it
with the Sinkhorn-Knopp matrix scaling algorithm (Cuturi,
2013). Wesetaa =1 x 10™% and v = 1.

Baselines. We compare our method with 10 baselines using
random querying strategy: Ordinary Least Squares with
treatment as a feature (OLS-1), OLS with separate regres-
sors for each treatment (OLS-2), k-Nearest Neighbor (k-
NN), Propensity Score Matching with logistic regression
(PSM) (Rosenbaum & Rubin, 1983), Bayesian Additive
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Figure 2. Results on the test sets of three datasets. Lower is better. The bound represents the 95% confidence interval generated by
bootstrap sampling. Only 6 superior methods are drawn to avoid clutter.

Regression Trees (BART) (Chipman et al., 2010), Random
Forest (RF) (Breiman, 2001), Causal Forest (CF) (Wager &
Athey, 2018; Athey et al., 2019), Balancing Neural Network
(BNN) (Johansson et al., 2016), Treatment-Agnostic Repre-
sentation Network (TARNet) (Shalit et al., 2017) as well as
CounterFactual Regression with Wasserstein metric (CFR)
(Shalit et al., 2017), along with a BART-based method using
uncertainty-based querying strategy named B-EMCMITE
(Puha et al., 2020).

Table 1. /PEHE loss on the test set of ACIC. The first row means
the budget B. B-EMC stands for B-EMCMITE.

METHOD 500 1,500 2,500 3,500

OLS1 3.9£0.1  3.9£0.1 3.9£0.1 3.9+£0.1
OLS2 2.5+0.1 1.6£0.1 1.5+£0.1 1.4+£0.1
k-NN 5.6£0.2 5.6£0.2 5.6£0.2 5.6£0.2
PSM 4.9+0.1 4.8+0.1 4.8+0.1 4.8+0.1
BART 2.1£0.1  1.5£0.1 1.3£0.1 1.2+0.1
B-EMC 2.0£0.1 1.4+0.1 1.3£+0.1 1.240.1
RF 2.4£0.1  1.9£0.0 1.7£0.0 1.6+£0.0
CF 3.0+0.1  2.3+£0.1  2.0£0.1 1.9£0.1
BNN 41£0.1  2.4£0.1 1.8£0.0 1.5£0.0
TARNET 3.6£0.1 1.94£0.1 1.6£0.0 1.440.0
CFR 3.1£0.1  1.7£0.1 1.4£0.0 1.2+0.0
QHTE 2.8+0.1 1.4+00 1.1+00 1.1+0.0

Results. We compare QHTE with baselines given different
budget constraints. A part of the results is shown in Figure
2, where the horizontal axis is the budget and the vertical
axis is the square root of the PEHE loss on test data. We also
list the performance of all methods under some budgets in
Table 1 and 2. Full results can be found in the appendix. The
results show that on all three datasets, QHTE outperforms
other methods, especially on the IBM dataset. Besides, on
the ACIC dataset, the average loss of QHTE is smaller than
that of CFR at a significance level of 5% in 17 out of 21
settings. On the IBM dataset, the average loss of QHTE is

significantly smaller in 8 out of 11 settings.

Table 2. /PEHE loss on the test set of IBM.

METHOD 1,500 2,000 3,000 5,000

OLS1 33.7+£5.4  33.7+£54 33.7+£54 33.7£54
OLS2 344459 345455 33.8+5.1 33.8£5.5
k-NN 35.1£54  35.1+£54 35.1£54 35.0+5.4
PSM 34.6+£5.5 34.245.5 34.6£5.5 34.7£55
BART 34.1£5.5 34.2454 35.3£54 35.9+54
B-EMC  34.0+5.6 34.2+5.6 35.1£5.4 35.0£5.5
RF 314453 31.245.3 30.9+£5.2 30.0%5.2
CF 33.1+£54 329454 32.7+£54 32.4£54
BNN 34.6+£54 34.8454 33.5£55 33.0£54
TARNET 58.7£9.9 48.6+£9.1 30.3£5.3 29.6+5.2
CFR 49.7£10.0 47.3£8.9 32.7£5.6 28.844.9
QHTE 19.6+4.2 18.7+3.5 16.0+3.1 14.1+24

Analysis. Because the implementation of QHTE is based on
CFR, their performance are similar when they use identical
training data (B = m). However, we care more about the
case where B < m, and that is where QHTE significantly
outperforms baselines. On the IHDP dataset, QHTE is only
slightly better than CFR. We argue that because the training
set of IHDP only comprises 672 units and 25 covariates,
the core-sets selected by Algorithm 1 are not significantly
better than those randomly selected. The right two subfig-
ures in Figure 2 further verifies this argument since QHTE
performs significantly better than baselines on ACIC (4,321
units) and IBM (90,000 units). With a large potentially
available dataset, the core-sets selected by QHTE can be
more representative, therefore it can achieve competitive
performance with much less training data than baselines.

7. Conclusion

In this paper, we examine the HTE estimation problem with
a budget constraint on observational data. We connect it
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with active learning, and give an informative error bound
based on the concept of core-sets. Our bound mainly con-
sists of a covering radius term, the empirical loss, and the
distributional discrepancy between the treated and control
data. Based on this result, we propose QHTE to minimize
the upper bound with a coordinate descent style optimization
procedure, with which QHTE succeeds in actively querying
factual outcomes that are more likely to benefit HTE estima-
tion. We apply this theory-guided approach to three datasets
with increasing scale, showing that our method achieves the
best performance, and that it requires much less training
data to achieve the same performance as baselines.
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