
Neural Transformation Learning for Anomaly Detection (NeuTraL AD) 

A. Proofs for Section 3.2 

In this Appendix, we prove the propositions in Section 3.2. The point is to compare various potential loss functions for 
neural transformation learning in their ability to produce useful transformations for self-supervised anomaly detection. 

Requirements 1 and 2 formalize what we consider useful transformations. The learned transformations should produce 
diverse views the share semantic information with the original sample. 

We give two example edge-cases that violate the requirements, the ‘constant’ edge-case in which the transformed views do 
no longer depend on the original sample (this violates the semantic requirement) and the ‘identity’ edge-case in which all 
transformations reproduce the original sample perfectly but violate the diversity requirement. 

We compare what happens to various losses for self-supervised anomaly detection under these edge cases. Specifically, we 
compare the loss of our method L (Equation (2)) to the transformation prediction loss LP (Equation (4)) of Wang et al. 
(2019b), and the SimCLR loss LC (Equation (5), Chen et al. (2020)), which has been used for anomaly detection in Sohn 
et al. (2021) and Tack et al. (2020). In the original sources these losses have been used with fixed transformations (typically 
image transformations like rotations, cropping, blurring, etc.). Here we consider the same losses but with the learnable 
transformations parameterized as defined in Section 3.1. All notation has been defined in Section 3.1. 

A.1. Proof of Proposition 1 

We first investigate whether we can optimize the transformation prediction loss Equation (4) with respect to the transformation 
parameters θk and the parameters of fφ and obtain learned transformations that fulfill Requirements 1 and 2. 

The proposition below states that a constant edge-case can achieve a global minimum of Equation (4), which means that 
minimizing it can produce transformations the violate Requirement 1. 

Proposition 1. The ‘constant’ edge-case fφ(Tk(x)) = Cck, where ck is a one-hot vector encoding the kth position (i.e. 
ckk = 1) tends towards the minimum of LP (Equation (4)) as the constant C goes to infinity. 

Proof. As a negative log probability LP ≥ 0 is lower bounded by 0. We want to show that with fφ(Tk(x)) = Cck, (where 
ck is a one hot vector and C is a constant,) L goes to 0 as C goes to infinity. Plugging fφ(Tk(x)) = Cck into Lp and taking 
the limit yields 

KX exp C exp C 
lim LP = lim Ex∼D[− log ] = lim −K log 

C→∞ C→∞ exp C + K − 1 C→∞ exp C + K − 1 
k=1 

= lim −KC + K log(exp C + K − 1) = 0 
C→∞ 

A.2. Proof of Proposition 2 

Next, we ask what would happen if we optimized the SimCLR loss LC (Equation (5)) with respect to the transformation 
parameters and the encoder. 

The result is, that if we allowed the encoder fφ to be as flexible as necessary to achieve a global minimum of LC , then 
we can derive another minimum of LC that relies only on identity transformations, thereby obtaining a solution to the 
minimization problem that violates the diversity requirement. 

Proposition 2. The ‘identity’ edge-case Tk(x) = x with adequate encoder fφ is a minimizer of LC (Equation (5)). 



Neural Transformation Learning for Anomaly Detection (NeuTraL AD) 

Proof. Lc(M) can be separated as the alignment term and the uniformity term. 

NXh i 
(i) (i) (i) (i)

(M) = − log h(x , x ) − log h(x , x ) (6)Lc 1 2 2 1 
i=1| {z } 

Lalignment⎡ ⎡ ⎤ ⎡ ⎤⎤ 
N N N N NX X X X X 

(i) (j) (i) (j) (i) (j) (i) (j)
+ ⎣log ⎣ h(x , x ) + 1[j=i]h(x , x )⎦ + log ⎣ h(x , x ) + 1[j=i]h(x , x )⎦⎦ .1 2 6 1 1 2 1 6 2 2 

i=1 j=1 j=1 j=1 j=1 | {z } 
Luniformity 

A sufficient condition of min(Lc(M)) is both Lalignment and Luniformity are minimized. 

min(Lc(M)) ≥ min(Lalignment) + min(Luniformity) . (7) 

Given an adequate encoder fφ 
∗ , that is flexible enough to minimize both Lalignment and Luniformity for all transformation 

pairs T1 and T2, we will show we can construct another solution to the minimization problem that relies only on identity 
transformations. 

The alignment term is only minimized for all T1, T2, if f∗(T1(x
(i))) = f∗(T2(x

(i))) for all x(i) ∼M. So we know for f∗ 
φ φ φ 

that 

fφ 
∗ = arg min Lalignment ⇐⇒ sim(fφ 

∗ (T1(x
(i))), fφ 

∗ (T2(x
(i)))) = 1 ∀ x(i) ∼M (8) 

fφ 

⇐⇒ fφ 
∗ (T1(x

(i))) = fφ 
∗ (T2(x

(i))) ∀ x(i) ∼M. (9) 

Define f̃  
φ = f∗ ◦ T1. Since f∗(T1(x

(i))) = f∗(T2(x
(i))),φ φ φ 

f̃  
φ(I(x(i))) = fφ 

∗ (T1(x
(i))) = fφ 

∗ (T2(x
(i))) ∀ x(i) ∼M. (10) 

Using only the identity transformation I(x) = x for T1 and T2, and f̃  
φ as the encoder in LC yields the same minimal loss as 

under T1, T2 and fφ 
∗ . 

A.3. Proof of Proposition 3 

Finally, we investigate the effect of the edge-cases from Propositions 1 and 2 on our objective Equation (2). 

Proposition 3. The edge-cases of Propositions 1 and 2 do not minimize L (DCL, Equation (2)). 

We divide the proposition and its proof into two parts. 

Proposition 3, Part 1. The ‘constant’ edge-case fφ(Tk(x)) = Cck, where ck is a one-hot vector encoding the kth position 
(i.e. ckk = 1) does not minimize L (DCL, Equation (2)) for any C, also not as C tends to infinity. 

Proof. We prove rθL(x) 6= 0 in the ‘constant’ edge-case. For simplicity, we define zk := fφ(Tk(x)), and z := fφ(x). The 
gradient of L(x) with respect to the parameters is " P # 

KX h(xk, x)rθsim(zk, z) + h(xk, xl)rθsim(zk, zl)Pl 6=k rθL(x) = −rθsim(zk, z) + 
h(xk, x) + l 6=k h(xk, xl)

k=1 

K 
" P P #X (h(xk, x) − h(xk, x) − h(xk, xl))rθsim(zk, z) + h(xk, xl)rθsim(zk, zl)l=6 k l=6 k 

= P 
h(xk, x) + l 6=k h(xk, xl)

k=1 "P # 
KX h(xk, xl)(rθsim(zk, zl) −rθsim(zk, z))l 6=k 

= P , (11)
h(xk, x) + l 6=k h(xk, xl)

k=1 



Neural Transformation Learning for Anomaly Detection (NeuTraL AD) 

where the score function h(·) (Equation (1)) is larger than zero. We plug zk := fφ(Tk(x)) = Cck into Equation (11). 

K �P �X (rθsim(Cck, Ccl) −rθsim(Cck, z))l 6=k rθL(x) = (12)
h(Cck, x) + K − 1 

k=1 

K �P �X (rθsim(ck, cl) −rθsim(ck, z))l 6=k rθL(x) = , (13)
h(ck, x) + K − 1 

k=1 

where the second line is obtained by using the fact that the cosine similarity only depends on the normalized vectors and 
hence C can be dropped. 

As ck ⊥ cl, rθsim(ck, cl) −rθsim(ck, z) ≤ 0, and the equality is true only if cl = z/|z|. So, the sufficient and necessary 
condition of rθL(x) = 0 is ∀k, ck = z/|z|. As ck 6= cl, it contradicts with the sufficient and necessary condition. 
Therefore, rθL(x) 6= 0 and the ‘constant’ edge-case cannot be a minimizer of L 

Proposition 3, Part 2. The ‘identity’ edge-case Tk(x) = x does not minimize L (Equation (2)) for adequate encoder fφ. 

Proof. Plugging Tk(x) = x for all k into Equation (2) 

KX 
L =Ex∼D[− log 

k=1 

h(x, x) 
] = K log K. 

Kh(x, x) 
(14) 

This is K times the cross-entropy of the uniform distribution, meaning that using the identity transformation is equivalent to 
random guessing for the task of the DCL, which is to predict which sample is the original given a transformed view. When 
fφ is adequate (i.e. flexible enough) we can do better than random on L. This can be seen in the anomaly scores in Figure 2b 
which are much smaller than K log K after training (better than random). 

We can also construct examples which achieve better than random performance. For example, for K = 2, taking z1 ⊥ z, 
z2 ⊥ z, and z1 = −z2, does better than random. The loss values (with τ = 1) of the two cases are 

• ‘Identity’ edge-case: z1 = z2 = z, so L(x) = −2 log(0.5) = 1.386. 

• Counterexample: z1 ⊥ z, z2 ⊥ z, and z1 = −z2, so L(x) = −2 log(1/(1 + exp(−1))) = 0.627. 

The counterexample achieves a lower loss value than the ‘identity’ edge-case. So the ‘identity’ edge-case is not the minimum 
of L(x). 

B. Implementation details 

B.1. Implementations of NeuTraL AD on time series datasets 

The networks in the neural transformations used in all experiments consist of a stack of three residual blocks of 1d 
convolutional layers with instance normalization layers and ReLU activations, as well as one convolutional layer on the top. 
All convolutional layers are with the kernel size of 3, and the stride of 1. All bias terms are fixed as zero, and the learnable 
affine parameters of the instance normalization layers are frozen. The dimension of the residual blocks is the double data 
dimension. The convolutional layer on the top has an output dimension as the data dimension. For the multiplicative 
parameterization, a sigmoid activation is added to the end. 

The encoder used in all experiments consists of residual blocks of 1d convolutional layers with ReLU activations, as well as 
one 1d convolutional layer on the top of all residual blocks, which is used to reduce the dimensions to the latent dimension 
64. No batch normalization layer is applied. 

The detailed network structure (from bottom to top) in each time series dataset is: 

• SAD: (i) one residual block with the kernel size of 3, the stride of 1, and the output dimension of 32. (ii) four residual 
blocks with the kernel size of 3, the stride of 2, and the output dimensions of 32, 64, 128, 256. (iii) one 1d convolutional 
layer with the kernel size of 6, the stride of 1, and the output dimension of 64. 



Neural Transformation Learning for Anomaly Detection (NeuTraL AD) 

• NATOPS: (i) one residual block with the kernel size of 3, the stride of 1, and the output dimension of 32. (ii) four 
residual blocks with the kernel size of 3, with the stride of 2, and the output dimensions of 32, 64, 128, 256. (iii) one 1d 
convolutional layer with the kernel size of 4, the stride of 1, and the output dimension of 64. 

• CT: (i) one residual block with the kernel size of 3, the stride of 1, and the output dimension of 32. (ii) six residual blocks 
with the kernel size of 3, the stride of 2, and the output dimensions of 32, 64, 128, 256, 256, 256. (iii) one 1d convolutional 
layer with the kernel size of 3, the stride of 1, and the output dimension of 64. 

• EPSY: (i) one residual block with the kernel size of 3, the stride of 1, and the output dimension of 32. (ii) six residual 
blocks with the kernel size of 3, the stride of 2, and the output dimensions of 32, 64, 128, 256, 256, 256. (iii) one 1d 
convolutional layer with the kernel size of 4, the stride of 1, and the output dimension of 64. 

• RS: (i) one residual block with the kernel size of 3, the stride of 1, and the output dimension of 32. (ii) three residual 
blocks with the kernel size of 3, the stride of 2, and the output dimensions of 32, 64, 128. (iii) one 1d convolutional layer 
with the kernel size of 4, the stride of 1, and the output dimension of 64. 

B.2. Implementations of baselines 

• Traditional Anomaly Detection Baselines. OC-SVM, IF, and LOF are taken from scikit-learn library with default 
parameters. 

• Deep Anomaly Detection Baselines. The implementations of Deep SVDD, DROCC, and DAGMM are adopted from 
the published codes with a similar encoder as NeuTraL AD. DAGMM has a hyperparameter of the number of mixture 
components. We consider the number of components between 4 and 12 and select the best performing one. 

• Self-supervised Anomaly Detection Baselines. The implementation of GOAD is taken from the published code. The 
results of GOAD depend on the choice of the output dimension r of affine transformations. We consider the reduced 
dimension r ∈ {22 , 23 , ..., 26}, and select the best performing one. We craft specific time series transformations for the 
designed classification-based baseline. The hand-crafted transformations are the compositions of flipping along the time 
axis (true/false), flipping along the channel axis (true/false), and shifting along the time axis by 0.25 of its time length 
(forward/backward/none). By taking all possible compositions, we obtain a total of 2 ∗ 2 ∗ 3 = 12 transformations. 

• Anomaly Detection Baselines for Time Series. The RNN is parameterized by two layers of recurrent neural networks, e.g. 
GRU, and a stack of two linear layers with ReLU activation on the top of it which outputs the mean and variance at each 
time step. The implementation of LSTM-ED is taken from the web. 

C. Tabular datasets 

The four used tabular datasets are: 

• Arrhythmia: A cardiology dataset from the UCI repository contains 274 continuous attributes and 5 categorical attributes. 
Following the data preparation of previous works, only 274 continuous attributes are considered. The abnormal classes 
include 3, 4, 5, 7, 8, 9, 14, and 15. The rest classes are considered as normal. 

• Thyroid: A medical dataset from the UCI repository contains attributes related to hyperthyroid diagnosis. Following the 
data preparation of previous works, only 6 continuous attributes are considered. The hyperfunction class is treated as 
abnormal, and the rest 2 classes are considered as normal. 

• KDDCUP: The KDDCUP99 10 percent dataset from the UCI repository contains 34 continuous attributes and 7 categorical 
attributes. Following the data preparation of previous works, 7 categorical attributes are represented by one-hot vectors. 
Eventually, the data has 120 dimensions. The attack samples are considered as normal, and the non-attack samples are 
considered as abnormal. 

• KDDCUP-Rev: It is derived from the KDDCUP99 10 percent dataset. The non-attack samples are considered as 
normal, and attack samples are considered as abnormal. Following the data preparation of previous works, attack data is 
sub-sampled to consist of 25% of the number of non-attack samples. 



�

Neural Transformation Learning for Anomaly Detection (NeuTraL AD) 

D. Additional qualitative results 

D.1. Results for time series data 

In Figure 7, we show the learned transformations (parameterized as T (x) = M(x) x and K = 4) on spoken Arabic digits. 
The learned transformations given one normal example are shown in the first row. The learned transformations given one 
example of each abnormal class are shown in the following rows. 

In Figure 8, we show the learned transformations (parameterized as T (x) = M(x) and K = 4) on NATOPS. The learned 
transformations given one normal example are shown in the first row. The learned transformations given one example of 
each abnormal class are shown in the following rows. 

D.2. Results for tabular data 

The learned transformations of thyroid, which are visualized in Figure 9, offer us the possible explanations of why a data 
instance is an anomaly. We illustrate one normal example and three anomalies in the first row. Since the anomaly score 
Equation (3) is the sum of terms caused by each transformation. Each score shown in the last row has four bars indicating 
the terms caused by each transformation. The score of the normal example is very low, and its bars are invisible from the 
plot. The scores of three anomalies are mainly contributed by different terms (colored with orange). The four learned masks 
are colored blue and listed in four rows. M4 focuses on checking the value of the fourth attribute and contributes high values 
to the scores of all listed anomalies. In comparison, M2 is less useful for anomaly detection. NeuTraL AD is able to learn 
diverse transformations but is not guaranteed to learn transformations that are useful for anomaly detection, since no label is 
included in the training. 

We project the score terms of test data contributed by T1, T3, and T4 to a simplex to visualize which transformation 
dominates the anomaly score in Figure 10. From the left subplot, we can see, the scores of normal data (blue) are not 
dominated by any single transformation, while the scores of anomalies are mainly dominated by T3 and T4. In the right 
subplot, we visualize the magnitudes of scores via transparency. We can see, the score magnitudes of normal data are clearly 
lower than the score magnitudes of anomalies. 



�

Neural Transformation Learning for Anomaly Detection (NeuTraL AD) 

x T1(x) T2(x) T3(x) T4(x) 

Figure 7. The learned transformations (T (x) = M (x) x) on SAD. The first row: the learned transformations of one given example of 
the normal class. The rest rows: the learned transformations of one given example of each abnormal class. 



Neural Transformation Learning for Anomaly Detection (NeuTraL AD) 

x T1(x) T2(x) T3(x) T4(x) 

Figure 8. The learned transformations (T (x) = M(x)) on NATOPS. The first row: the learned transformations of one given example of 
the normal class. The rest rows: the learned transformations of one given example of each abnormal class. 



Neural Transformation Learning for Anomaly Detection (NeuTraL AD) 

normal data anomaly 1 anomaly 2 anomaly 3 

x 

M1(x) 

M2(x) 

M3(x) 

M4(x) 

T1 T2 T3 T4

S(x) 

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

Figure 9. Visualizations of thyroid. The first row: one normal example and three abnormal examples. The second to the fourth rows: the 
learned four masks of them. The fifth row: the scores contributed by each transformation of them, where the highest term is colored by 
orange. The plots on each row are under the same scale. 

T1 T3

T4
normal
abnormal

T1 T3

T4

Figure 10. Visualizations of thyroid. We project the scores contributed by T1, T3, and T4 to a simplex. The subplot on the left visualizes 
which transformation dominates the score. The subplot on the right visualizes the scores via transparency. 




