
Provably Efficient Fictitious Play Policy Optimization for Zero-Sum Markov Games with Structured Transitions

A. Omitted Algorithm for Player 2 in Section 3

Algorithm 4 Optimistic Policy Optimization for Player 2 with Factored Independent Transition

1: Initialize: For all h ∈ [H], (s1, s2, a, b) ∈ S1×S2×A×B: µ0
h(·|s1) = 1/|A|, P̂1,0

h (·|s1, a) = 1/|S1|, P̂2,0
h (·|s2, b) =

1/|S2|, r̂0
h(·, ·, ·) = β0

h(·, ·, ·) = 0.
2: for episode k = 1, . . . ,K do
3: Observe Player 1’s policy {µk−1

h }Hh=1.

4: Start from state s1 = (s1
1, s

2
1), set V

k−1

H+1(·) = 0.
5: for step h = H,H − 1, . . . , 1 do
6: Estimate the transition and reward function by P̂k−1

h (·|·, ·) and r̂k−1
h (·, ·, ·) as (11).

7: Update Q-function ∀(s, a, b) ∈ S ×A× B:

Qk−1

h
(s, a, b) = min{(r̂k−1

h + P̂k−1
h V k−1

h+1 − β
k−1
h )(s, a, b), H − h+ 1}+.

8: Update value-function ∀s ∈ S:

V k−1
h (s) =

[
µk−1
h (·|s)

]>
Qk−1

h
(s, ·, ·)νk−1

h (·|s).

9: end for
10: Compute the empirical state reaching probability dµ

k,P̂1,k

h (s2) of Player 1 under µk, P̂1,k, ∀h ∈ [H].
11: Update policy νkh(b|s2) by solving (15), ∀(s2, b, h).
12: Take actions following bkh ∼ νkh(·|s2,k

h ), ∀h ∈ [H].
13: Observe the trajectory {(skh, akh, bkh, skh+1)}Hh=1, and rewards {rkh(skh, a

k
h, b

k
h)}Hh=1.

14: end for

Based on the empirical state reaching probability, the policy improvement step is associated with solving the following
optimization problem

max
µ

H∑
h=1

[Gk−1
h (νh) + γ−1DKL(νh(·|s2), νkh(·|s2))], (15)

where we define the linear function as G
k−1

h (µh) := 〈νh(·|s2) − νkh(·|s2),
∑
s1∈S1 F

2,k
h (s, ·)dµ

k,P̂1,k

h (s1)〉B with
F 2,k
h (s, b) = 〈Qk

h
(s, ·, b), µkh(·|s1)〉A. Here (15) is a standard mirror descent step and admits a closed-form solution

as νkh(b|s2) = (Ỹ k−1
h )−1νk−1

h (b | s2) · exp{−γ
∑
s1∈S1 F

2,k
h (s, b)dµ

k,P̂1,k

h (s1)〉A}, where Ỹ k−1
h is a probability normal-

ization term.

B. Proofs for Section 3
Lemma B.1. At the k-th episode, the difference between value functions V µ

∗,νk

1 (s1) and V µ
k,νk

1 (s1) is

V µ
∗,νk

1 (s1)− V µ
k,νk

1 (s1)

= V
k

1(s1)− V µ
k,νk

1 (s1) +

H∑
h=1

Eµ∗,P,νk
{

[µ∗h(·|sh)]>ιkh(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
+

H∑
h=1

Eµ∗,P1

{〈
µ∗h(·|s1

h)− µkh(·|s1
h),

∑
s2h∈S2

F kh (s1
h, s

2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}

+ 2H

H∑
h=1

∑
s2h∈S2

∣∣∣qνk,P2

h (s2
h)− dν

k,P̂2,k

h (s2
h)
∣∣∣ ,

(16)

where sh, ah, bh are random variables for state and actions, Ukh (s, a) := 〈Qkh(s, a, ·), νkh(· | s)〉B, and we define the model
prediction error of Q-function as

ιkh(s, a, b) = rh(s, a, b) + PhV
k

h+1(s, a, b)−Qkh(s, a, b). (17)
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Proof. The proof of this lemma starts with decomposing the value function difference as

V µ
∗,νk

1 (s1)− V µ
k,νk

1 (s1) = V µ
∗,νk

1 (s1)− V k1(s1) + V
k

1(s1)− V µ
k,νk

1 (s1). (18)

Here the term V
k

1(s1)− V µ
k,νk

1 (s1) is the bias between the estimated value function V
k

1(s1) generated by Algorithm 1 and
the value function V µ

k,νk

1 (s1) under the true transition model P at the k-th episode.

We first analyze the term V µ
∗,νk

1 (s1)− V k1(s1). For any h and s, we consider to decompose the term V µ
∗,νk

h (s)− V kh(s),
which gives

V µ
∗,νk

h (s)− V kh(s)

= [µ∗h(·|s)]>Qµ
∗,νk

h (s, ·, ·)νkh(·|s)−
[
µkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s)

= [µ∗h(·|s)]>Qµ
∗,νk

h (s, ·, ·)νkh(·|s)− [µ∗h(·|s)]>Qkh(s, ·, ·)νkh(·|s)

+ [µ∗h(·|s)]>Qkh(s, ·, ·)νkh(·|s)−
[
µkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s)

= [µ∗h(·|s)]>
[
Qµ
∗,νk

h (s, ·, ·)−Qkh(s, ·, ·)
]
νkh(·|s)

+
[
µ∗h(·|s)− µkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s),

(19)

where the first inequality is by the definition of V µ
∗,νk

h in (1) and the definition of V
k

h in Line 1 of Algorithm 1. In addition,

by the definition of Qµ
∗,νk

h (s, ·, ·) in (2) and the definition of the model prediction error ιkh for Player one in (36), we have

[µ∗h(·|s)]>
[
Qµ
∗,νk

h (s, ·, ·)−Qkh(s, ·, ·)
]
νkh(·|s)

=
∑
a∈A

∑
b∈B

µ∗h(a|s)
[ ∑
s′∈S
Ph(s′|s, a, b)

[
V µ
∗,νk

h+1 (s′)− V kh+1(s′)
]

+ ιkh(s, a, b)

]
νkh(b|s)

=
∑
a∈A

∑
b∈B

µ∗h(a|s)
[ ∑
s′∈S
Ph(s′|s, a, b)

[
V µ
∗,νk

h+1 (s′)− V kh+1(s′)
]]
νkh(b|s) +

∑
a∈A

∑
b∈B

µ∗h(a|s)ιkh(s, a, b)νkh(b|s).

Combining this equality with (19) gives

V µ
∗,νk

h (s)− V kh(s) =
∑
a∈A

∑
b∈B

µ∗h(a|s)
[ ∑
s′∈S
Ph(s′|s, a, b)

[
V µ
∗,νk

h+1 (s′)− V kh+1(s′)
]]
νkh(b|s)

+
∑
a∈A

∑
b∈B

µ∗h(a|s)ιkh(s, a, b)νkh(b|s)

+
∑
a∈A

∑
b∈B

[
µ∗h(a|s)− µkh(a|s)

]
Q
k

h(s, a, b)νkh(b|s).

(20)

The inequality (20) indicates a recursion of the value function difference V µ
∗,νk

h (s) − V
k

h(s). As we have defined

V µ
∗,νk

H+1 (s) = 0 and V
k

H+1(s) = 0, by recursively applying (20) from h = 1 to H , we obtain

V µ
∗,νk

1 (s1)− V k1(s1)

=

H∑
h=1

Eµ∗,P,νk
{

[µ∗h(·|sh)]>ιkh(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
+

H∑
h=1

Eµ∗,P,νk
{[
µ∗h(·|sh)− µkh(·|sh)

]>
Q
k

h(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
︸ ︷︷ ︸

Term(I)

,

(21)

where sh are a random variables denoting the state at the h-th step following a distribution determined jointly by µ∗,P, νk.
Note that we have the factored independent transition model structure Ph(s′|s, a, b) = P1

h(s1′|s1, a)P2
h(s2′|s2, b) with
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s = (s1, s2) and s′ = (s1′, s2′), and µh(a|s) = µh(a|s1) as well as νh(b|s) = νh(b|s2). Here we also have the state
reaching probability qν

k,P2

(s2) =
{
qµ

k,P2

h (s2)
}H
h=1

under µk and true transition P2 for Player 2, and define the empirical

reaching probability dν
k,P̂2,k

(s2) = {dν
k,P̂2,k

h (s2)}Hh=1 under the empirical transition model P̂2,k for Player 2, where we
let P̂kh(s′|s, a, b) = P̂1,k

h (s1′|s1, a)P̂2,k
h (s2′|s2, b). Then, for Term(I), we have

Term(I) =

H∑
h=1

Eµ∗,P,νk
{[
µ∗h(·|sh)− µkh(·|sh)

]>
Q
k

h(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
=

H∑
h=1

Eµ∗,P1,P2,νk
{[
µ∗h(·|s1

h)− µkh(·|s1
h)
]>
Q
k

h(s1
h, s

2
h, ·, ·)νkh(·|s2

h)
∣∣ s1

1, s
2
1

}
=

H∑
h=1

Eµ∗,P1

{[
µ∗h(·|s1

h)− µkh(·|s1
h)
]> ∑

s2h∈S2

Q
k

h(s1
h, s

2
h, ·, ·)νkh(·|s2

h)qν
k,P2

h (s2
h)
∣∣ s1

1, s
2
1

}
.

(22)

The last term of the above inequality (22) can be further bounded as

H∑
h=1

Eµ∗,P1

{[
µ∗h(·|s1

h)− µkh(·|s1
h)
]> ∑

s2h∈S2

Q
k

h(s1
h, s

2
h, ·, ·)νkh(·|s2

h)qν
k,P2

h (s2
h)
∣∣ s1

1, s
2
1

}
=

H∑
h=1

Eµ∗,P1

{[
µ∗h(·|s1

h)− µkh(·|s1
h)
]> ∑

s2h∈S2

Q
k

h(s1
h, s

2
h, ·, ·)νkh(·|s2

h)dν
k,P̂2,k

h (s2
h)
∣∣ s1

1, s
2
1

}
+

H∑
h=1

Eµ∗,P1

{[
µ∗h(·|s1

h)− µkh(·|s1
h)
]> ∑

s2h∈S2

Q
k

h(s1
h, s

2
h, ·, ·)νkh(·|s2

h)[qν
k,P2

h (s2
h)− dν

k,P̂2,k

h (s2
h)]
∣∣ s1

1, s
2
1

}
≤

H∑
h=1

Eµ∗,P1

{[
µ∗h(·|s1

h)− µkh(·|s1
h)
]> ∑

s2h∈S2

Q
k

h(s1
h, s

2
h, ·, ·)νkh(·|s2

h)dν
k,P̂2,k

h (s2
h)
∣∣ s1

1, s
2
1

}
+ 2H

H∑
h=1

∑
s2h∈S2

∣∣∣qνk,P2

h (s2
h)− dν

k,P̂2,k

h (s2
h)
∣∣∣ ,

where the factor H in the last term is due to |Qkh(s1
h, s

2
h, ·, ·)| ≤ H . Combining the above inequality with (22), we have

Term(I) ≤
H∑
h=1

Eµ∗,P1

{[
µ∗h(·|s1

h)− µkh(·|s1
h)
]> ∑

s2h∈S2

Q
k

h(s1
h, s

2
h, ·, ·)νkh(·|s2

h)dν
k,P̂2,k

h (s2
h)
∣∣ s1

1, s
2
1

}
+ 2H

H∑
h=1

∑
s2h∈S2

∣∣∣qνk,P2

h (s2
h)− dν

k,P̂2,k

h (s2
h)
∣∣∣ . (23)

Further combining (23) with (18), we eventually have

V µ
∗,νk

1 (s1)− V µ
k,νk

1 (s1)

≤ V k1(s1)− V µ
k,νk

1 (s1) +

H∑
h=1

Eµ∗,P,νk
{

[µ∗h(·|sh)]>ιkh(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
+

H∑
h=1

Eµ∗,P1

{〈
µ∗h(·|s1

h)− µkh(·|s1
h),

∑
s2h∈S2

F kh (s1
h, s

2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}

+ 2H

H∑
h=1

∑
s2h∈S2

∣∣∣qνk,P2

h (s2
h)− dν

k,P̂2,k

h (s2
h)
∣∣∣ ,
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where we denote F 1,k
h (s1

h, s
2
h, a) := 〈Qkh(s1

h, s
2
h, a, ·), νkh(·|s2

h)〉B for any a ∈ A. This completes our proof.

Lemma B.2. With setting η =
√

log |A|/(KH2), the mirror ascent steps of Algorithm 1 lead to

K∑
k=1

H∑
h=1

Eµ∗,P1

{〈
µ∗h(·|s1

h)− µkh(·|s1
h),

∑
s2h∈S2

F kh (s1
h, s

2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}
≤ O

(√
H4K log |A|

)
.

Proof. As shown in (10), the mirror ascent step at the k-th episode is to solve the following maximization problem

maximize
µ∈∆(A |S1,H)

H∑
h=1

〈
µh(·|s1)− µkh(·|s1),

∑
s2∈S2

F kh (s1, s2, ·)dν
k,P̂2,k

h (s2)
〉
A
− 1

η

H∑
h=1

DKL

(
µh(·|s1), µkh(·|s1)

)
,

with F 1,k
h (s1, s2, a) := 〈Qkh(s1, s2, a, ·), νkh(·|s2)〉B. We equivalently rewrite this maximization problem to a minimization

problem as

minimize
µ∈∆(A |S1,H)

−
H∑
h=1

〈
µh(·|s1)− µkh(·|s1),

∑
s2∈S2

F kh (s1, s2, ·)dν
k,P̂2,k

h (s2)
〉
A

+
1

η

H∑
h=1

DKL

(
µh(·|s1), µkh(·|s1)

)
.

Note that the closed-form solution µk+1
h to this minimization problem is guaranteed to stay in the relative interior of

its feasible set ∆(A |S1, H) if initializing µ0
h(·|s1) = 1/|A|. Thus, we apply Lemma C.12 and obtain that for any

µ = {µh}Hh=1, the following inequality holds

− η
〈
µk+1
h (·|s1),

∑
s2∈S2

F kh (s1, s2, ·)dν
k,P̂2,k

h (s2)
〉
A

+ η
〈
µh(·|s1),

∑
s2∈S2

F kh (s1, s2, ·)dν
k,P̂2,k

h (s2)
〉
A

≤ DKL

(
µh(·|s1), µkh(·|s1)

)
−DKL

(
µh(·|s1), µk+1

h (·|s1)
)
−DKL

(
µk+1
h (·|s1), µkh(·|s1)

)
.

Then, by rearranging the terms and letting µh = µ∗h, we have

η
〈
µ∗h(·|s1)− µkh(·|s1),

∑
s2∈S2

F kh (s1, s2, ·)dν
k,P̂2,k

h (s2
h)
〉
A

≤ DKL

(
µ∗h(·|s1), µkh(·|s)

)
−DKL

(
µ∗h(·|s), µk+1

h (·|s)
)
−DKL

(
µk+1
h (·|s), µkh(·|s)

)
+ η
〈
µk+1
h (·|s1)− µkh(·|s1),

∑
s2∈S2

F kh (s1, s2, ·)dν
k,P̂2,k

h (s2
h)
〉
A
.

(24)

Due to Pinsker’s inequality, we have

−DKL

(
µk+1
h (·|s1), µkh(·|s1)

)
≤ −1

2

∥∥µk+1
h (·|s1)− µkh(·|s1)

∥∥2

1
.

Further by Cauchy-Schwarz inequality, we have

η
〈
µk+1
h (·|s1)− µkh(·|s1),

∑
s2∈S2

F kh (s1, s2, ·)dν
k,P̂2,k

h (s2)
〉
A
≤ ηH

∥∥µk+1
h (·|s1)− µkh(·|s1)

∥∥
1
.

since we have ∥∥∥∥∥∥
∑
s2∈S2

F kh (s1, s2, ·)dν
k,P̂2,k

h (s2)

∥∥∥∥∥∥
∞

= max
a∈A

∑
s2∈S2

F kh (s1, s2, a)dν
k,P̂2,k

h (s2)

= max
a∈A

∑
s2∈S2

〈Qkh(s1, s2, a, ·), νkh(·|s2)〉B · dν
k,P̂2,k

h (s2)

≤
∑
s2∈S2

H · dν
k,P̂2,k

h (s2) = H.
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Thus, we further obtain

−DKL

(
µk+1
h (·|s1), µkh(·|s1)

)
+ η
〈
µk+1
h (·|s1)− µkh(·|s1),

∑
s2h∈S2

F kh (s1, s2, ·)dν
k,P̂2,k

h (s2)
〉
A

≤ −1

2

∥∥µk+1
h (·|s1)− µkh(·|s1)

∥∥2

1
+ ηH

∥∥µk+1
h (·|s1)− µkh(·|s1)

∥∥
1

≤ 1

2
η2H2,

(25)

where the last inequality is by viewing
∥∥µk+1

h (·|s1) − µkh(·|s1)
∥∥

1
as a variable x and finding the maximal value of

−1/2 · x2 + ηHx to obtain the upper bound 1/2 · η2H2.

Thus, combing (25) with (24), the policy improvement step in Algorithm 1 implies

η
〈
µ∗h(·|s1)− µkh(·|s1),

∑
s2∈S2

F kh (s1, s2, ·)dν
k,P̂2,k

h (s2)
〉
A

≤ DKL

(
µ∗h(·|s1), µkh(·|s1)

)
−DKL

(
µ∗h(·|s1), µk+1

h (·|s1)
)

+
1

2
η2H2,

which further leads to
H∑
h=1

Eµ∗,P1

{〈
µ∗h(·|s1

h)− µkh(·|s1
h),

∑
s2h∈S2

F kh (s1
h, s

2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}

≤ 1

η

H∑
h=1

Eµ∗,P1

[
DKL

(
µ∗h(·|s1

h), µkh(·|s1
h)
)
−DKL

(
µ∗h(·|s1

h), µk+1
h (·|s1

h)
)]

+
1

2
ηH3.

Taking summation from k = 1 to K of both sides, we obtain

K∑
k=1

H∑
h=1

Eµ∗,P1

{〈
µ∗h(·|s1

h)− µkh(·|s1
h),

∑
s2h∈S2

F kh (s1
h, s

2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}

≤ 1

η

H∑
h=1

Eµ∗,P1

[
DKL

(
µ∗h(·|s1

h), µ1
h(·|s1

h)
)
−DKL

(
µ∗h(·|s1

h), µK+1
h (·|s1

h)
)]

+
1

2
ηKH3

≤ 1

η

H∑
h=1

Eµ∗,P1

[
DKL

(
µ∗h(·|s1

h), µ1
h(·|s1

h)
)]

+
1

2
ηKH3,

where the last inequality is by non-negativity of KL divergence. With the initialization in Algorithm 1, it is guaranteed
that µ1

h(·|s1) = 1/|A|, which thus leads to DKL

(
µ∗h(·|s1), µ1

h(·|s1)
)
≤ log |A| for any s1. Then, with setting η =√

log |A|/(KH2), we bound the last term as

1

η

H∑
h=1

Eµ∗,P1

[
DKL

(
µ∗h(·|s1

h), µ1
h(·|s1

h)
)]

+
1

2
ηKH3 ≤ O

(√
H4K log |A|

)
,

which gives

K∑
k=1

H∑
h=1

Eµ∗,P1

{〈
µ∗h(·|s1

h)− µkh(·|s1
h),

∑
s2h∈S2

F kh (s1
h, s

2
h, ·)d

νk,P̂2,k

h (s2
h)
〉
A

∣∣∣ s1
1, s

2
1

}
≤ O

(√
H4K log |A|

)
.

This completes the proof.

Lemma B.3. For any k ∈ [K], h ∈ [H] and all (s, a, b) ∈ S ×A× B, with probability at least 1− δ, we have

∣∣r̂kh(s, a, b)− rh(s, a, b)
∣∣ ≤√4 log(|S||A||B|HK/δ)

max{Nk
h (s, a, b), 1}

.
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Proof. The proof for this theorem is a direct application of Hoeffding’s inequality. For k ≥ 1, the definition of r̂kh in (11)
indicates that r̂kh(s, a, b) is the average of Nk

h (s, a, b) samples of the observed rewards at (s, a, b) if Nk
h (s, a, b) > 0. Then,

for fixed k ∈ [K], h ∈ [H] and state-action tuple (s, a, b) ∈ S ×A× B, when Nk
h (s, a, b) > 0, according to Hoeffding’s

inequality, with probability at least 1− δ′ where δ′ ∈ (0, 1], we have

∣∣r̂kh(s, a, b)− rh(s, a, b)
∣∣ ≤√ log(2/δ′)

2Nk
h (s, a, b)

,

where we also use the facts that the observed rewards rkh ∈ [0, 1] for all k and h, and E
[
r̂kh
]

= rh for all k and h. For the
case where Nk

h (s, a, b) = 0, by (11), we know r̂kh(s, a, b) = 0 such that |r̂kh(s, a, b)− rh(s, a, b)| = |rh(s, a, b)| ≤ 1. On
the other hand, we have

√
2 log(2/δ′) ≥ 1 > |r̂kh(s, a, b)− rh(s, a, b)|. Thus, combining the above results, with probability

at least 1− δ′, for fixed k ∈ [K], h ∈ [H] and state-action tuple (s, a, b) ∈ S ×A× B, we have

∣∣r̂kh(s, a, b)− rh(s, a, b)
∣∣ ≤√ 2 log(2/δ′)

max{Nk
h (s, a, b), 1}

.

Moreover, by the union bound, letting δ = |S||A||B|HKδ′/2, assuming K > 1, with probability at least 1 − δ, for any
k ∈ [K], h ∈ [H] and any state-action tuple (s, a, b) ∈ S ×A× B, we have

∣∣r̂kh(s, a, b)− rh(s, a, b)
∣∣ ≤√4 log(|S||A||B|HK/δ)

max{Nk
h (s, a, b), 1}

.

This completes the proof.

In (9), we actually factor the state as s = (s1, s2) such that we have |S| = |S1||S2|. Thus, we set βr,kh (s, a, b) =√
4 log(|S||A||B|HK/δ)

max{Nkh (s,a,b),1} =
√

4 log(|S1||S2||A||B|HK/δ)
max{Nkh (s1,s2,a,b),1} , which equals the bound in Lemma B.3. The counter Nk

h (s, a, b) is

equivalent to Nk
h (s1, s2, a, b).

Lemma B.4. For any k ∈ [K], h ∈ [H] and all (s, a) ∈ S ×A, with probability at least 1− δ, we have

∥∥∥P̂kh(· | s, a, b)− Ph(· | s, a, b)
∥∥∥

1
≤

√
2|S| log(|S||A|HK/δ)

max{Nk
h (s, a), 1}

,

where we have a factored state space s = (s1, s2), s′ = (s1′, s2′), and an independent state transition Ph(s′ | s, a, b) =

P1
h(s1′ | s1, a)P1

h(s2′ | s2, b) and P̂kh(· | s, a, b) = P̂1,k
h (s1′ | s1, a)P̂2,k

h (s2′ | s2, b).

Proof. Since the state space and the transition model are factored, we need to decompose the term as follows∥∥∥P̂kh(· | s, a, b)− Ph(· | s, a, b)
∥∥∥

1

=
∑
s1′,s2′

∣∣∣P̂1,k
h (s1′ | s1, a)P̂2,k

h (s2′ | s2, b)− P1
h(s1′ | s1, a)P2

h(s2′ | s2, b)
∣∣∣

=
∑
s1′,s2′

∣∣∣[P̂1,k
h (s1′ | s1, a)− P1

h(s1′ | s1, a)
]
P̂2,k
h (s2′ | s2, b) + P1

h(s1′ | s1, a)
[
P̂2,k
h (s2′ | s2, b)− P2

h(s2′ | s2, b)
]∣∣∣

≤
∑
s1′,s2′

{∣∣∣P̂1,k
h (s1′ | s1, a)− P1

h(s1′ | s1, a)
∣∣∣ P̂2,k

h (s2′ | s2, b) + P1
h(s1′ | s1, a)

∣∣∣P̂2,k
h (s2′ | s2, b)− P2

h(s2′ | s2, b)
∣∣∣}

≤
∑
s1′

∣∣∣P̂1,k
h (s1′ | s1, a)− P1

h(s1′ | s1, a)
∣∣∣+
∑
s2′

∣∣∣P̂2,k
h (s2′ | s2, b)− P2

h(s2′ | s2, b)
∣∣∣

=
∥∥∥P̂1,k

h (· | s1, a)− P1
h(· | s1, a)

∥∥∥
1

+
∥∥∥P̂2,k

h (· | s2, b)− P2
h(· | s2, b)

∥∥∥
1

where the last inequality is due to
∑
s2′ P̂

2,k
h (s2′ | s2, b) = 1 and

∑
s1′ P1

h(s1′ | s1, a) = 1. Thus, we need to bound the two
terms ‖P̂1,k

h (· | s1, a)− P1
h(s1′ | s1, a)‖1 and ‖P̂2,k

h (· | s2, b)− P2
h(· | s2, b)‖1 separately.
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For k ≥ 1, we have ‖P̂1,k
h (· | s1, a)− P1

h(· | s1, a)‖1 = max‖z‖∞≤1 〈P̂1,k
h (· | s1, a)− P1

h(s1′ | s1, a), z〉S1 by the duality.
We construct an ε-covering net for the set {z ∈ R|S1| : ‖z‖∞ ≤ 1} with the distance induced by ‖ · ‖∞, denoted as Nε,
such that for any z ∈ R|S1|, there always exists z′ ∈ Nε satisfying ‖z− z′‖∞ ≤ ε. The covering number is |Nε| = 1/ε|S1|.
Thus, we know that for any (s1, a) ∈ S1 ×A and any z with ‖z‖∞ ≤ 1, there exists z′ ∈ Nε such that ‖z′ − z‖∞ ≤ ε and〈

P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z
〉
S1

=
〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z′
〉
S1

+
〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z− z′
〉
S1

≤
〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z′
〉
S1

+ ε
∥∥∥P̂1,k

h (· | s1, a)− P1
h(· | s1, a)

∥∥∥
1
,

such that we further have∥∥∥P̂1,k
h (· | s1, a)− P1

h(· | s1, a)
∥∥∥

1

= max
‖z‖∞≤1

〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a)), z
〉
S1

≤ max
z′∈Nε

〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z′
〉
S1

+ ε
∥∥∥P̂1,k

h (· | s1, a)− P1
h(· | s1, a)

∥∥∥
1
.

(26)

By Hoeffding’s inequality and union bound over all z′ ∈ Nε, when Nk
h (s1, a) > 0, with probability at least 1− δ′ where

δ′ ∈ (0, 1],

max
z′∈Nε

〈
P̂1,k
h (· | s1, a)− P1

h(· | s1, a), z′
〉
S1
≤

√
|S1| log(1/ε) + log(1/δ′)

2Nk
h (s1, a)

. (27)

Letting ε = 1/2, by (26) and (27), with probability at least 1− δ′, we have

∥∥∥P̂1,k
h (· | s1, a)− P1

h(· | s1, a)
∥∥∥

1
≤ 1

√
|S| log 2 + log(1/δ′)

2Nk
h (s1, a)

.

When Nk
h (s1, a) = 0, we have

∥∥P̂1,k
h (· | s1, a)− P1

h(· | s1, a)
∥∥

1
= ‖P1

h(· | s1, a)‖1 = 1 such that 2
√
|S| log 2+log(1/δ′)

2 >

1 =
∥∥P̂1,k

h (· | s1, a)− P1
h(· | s1, a)

∥∥
1

always holds. Thus, with probability at least 1− δ′,

∥∥∥P̂1,k
h (· | s1, a)− P1

h(· | s1, a)
∥∥∥

1
≤ 2

√
|S1| log 2 + log(1/δ′)

2 max{Nk
h (s1, a), 1}

≤

√
2|S1| log(2/δ′)

max{Nk
h (s1, a), 1}

.

Then, by union bound, assuming K > 1, letting δ′′ = |S1||A|HKδ′/2, with probability at least 1− δ′′, for any (s1, a) ∈
S1 ×A and any h ∈ [H] and k ∈ [K], we have

∥∥∥P̂1,k
h (· | s1, a)− P1

h(· | s1, a)
∥∥∥

1
≤

√
2|S1| log(|S1||A|HK/δ′′)

max{Nk
h (s1, a), 1}

.

Similarly, we can also obtain that with probability at least 1− δ′′, for any (s2, a) ∈ S2 × B and any h ∈ [H] and k ∈ [K],
we have ∥∥∥P̂2,k

h (· | s2, b)− P2
h(· | s2, b)

∥∥∥
1
≤

√
2|S2| log(|S2||B|HK/δ′′)

max{Nk
h (s2, b), 1}

.

Further by union bound, we have with probability at least 1− δ where δ = 2δ′′,

∥∥∥P̂kh(· | s, a, b)− Ph(· | s, a, b)
∥∥∥

1
≤

√
2|S1| log(2|S1||A|HK/δ)

max{Nk
h (s1, a), 1}

+

√
2|S2| log(2|S2||B|HK/δ)

max{Nk
h (s2, b), 1}

.

This completes the proof.
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In (9), we set βP,kh (s, a, b) =
√

2H2|S1| log(2|S1||A|HK/δ)
max{Nkh (s1,a),1} +

√
2H2|S2| log(2|S2||B|HK/δ)

max{Nkh (s2,b),1} , which equals the product of the
upper bound in Lemma B.4 and the factor H .
Lemma B.5. With probability at least 1− 2δ, Algorithm 1 ensures that

K∑
k=1

H∑
h=1

Eµ∗,P,νk
[
ιkh(sh, ah, bh)

∣∣ s1

]
≤ 0.

Proof. We prove the upper bound of the model prediction error term. We can write the instantaneous prediction error at the
h-step of the k-th episode as

ιkh(s, a, b) = rh(s, a, b) +
〈
Ph(· | s, a, b), V kh+1(·)

〉
S −Q

k

h(s, a, b), (28)

where the equality is by the definition of the prediction error in (17). By plugging in the definition of Q
k

h in Line (1) of
Algorithm 1, for any (s, a, b), we bound the following term as

rh(s, a, b) +
〈
Ph(· | s, a, b), V kh+1(·)

〉
S −Q

k

h(s, a, b)

≤ rh(s, a, b) +
〈
Ph(· | s, a, b), V kh+1(·)

〉
S −min

{
r̂kh(s, a, b) +

〈
P̂kh(·|s, a, b), V kh+1(·)

〉
S − β

k
h, H − h+ 1

}
≤ max

{
rh(s, a, b)− r̂kh(s, a, b) +

〈
Ph(· | s, a, b)− P̂kh(·|s, a, b), V kh+1(·)

〉
S − β

k
h, 0
}
,

(29)

where the inequality holds because

rh(s, a, b) +
〈
Ph(· | s, a, b), V kh+1(·)

〉
S

≤ rh(s, a, b) +
∥∥Ph(· | s, a, b)

∥∥
1
‖V kh+1(·)‖∞ ≤ 1 + max

s′∈S

∣∣V kh+1(s′)
∣∣ ≤ 1 +H − h,

since
∥∥Ph(· | s, a, b)

∥∥
1

= 1 and also the truncation step as shown in Line 1 of Algorithm 1 for Q
k

h+1 such that for any
s′ ∈ S ∣∣V kh+1(s′)

∣∣ =
∣∣∣[µkh+1(·|s′)

]>
Q
k

h+1(s′, ·, ·)νkh+1(·|s′)
∣∣∣

≤
∥∥µkh+1(·|s′)

∥∥
1

∥∥Qkh+1(s′, ·, ·)νkh+1(·|s′)
∥∥
∞

≤ max
a,b

∣∣Qkh+1(s′, a, b)
∣∣ ≤ H.

(30)

Combining (28) and (29) gives

ιkh(s, a, b) ≤ max
{
rh(s, a, b)− r̂kh(s, a, b) +

〈
Ph(· | s, a, b)− P̂kh(·|s, a, b), V kh+1(·)

〉
S − β

k
h, 0
}
. (31)

Note that as shown in (9), we have

βkh(s, a, b) = βr,kh (s, a, b) + βP,kh (s, a, b).

Then, with probability at least 1− δ, we have

rh(s, a, b)− r̂kh(s, a, b)− βr,kh (s, a, b)

≤
∣∣rh(s, a, b)− r̂kh(s, a, b)

∣∣− βr,kh (s, a, b)

≤ βr,kh (s, a, b)− βr,kh (s, a, b) = 0,

where the last inequality is by Lemma B.3 and the setting of the bonus for the reward. Moreover, with probability at least
1− δ, we have 〈

Ph(· | s, a, b)− P̂kh(·|s, a, b), V kh+1(·)
〉
S − β

P,k
h (s, a, b)

≤
∥∥Ph(· | s, a, b)− P̂kh(·|s, a, b)

∥∥
1

∥∥V kh+1(·)
∥∥
∞ − β

P,k
h (s, a, b)

≤ H
∥∥Ph(· | s, a, b)− P̂kh(·|s, a)

∥∥
1
− βP,kh (s, a, b)

≤ βP,kh (s, a, b)− βP,kh (s, a, b) = 0,
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where the first inequality is by Cauchy-Schwarz inequality, the second inequality is due to maxs′∈S
∥∥V kh+1(s′)

∥∥
∞ ≤ H as

shown in (30), and the last inequality is by the setting of βP,kh in (9) and also Lemma B.4. Thus, with probability at least
1− 2δ, the following inequality holds

rh(s, a, b)− r̂kh(s, a, b) +
〈
Ph(· | s, a, b)− P̂kh(·|s, a, b), V kh+1(·)

〉
S − β

k
h(s, a, b) ≤ 0.

Combining the above inequality with (58), we have that with probability at least 1− 2δ, for any h ∈ [H] and k ∈ [K], the
following inequality holds

ιkh(s, a, b) ≤ 0, ∀(s, a, b) ∈ S ×A× B,

which leads to

K∑
k=1

H∑
h=1

Eµ∗,P,νk
[
ιkh(sh, ah, bh)

∣∣ s1

]
≤ 0.

This completes the proof.

Lemma B.6. With probability at least 1− δ, Algorithm 1 ensures that

K∑
k=1

V
k

1(s1)−
K∑
k=1

V µ
k,νk

1 (s1) ≤ Õ(
√
|S1|2|A|H4K +

√
|S2|2|B|H4K +

√
|S1||S2||A||B|H2K).

Proof. We assume that a trajectory {(skh, akh, bkh, skh+1)}Hh=1 for all k ∈ [K] is generated according to the policies µk, νk,
and the true transition model P . Thus, we expand the bias term at the h-th step of the k-th episode, which is

V
k

h(skh)− V µ
k,νk

h (skh)

=
[
µkh(·|skh)

]>[
Q
k

h(skh, ·, ·)−Q
µk,νk

h (skh, ·, ·)
]
νkh(·|skh)

= ζkh +Q
k

h(skh, a
k
h, b

k
h)−Qµ

k,νk

h (skh, a
k
h, b

k
h)

= ζkh +
〈
Ph(· | skh, akh, bkh), V

k

h+1(·)− V µ
k,νk

h+1 (·)
〉
S − ι

k
h(skh, a

k
h, b

k
h)

= ζkh + ξkh + V
k

h+1(skh+1)− V µ
k,νk

h+1 (skh+1)− ιkh(skh, a
k
h, b

k
h),

(32)

where the first equality is by Line 2 of Algorithm 2 and (1), the third equality is by plugging in (2) and (36). Specifically, in
the above equality, we introduce two martingale difference sequence, namely, {ζkh}h≥0,k≥0 and {ξkh}h≥0,k≥0, which are
defined as

ζkh :=
[
µkh(·|skh)

]>[
Q
k

h(skh, ·, ·)−Q
µk,νk

h (skh, ·, ·)
]
νkh(·|skh)−

[
Q
k

h(skh, a
k
h, b

k
h)−Qµ

k,νk

h (skh, a
k
h, b

k
h)
]
,

ξkh :=
〈
Ph(· | skh, akh, bkh), V

k

h+1(·)− V µ
k,νk

h+1 (·)
〉
S −

[
V
k

h+1(skh+1)− V µ
k,νk

h+1 (skh+1)
]
,

such that

Eakh∼µkh(·|skh),bkh∼ν
k
h(·|skh)

[
ζkh
∣∣Fkh ] = 0, Eskh+1∼Ph(· | skh,a

k
h,b

k
h)

[
ξkh
∣∣ F̃kh] = 0,

with Fkh being the filtration of all randomness up to (h− 1)-th step of the k-th episode plus skh, and F̃kh being the filtration
of all randomness up to (h− 1)-th step of the k-th episode plus skh, a

k
h, b

k
h.

The equality (32) forms a recursion for V
k

h(skh) − V µ
k,νk

h (skh). We also have V
k

H+1(·) = 0 and V µ
k,νk

H+1 (·) = 0. Thus,
recursively apply (32) from h = 1 to H leads to the following equality

V
k

1(s1)− V µ
k,νk

1 (s1) =

H∑
h=1

ζkh +

H∑
h=1

ξkh −
H∑
h=1

ιkh(skh, a
k
h, b

k
h). (33)
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Moreover, by (17) and Line 1 of Algorithm 1, we have

−ιkh(skh, a
k
h, b

k
h) = −rh(skh, a

k
h, b

k
h)−

〈
Ph(· | sh, ah, bh), V

k

h+1(·)
〉
S

+ min
{
r̂kh(skh, a

k
h, b

k
h) +

〈
P̂kh(·|sh, ah, bh), V

k

h+1(·)
〉
S + βkh(skh, a

k
h, b

k
h), H

}
.

Then, we can further bound −ιkh(skh, a
k
h, b

k
h) as follows

−ιkh(skh, a
k
h, b

k
h) ≤ −rh(skh, a

k
h, b

k
h)−

〈
Ph(· | skh, akh, bkh), V

k

h+1(·)
〉
S + r̂kh(skh, a

k
h, b

k
h)

+
〈
P̂kh(·|skh, akh, bkh), V

k

h+1(·)
〉
S + βkh(skh, a

k
h, b

k
h)

≤
∣∣r̂kh(skh, a

k
h, b

k
h)− rh(skh, a

k
h, b

k
h)
∣∣

+
∣∣∣〈Ph(· | skh, akh, bkh)− P̂kh(· | skh, akh, bkh), V

k

h+1(·)
〉
S

∣∣∣+ βkh(skh, a
k
h, b

k
h),

where the first inequality is due to min{x, y} ≤ x. Additionally, we have∣∣∣〈Ph(· | skh, akh, bkh)− P̂kh(· | skh, akh, bkh), V
k

h+1(·)
〉
S

∣∣∣
≤
∥∥V kh+1(·)

∥∥
∞

∥∥Ph(· | skh, akh, bkh)− P̂kh(· | skh, akh, bkh)
∥∥

1

≤ H
∥∥Ph(· | skh, akh, bkh)− P̂kh(· | skh, akh, bkh)

∥∥
1
,

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is by (57). Thus, putting the above
together, we obtain

−ιkh(skh, a
k
h, b

k
h) ≤

∣∣r̂kh(skh, a
k
h, b

k
h)− rh(skh, a

k
h, b

k
h)
∣∣+H

∥∥Ph(· | skh, akh, bkh)− Ph(· | skh, akh, bkh)
∥∥

1
+ βkh(skh, a

k
h, b

k
h)

≤ 2βr,kh (skh, a
k
h, b

k
h) + 2βP,kh (skh, a

k
h, a

k
h),

where the second inequality is by Lemma B.3, Lemma B.4, and the decomposition of the bonus term βkh as (9). Due to
Lemma B.3 and Lemma B.4, by union bound, for any h ∈ [H], k ∈ [K] and (sh, ah, bh) ∈ S ×A×B, the above inequality
holds with probability with probability at least 1− 2δ. Therefore, by (33), with probability at least 1− 2δ, we have

K∑
k=1

[
V
k

1(s1)− V µ
k,νk

1 (s1)
]

≤
K∑
k=1

H∑
h=1

ζkh +

K∑
k=1

H∑
h=1

ξkh + 2

K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) + 2

K∑
k=1

H∑
h=1

βP,kh (skh, a
k
h, b

k
h).

(34)

By Azuma-Hoeffding inequality, with probability at least 1− δ, the following inequalities hold
K∑
k=1

H∑
h=1

ζkh ≤ O

(√
H3K log

1

δ

)
,

K∑
k=1

H∑
h=1

ξkh ≤ O

(√
H3K log

1

δ

)
,

where we use the facts that |Qkh(skh, a
k
h, b

k
h)−Qµ

k,νk

h (skh, a
k
h, b

k
h)| ≤ 2H and |V kh+1(skh+1)− V µ

k,νk

h+1 (skh+1)| ≤ 2H . Next,
we need to bound

∑K
k=1

∑H
h=1 β

r,k
h (skh, a

k
h, b

k
h) and

∑K
k=1

∑H
h=1 β

P,k
h (skh, a

k
h, b

k
h) in (34). We show that

K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) = C

K∑
k=1

H∑
h=1

√
log(|S1||S2||A||B|HK/δ)

max{Nk
h (s1,k

h , s2,k
h , akh, b

k
h), 1}

= C

K∑
k=1

H∑
h=1

√
log(|S1||S2||A||B|HK/δ)
Nk
h (s1,k

h , s2,k
h , akh, b

k
h)

≤ C
H∑
h=1

∑
(s1,s2,a,b)∈S1×S2×A×B

NKh (s1,s2,a,b)>0

NKh (s1,s2,a,b)∑
n=1

√
log(|S1||S2||A||B|HK/δ)

n
,
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where the second equality is because (s1,k
h , s2,k

h , akh, b
k
h) is visited such that Nk

h (s1,k
h , s2,k

h , akh, b
k
h) ≥ 1. In addition, we have

H∑
h=1

∑
(s1,s2,a,b)∈S1×S2×A×B

NKh (s1,s2,a,b)>0

NKh (s1,s2,a,b)∑
n=1

√
log(|S1||S2||A||B|HK/δ)

n

≤
H∑
h=1

∑
(s1,s2,a,b)∈S1×S2×A×B

O

(√
NK
h (s1, s2, a, b) log

|S1||S2||A||B|HK
δ

)

≤ O

(
H

√
K|S1||S2||A||B| log

|S1||S2|A||B|HK
δ

)
,

where the last inequality is based on the consideration that
∑

(s1,s2,a,b)∈S1×S2×A×BN
K
h (s1, s2, a, b) = K such that∑

(s1,s2,a,b)∈S1×S2×A×B

√
NK
h (s1, s2, a, b) ≤ O

(√
K|S1||S2||A||B|

)
when K is sufficiently large. Putting the above

together, we obtain

K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) ≤ O

(
H

√
K|S1||S2||A||B| log

|S1||S2|A||B|HK
δ

)
.

Similarly, we have

K∑
k=1

H∑
h=1

βP,kh (skh, a
k
h, b

k
h) =

K∑
k=1

H∑
h=1

(√
2H2|S1| log(2|S1||A|HK/δ)

max{Nk
h (s1,k

h , akh), 1}
+

√
2H2|S2| log(2|S2||B|HK/δ)

max{Nk
h (s2,k

h , bkh), 1}

)

≤ O

(
H

√
K|S1|2|A|H2 log

2|S1||A|HK
δ

+H

√
K|S2|2|B|H2 log

2|S2||B|HK
δ

)
.

Thus, by (34), with probability at least 1− δ, we have

K∑
k=1

V
k

1(s1)−
K∑
k=1

V µ
k,νk

1 (s1) ≤ Õ(
√
|S1|2|A|H4K +

√
|S2|2|B|H4K +

√
|S1||S2||A||B|H2K),

where Õ hides logarithmic terms. This completes the proof.

Before presenting the next lemma, we first show the following definition of confidence set for the proof of the next lemma.

Definition B.7 (Confidence Set for Player 2). Define the following confidence set for transition models for Player 2

Υ2,k :=
{
P̃ :
∣∣∣P̃h(s2′|s2, b)− P̂2,k

h (s2′|s2, b)
∣∣∣ ≤ ε2,kh , ‖P̃h(·|s2, b)‖1 = 1,

and P̃h(s2′|s2, b) ≥ 0, ∀(s2, b, s2′) ∈ S2 × B × S2,∀k ∈ [K]
}

where we define

ε2,kh := 2

√
P̂2,k
h (s2′|s2, b) log(|S2||B|HK/δ′)

max{Nk
h (s2, b)− 1, 1}

+
14 log(|S2||B|HK/δ′)

3 max{Nk
h (s2, b)− 1, 1}

with Nk
h (s2, b) :=

∑k
τ=1 1{(s2, b) = (s2,τ

h , bτh)}, and P̂2,k being the empirical transition model for Player 2.

Lemma B.8. With probability at least 1− δ, the difference between qν
k,P2

h and dν
k,P̂2,k

h are bounded as

K∑
k=1

H∑
h=1

∑
s2∈S2

∣∣∣qνk,P2

h (s2)− dν
k,P̂2,k

h (s2)
∣∣∣ ≤ Õ (H2|S2|

√
|B|K

)
.
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Proof. By the definition of state distribution for Player 2, we have

K∑
k=1

H∑
h=1

∑
s2∈S2

∣∣∣qνk,P2

h (s2)− dν
k,P̂2,k

h (s2)
∣∣∣ =

K∑
k=1

H∑
h=1

∑
s2∈S2

∣∣∣∣∣∑
b∈B

w2,k
h (s2, b)−

∑
b∈B

ŵ2,k
h (s2, b)

∣∣∣∣∣
≤

K∑
k=1

H∑
h=1

∑
s2∈S2

∑
b∈B

∣∣w2,k
h (s, a)− ŵ2,k

h (s2, b)
∣∣.

where ŵ2,k
h (s2, b) is the occupancy measure under the empirical transition model P̂2,k and the policy νk. Then, since

P̂2,k ∈ Υ2,k always holds for any k, by Lemma B.11, we can bound the last term of the bound inequality such that with
probability at least 1− 6δ′,

K∑
k=1

H∑
h=1

∑
s2∈S2

∣∣∣qνk,P2

h (s2)− dν
k,P̂2,k

h (s2)
∣∣∣ ≤ E1 + E2.

Then, we compute E1 by Lemma B.10. With probability at least 1− 2δ′, we have

E1 = O

 H∑
h=2

h−1∑
h′=1

K∑
k=1

∑
s2∈S2

∑
b∈B

wkh(s2, b)

(√
|S2| log(|S2||B|HK/δ′)

max{Nk
h (s2, b), 1}

+
log(|S2||B|HK/δ′)
max{Nk

h (s2, b), 1}

)
= O

[
H∑
h=2

h−1∑
h′=1

√
|S2|

(√
|S2||B|K + |S2||B| logK + log

H

δ′

)
log
|S2||B|HK

δ′

]

= O
[(
H2|S2|

√
|B|K +H2|S2|3/2|B| logK +H2

√
|S2| log

H

δ′

)
log
|S2||B|HK

δ′

]
= Õ

(
H2|S2|

√
|B|K

)
,

where we ignore logK when K is sufficiently large such that
√
K dominates, and Õ hides logarithm dependence on |S2|,

|B|, H , K, and 1/δ′. In addition, E2 depends on ploy(H, |S2|, |B|) except the factor log |S2||B|HKδ′ as shown in Lemma
B.11. Thus, E2 can be ignored comparing to E1 if K is sufficiently large. Therefore, we obtain that with probability at least
1− 8δ′, the following inequality holds

K∑
k=1

H∑
h=1

∑
s2∈S2

∣∣∣qνk,P2

h (s2)− dν
k,P̂2,k

h (s2)
∣∣∣ ≤ Õ (H2|S2|

√
|B|K

)
.

We further let δ = 8δ′ such that log |S2||B|HKδ′ = log 8|S2||B|HK
δ which does not change the order as above. Then, with

probability at least 1−δ, we have
∑K
k=1

∑H
h=1

∑
s2∈S2 |q

νk,P2

h (s2)−dν
k,P̂2,k

h (s2)| ≤ Õ(H2|S2|
√
|B|K). This completes

the proof.

B.1. Other Supporting Lemmas

The following lemmas are adapted from the recent papers (Efroni et al., 2020; Jin & Luo, 2019), where we can find their
detailed proofs.

Lemma B.9. With probability at least 1− 4δ′, the true transition model P2 satisfies that for any k ∈ [K],

P ∈ Υ2,k.

This lemma indicates that the estimated transition model P̂2,k
h (s2′|s2, b) for Player 2 by (11) is closed to the true transition

model P2
h(s2′|s2, b) with high probability. The upper bound is by empirical Bernstein’s inequality and the union bound.

The next lemma is adapted from Lemma 10 in Jin & Luo (2019).
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Lemma B.10. We let w2,k
h (s2, b) denote the occupancy measure at the h-th step of the k-th episode under the true transition

model P2 and the current policy νk. Then, with probability at least 1 − 2δ′ we have for all h ∈ [H], the following
inequalities hold

K∑
k=1

∑
s2∈S2

∑
b∈B

wkh(s2, b)

max{Nk
h (s2, b), 1}

= O
(
|S2||B| logK + log

H

δ′

)
,

and

K∑
k=1

∑
s2∈S2

∑
b∈B

wkh(s2, b)√
max{Nk

h (s2, b), 1}
= O

(√
|S2||B|K + |S2||B| logK + log

H

δ′

)
.

By Lemma B.9 and Lemma B.10, we have the following lemma to show the difference of two occupancy measures, which
is modified from parts of the proof of Lemma 4 in Jin & Luo (2019).

Lemma B.11. For Player 2, we let w2,k
h (s2, b) be the occupancy measure at the h-th step of the k-th episode under the

true transition model P2 and the current policy νk, and w̃2,k
h (s2, b) be the occupancy measure at the h-th step of the k-th

episode under any transition model P̃2,k ∈ Υk and the current policy νk for any k. Then, with probability at least 1− 6δ′

we have for all h ∈ [H], the following inequalities hold

K∑
k=1

K∑
h=1

∑
s∈S2

∑
b∈B

∣∣w̃2,k
h (s2, b)− w2,k

h (s2, b)
∣∣ ≤ E1 + E2,

where E1 and E2 are in the level of

E1 = O

 H∑
h=2

h−1∑
h′=1

K∑
k=1

∑
s2∈S2

∑
b∈B

wkh(s2, b)

(√
|S2| log(|S2||B|HK/δ′)

max{Nk
h (s2, b), 1}

+
log(|S2||B|HK/δ′)
max{Nk

h (s2, b), 1}

)
and

E2 = O
(

poly(H, |S2|, |B|) · log
|S2||B|HK

δ′

)
,

where poly(H, |S2|, |B|) denotes the polynomial dependency on H, |S2|, |B|.

C. Proofs for Section 4
Lemma C.1. At the k-th episode, the difference between value functions V µ

∗,νk

1 (s1) and V µ
k,νk

1 (s1) is

V µ
∗,νk

1 (s1)− V µ
k,νk

1 (s1) = V
k

1(s1)− V µ
k,νk

1 (s1)

+

H∑
h=1

Eµ∗,P
[〈
µ∗h(·|sh)− µkh(·|sh), Ukh (sh, ·)

〉
A

∣∣∣ s1

]
+

H∑
h=1

Eµ∗,P,νk
[
ςkh(sh, ah, bh)

∣∣ s1

]
. (35)

where sh, ah, bh are random variables for state and actions, Ukh (s, a) := 〈Qkh(s, a, ·), νkh(· | s)〉B, and we define the model
prediction error of Q-function as

ςkh(s, a, b) = rh(s, a, b) + PhV
k

h+1(s, a)−Qkh(s, a, b). (36)

Proof. We start the proof by decomposing the value function difference as

V µ
∗,νk

1 (s1)− V µ
k,νk

1 (s1) = V µ
∗,νk

1 (s1)− V k1(s1) + V
k

1(s1)− V µ
k,νk

1 (s1). (37)
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Note that the term V
k

1(s1)− V µ
k,νk

1 (s1) is the bias between the estimated value function V
k

1(s1) generated by Algorithm 2
and the value function V µ

k,νk

1 (s1) under the true transition model P at the k-th episode.

We focus on analyzing the other term V µ
∗,νk

1 (s1)− V k1(s1) in this proof. For any h and s, we have

V µ
∗,νk

h (s)− V kh(s)

= [µ∗h(·|s)]>Qµ
∗,νk

h (s, ·, ·)νkh(·|s)−
[
µkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s)

= [µ∗h(·|s)]>Qµ
∗,νk

h (s, ·, ·)νkh(·|s)− [µ∗h(·|s)]>Qkh(s, ·, ·)νkh(·|s)

+ [µ∗h(·|s)]>Qkh(s, ·, ·)νkh(·|s)−
[
µkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s)

= [µ∗h(·|s)]>
[
Qµ
∗,νk

h (s, ·, ·)−Qkh(s, ·, ·)
]
νkh(·|s)

+
[
µ∗h(·|s)− µkh(·|s)

]>
Q
k

h(s, ·, ·)νkh(·|s),

(38)

where the first inequality is by the definition of V µ
∗,νk

h in (1) and the definition of V
k

h in Line 2 of Algorithm 2. Moreover,

by the definition of Qµ
∗,νk

h (s, ·, ·) in (2) and the model prediction error ςkh for Player one in (36), we have

[µ∗h(·|s)]>
[
Qµ
∗,νk

h (s, ·, ·)−Qkh(s, ·, ·)
]
νkh(·|s)

=
∑
a∈A

∑
b∈B

µ∗h(a|s)
[ ∑
s′∈S
Ph(s′|s, a)

[
V µ
∗,νk

h+1 (s′)− V kh+1(s′)
]

+ ςkh(s, a, b)

]
νkh(b|s)

=
∑
a∈A

∑
s′∈S

µ∗h(a|s)Ph(s′|s, a)
[
V µ
∗,νk

h+1 (s′)− V kh+1(s′)
]

+
∑
a∈A

∑
b∈B

µ∗h(a|s)ςkh(s, a, b)νkh(b|s).

where the last equality holds due to
∑
b∈B ν

k
h(b | s) = 1. Combining this equality with (38) gives

V µ
∗,νk

h (s)− V kh(s) =
∑
a∈A

∑
s′∈S

µ∗h(a|s)Ph(s′|s, a)
[
V µ
∗,νk

h+1 (s′)− V kh+1(s′)
]

+
∑
a∈A

∑
b∈B

µ∗h(a|s)ςkh(s, a, b)νkh(b|s)

+
∑
a∈A

∑
b∈B

[
µ∗h(a|s)− µkh(a|s)

]
Q
k

h(s, a, b)νkh(b|s).

(39)

Note that (39) indicates a recursion of the value function difference V µ
∗,νk

h (s)− V kh(s). Since we define V µ
∗,νk

H+1 (s) = 0

and V
k

H+1(s) = 0, by recursively applying (39) from h = 1 to H , we obtain

V µ
∗,νk

1 (s1)− V k1(s1)

=

H∑
h=1

Eµ∗,P
{

[µ∗h(·|sh)]>ςkh(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
+

H∑
h=1

Eµ∗,P
{[
µ∗h(·|sh)− µkh(·|sh)

]>
Q
k

h(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
,

(40)

where sh are a random variables denoting the state at the h-th step following a distribution determined jointly by µ∗,P .
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Further combining (40) with (37), we eventually have

V µ
∗,νk

1 (s1)− V µ
k,νk

1 (s1)

= V
k

1(s1)− V µ
k,νk

1 (s1) +

H∑
h=1

Eµ∗,P
{

[µ∗h(·|sh)]>ςkh(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
+

H∑
h=1

Eµ∗,P
{[
µ∗h(·|sh)− µkh(·|sh)

]>
Q
k

h(sh, ·, ·)νkh(·|sh)
∣∣ s1

}
= V

k

1(s1)− V µ
k,νk

1 (s1) +

H∑
h=1

Eµ∗,P,νk
[
ςkh(sh, ah, bh)

∣∣ s1

]
+

H∑
h=1

Eµ∗,P
[〈
µ∗h(·|sh)− µkh(·|sh), Ukh (sh, ·)

〉
A

∣∣∣ s1

]
,

where sh, ah, bh are a random variables denoting the state and actions at the h-th step following a distribution determined
jointly by µ∗,P, νk, and Uk−1

h (s, a) := 〈Qk−1

h (s, a, ·), νk−1
h (· | s)〉B. This completes our proof.

Lemma C.2. At the k-th episode, with probability at least 1− 2δ, the difference between the value functions V µ
k,νk

1 (s1)

and V µ
k,ν∗

1 (s1) is bound as

V µ
k,νk

1 (s1)− V µ
k,ν∗

1 (s1) ≤ 2

H∑
h=1

∑
s∈S

∣∣∣qµk,Ph (s)− dkh(s)
∣∣∣

+

H∑
h=1

∑
s∈S

dkh(s)
〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B

+ 2

H∑
h=1

Eµk,P,νk
[
βr,kh (sh, ah, bh)

∣∣ s1

]
, (41)

where sh, ah, bh are random variables for state and actions, and W k
h (s, b) = 〈r̃kh(s, ·, b), µkh(· | s)〉A.

Proof. We start our proof from analyzing the difference for any h and s as follows

V µ
k,νk

h (s)− V µ
k,ν∗

h (s)

=
[
µkh(·|s)

]>
Qµ

k,νk

h (s, ·, ·)νkh(·|s)−
[
µkh(·|s)

]>
Qµ

k,ν∗

h (s, ·, ·)ν∗h(·|s)

=
[
µkh(·|s)

]>
Qµ

k,νk

h (s, ·, ·)νkh(·|s)−
[
µkh(·|s)

]>
Qµ

k,νk

h (s, ·, ·)ν∗h(·|s)

+ [µkh(·|s)]>Qµ
k,νk

h (s, ·, ·)ν∗h(·|s)−
[
µkh(·|s)

]>
Qµ

k,ν∗

h (s, ·, ·)ν∗h(·|s)

=
[
µkh(·|s)

]>
Qµ

k,νk

h (s, ·, ·)
[
νkh(·|s)− ν∗h(·|s)

]
+
[
µkh(·|s)

]>[
Qµ

k,νk

h (s, ·, ·)−Qµ
k,ν∗

h (s, ·, ·)
]
ν∗h(·|s),

(42)

where the first equality is by the Bellman equation for V µ,νh (s) in (1). Moreover, by the Bellman equation for Qµ,νh in (2),
we can expand the last term in (42) as[

µkh(·|s)
]>[

Qµ
k,νk

h (s, ·, ·)−Qµ
k,ν∗

h (s, ·, ·)
]
ν∗h(·|s)

=
∑
a∈A

∑
b∈B

µkh(a|s)
∑
s′∈S
Ph(s′|s, a)

[
V µ

k,νk

h+1 (s′)− V µ
k,ν∗

h+1 (s′)
]
ν∗h(b|s)

=
∑
a∈A

∑
s′∈S

µkh(a|s)Ph(s′|s, a)
[
V µ

k,νk

h+1 (s′)− V µ
k,ν∗

h+1 (s′)
]
.

(43)
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where the last equality holds due to
∑
b∈B ν

∗
h(b | s) = 1. Combining (43) with (42) gives

V µ
k,νk

h (s)− V µ
k,ν∗

h (s) =
∑
a∈A

∑
b∈B

µkh(a|s)Qµ
k,νk

h (s, a, b)
[
νkh(b|s)− ν∗h(b|s)

]
+
∑
a∈A

∑
s′∈S

µkh(a|s)Ph(s′|s, a)
[
V µ

k,νk

h+1 (s′)− V µ
k,ν∗

h+1 (s′)
]
.

(44)

Note that (44) indicates a recursion of the value function difference V µ
k,νk

h (s)− V µ
k,ν∗

h (s). Since we define V µ,νH+1(s) = 0
for any µ and ν, by recursively applying (44) from h = 1 to H , we obtain

V µ
k,νk

1 (s1)− V µ
k,ν∗

1 (s1) =

H∑
h=1

Eµk,P
{[
µkh(·|sh)

]>
Qµ

k,νk

h (sh, ·, ·)
[
νkh(·|sh)− ν∗h(·|sh)

] ∣∣ s1

}
, (45)

where sh are a random variables following a distribution determined jointly by µk,P . Note that since we have defined the
distribution of sh under µk and P as

qµ
k,P
h (s) = Pr

(
sh = s

∣∣µk,P, s1

)
,

we can rewrite (45) as

V µ
k,νk

1 (s1)− V µ
k,ν∗

1 (s1) =

H∑
h=1

∑
s∈S

∑
a∈A

∑
b∈B

qµ
k,P
h (s)µkh(a|s)Qµ

k,νk

h (s, a, b)
[
νkh(b|s)− ν∗h(b|s)

]
. (46)

By plugging the Bellman equation for Q-function as (2) into (46), we further expand (46) as

V µ
k,νk

1 (s1)− V µ
k,ν∗

1 (s1)

=

H∑
h=1

∑
s∈S

∑
a∈A

∑
b∈B

qµ
k,P
h (s)µkh(a|s)

[
rh(s, a, b) +

〈
Ph(·|s, a), V µ

k,νk

h+1 (·)
〉]

[νkh(b|s)− ν∗h(b|s)]

=

H∑
h=1

∑
s∈S

∑
a∈A

∑
b∈B

qµ
k,P
h (s)µkh(a|s) [rh(s, a, b)] [νkh(b|s)− ν∗h(b|s)]

=

H∑
h=1

∑
s∈S

qµ
k,P
h (s)[µkh(·|s)]>rh(s, ·, ·)

[
νkh(·|s)− ν∗h(·|s)

]
,

where the second equality by

H∑
h=1

∑
s∈S

∑
a∈A

∑
b∈B

qµ
k,P
h (s)µkh(a|s)

〈
Ph(·|s, a), V µ

k,νk

h+1 (·)
〉
S [νkh(b|s)− ν∗h(b|s)]

=

H∑
h=1

∑
s∈S

∑
a∈A

qµ
k,P
h (s)µkh(a|s)

〈
Ph(·|s, a), V µ

k,νk

h+1 (·)
〉
S

∑
b∈B

[νkh(b|s)− ν∗h(b|s)]

= 0.

In particular, the last equality above is due to∑
b∈B

[
νkh(b|s)− ν∗h(b|s)

]
= 1− 1 = 0.

Thus, we have

V µ
k,νk

1 (s1)− V µ
k,ν∗

1 (s1) =

H∑
h=1

∑
s∈S

qµ
k,P
h (s)

[
µkh(·|s)

]>
rh(s, ·, ·)

[
νkh(·|s)− ν∗h(·|s)

]
. (47)
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Now we define the following term associated with estimation P̂k, r̂h, policies µk, νk, and the initial state s1 as

V k1(s1) :=

H∑
h=1

∑
s∈S

qµ
k,P̂k
h (s)

[
µkh(·|s)

]>
r̃kh(s, ·, ·)νkh(·|s),

with r̃ defined in Line 3 of Algorithm 3, which is

r̃kh(s, a, b) = max
{
r̂kh(s, a, b)− βr,kh (s, a, b), 0

}
.

Thus, we have the following decomposition

V µ
k,νk

1 (s1)− V µ
k,ν∗

1 (s1)

= V µ
k,νk

1 (s1)− V k1(s1) + V k1(s1)− V µ
k,ν∗

1 (s1)

=

H∑
h=1

∑
s∈S

{
qµ

k,P
h (s)

[
µkh(·|s)

]>
rh(s, ·, ·)νkh(·|s)− qµ

k,P̂k
h (s)

[
µkh(·|s)

]>
r̃kh(s, ·, ·)νkh(·|s)

}
︸ ︷︷ ︸

Term(I)

+

H∑
h=1

∑
s∈S

{
qµ

k,P̂k
h (s)

[
µkh(·|s)

]>
r̃kh(s, ·, ·)νkh(·|s)− qµ

k,P
h (s)

[
µkh(·|s)

]>
rh(s, ·, ·)ν∗h(·|s)

}
︸ ︷︷ ︸

Term(II)

.

(48)

We first bound Term(I) as

Term(I) =

H∑
h=1

∑
s∈S

{
qµ

k,P
h (s)

[
µkh(·|s)

]>
rh(s, ·, ·)νkh(·|s)− qµ

k,P̂k
h (s)

[
µkh(·|s)

]>
r̃kh(s, ·, ·)νkh(·|s)

}

=

H∑
h=1

∑
s∈S

qµ
k,P
h (s)

[
µkh(·|s)

]>[
rh(s, ·, ·)− r̃kh(s, ·, ·)

]
νkh(·|s)

+

H∑
h=1

∑
s∈S

[
qµ

k,P
h (s)− qµ

k,P̂k
h (s)

][
µkh(·|s)

]>
r̃kh(s, ·, ·)νkh(·|s)

≤ 2

H∑
h=1

Eµk,P,νk
[
βr,kh (s, a, b)

]
+

H∑
h=1

∑
s∈S

∣∣∣qµk,Ph (s)− qµ
k,P̂k
h (s)

∣∣∣ ,
where the inequality is due to |r̂kh(s, a, b)− rh(s, a, b)| ≤ βr,kh (s, a, b) with probability at least 1− δ because of Lemma
C.4 such that we have

rh(s, a, b)− r̃kh(s, a, b) = rh(s, a, b)−max
{
r̂kh(s, a, b)− βr,kh (s, a, b), 0

}
= min

{
rh(s, a, b)− r̂kh(s, a, b) + βr,kh (s, a, b), rh(s, a, b)

}
≤ rh(s, a, b)− r̂kh(s, a, b) + βr,kh (s, a, b) ≤ 2βr,kh (s, a, b),

which yields ∑
s∈S

qµ
k,P
h (s)

[
µkh(·|s)

]>[
rh(s, ·, ·)− r̃kh(s, ·, ·)

]
νkh(·|s) ≤ 2Eµk,P,νk

[
βr,kh (s, a, b)

]
,

and we also have ∣∣∣∣[µkh(·|s)
]>
r̃kh(s, ·, ·)νkh(·|s)

∣∣∣∣ ≤ ∣∣∣∣∑
a

∑
b

µkh(a|s)r̃kh(s, a, b)νkh(b|s)
∣∣∣∣

≤
∑
a

∑
b

µkh(a|s) ·
∣∣r̃kh(s, a, b)

∣∣ · νkh(b|s) ≤ 1,
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because of r̃kh(s, a, b) = max
{
r̂kh(s, a, b)− βr,kh (s, a, b), 0

}
≤ r̂kh(s, a, b) ≤ 1. Therefore, with probability at least 1− δ,

we have

Term(I) ≤ 2

H∑
h=1

Eµk,P,νk
[
βr,kh (sh, ah, bh)

]
+

H∑
h=1

∑
s∈S

∣∣∣qµk,Ph (s)− qµ
k,P̂k
h (s)

∣∣∣ . (49)

Next, we bound Term(II) in the following way

Term(II) =

H∑
h=1

∑
s∈S

qµ
k,P̂k
h (s)

[
µkh(·|s)

]>
r̃kh(s, ·, ·)

[
νkh(·|s)− ν∗h(·|s)

]
+

H∑
h=1

∑
s∈S

[
qµ

k,P̂k
h (s)− qµ

k,P
h (s)

][
µkh(·|s)

]>
r̃kh(s, ·, ·)νkh(·|s)

+

H∑
h=1

∑
s∈S

qµ
k,P̂k
h (s)

[
µkh(·|s)

]>[
r̃kh(s, ·, ·)− rh(s, ·, ·)

]
νkh(·|s).

Here the first term in the above equality is associated with the mirror descent step in Algorithm 3. The second term can be
similarly bounded by

∑H
h=1

∑
s∈S |q

µk,P
h (s)− qµ

k,P̂k
h (s)|. With probability at least 1− δ, the third term is bounded as

H∑
h=1

∑
s∈S

qµ
k,P̂k
h (s)[µkh(·|s)]>

[
r̃kh(s, ·, ·)− rh(s, ·, ·)

]
νkh(·|s)

=

H∑
h=1

∑
s∈S

qµ
k,P̂k
h (s)

∑
a,b

µkh(a|s)
[
r̃kh(s, a, b)− rh(s, a, b)

]
νkh(b|s)

=

H∑
h=1

∑
s∈S

qµ
k,P̂k
h (s)

∑
a,b

µkh(a|s) max
{
r̂k−1
h (s, a, b)− rh(s, a, b)− βr,k−1

h ,−rh(s, a, b)
}
νkh(b|s)

≤ 0,

since r̂k−1
h (s, a, b)− rh(s, a, b)− βr,k−1

h ≤ 0 with probability at least 1− δ by Lemma C.4, which reflects the ’optimism’
of the algorithm. Thus, with probability at least 1− δ, we have

Term(II) ≤
H∑
h=1

∑
s∈S

qµ
k,P̂k
h (s)

[
µkh(·|s)

]>
r̃kh(s, ·, ·)

[
νkh(·|s)− ν∗h(·|s)

]
+

H∑
h=1

∑
s∈S

∣∣∣qµk,Ph (s)− qµ
k,P̂k
h (s)

∣∣∣ . (50)

Combining (49), (50) with (48), we obtain that with probability at least 1− 2δ, the following inequality holds

V µ
k,νk

1 (s1)− V µ
k,ν∗

1 (s1) ≤
H∑
h=1

∑
s∈S

qµ
k,P̂k
h (s)

[
µkh(·|s)

]>
r̃kh(s, ·, ·)

[
νkh(·|s)− ν∗h(·|s)

]
+ 2

H∑
h=1

∑
s∈S

∣∣∣qµk,Ph (s)− qµ
k,P̂k
h (s)

∣∣∣+ 2

H∑
h=1

Eµk,P,νk
[
βr,kh (sh, ah, bh)

]
.

This completes our proof.

Lemma C.3. With setting η =
√

log |A|/(KH2), the mirror ascent steps of Algorithm 2 lead to

K∑
k=1

H∑
h=1

Eµ∗,P
[〈
µ∗h(·|s)− µkh(·|s), Ukh (s, ·)

〉
A

]
≤ O

(√
H4K log |A|

)
.
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Proof. As shown in (13), the mirror ascent step at the k-th episode is to solve the following maximization problem

maximize
µ∈∆(A |S,H)

H∑
h=1

〈
µh(·|s)− µkh(·|s), Ukh (s, ·)

〉
A −

1

η

H∑
h=1

DKL

(
µh(·|s), µkh(·|s)

)
,

with Ukh (s, a) = 〈Qkh(s, a, ·), νkh(·|s)〉B. We can further equivalently rewrite this maximization problem to a minimization
problem as

minimize
µ∈∆(A |S,H)

−
H∑
h=1

〈
µh(·|s)− µkh(·|s), Ukh (s, ·)

〉
A +

1

η

H∑
h=1

DKL

(
µh(·|s), µkh(·|s)

)
.

Note that the closed-form solution µk+1
h (a|s) = (Y kh )−1µkh(a | s) exp{η〈Qkh(s, a, ·), νkh(· | s)〉B} to this minimization

problem is guaranteed to stay in the relative interior of its feasible set ∆(A |S, H) when initialize µ0
h(·|s) = 1/|A|. Thus,

we can apply Lemma C.12 and obtain that for any µ = {µh}Hh=1, the following inequality holds

− η
〈
µk+1
h (·|s), Ukh (s, ·)

〉
A + η

〈
µh(·|s), Ukh (s, ·)

〉
A

≤ DKL

(
µh(·|s), µkh(·|s)

)
−DKL

(
µh(·|s), µk+1

h (·|s)
)
−DKL

(
µk+1
h (·|s), µkh(·|s)

)
.

Then, by rearranging the terms, we have

η
〈
µ∗h(·|s)− µkh(·|s), Ukh (s, ·)

〉
A

≤ DKL

(
µ∗h(·|s), µkh(·|s)

)
−DKL

(
µ∗h(·|s), µk+1

h (·|s)
)
−DKL

(
µk+1
h (·|s), µkh(·|s)

)
+ η
〈
µk+1
h (·|s)− µkh(·|s), Ukh (s, ·)

〉
A.

(51)

Due to Pinsker’s inequality, we have

−DKL

(
µk+1
h (·|s), µkh(·|s)

)
≤ −1

2

∥∥µk+1
h (·|s)− µkh(·|s)

∥∥2

1
.

Moreover, by Cauchy-Schwarz inequality, we have

η
〈
µk+1
h (·|s)− µkh(·|s), Ukh (s, ·)

〉
A ≤ ηH

∥∥µk+1
h (·|s)− µkh(·|s)

∥∥
1
.

Thus, we have

−DKL

(
µk+1
h (·|s), µkh(·|s)

)
+ η
〈
µk+1
h (·|s)− µkh(·|s), Ukh (s, ·)

〉
A

≤ −1

2

∥∥µk+1
h (·|s)− µkh(·|s)

∥∥2

1
+ ηH

∥∥µk+1
h (·|s)− µkh(·|s)

∥∥
1

≤ 1

2
η2H2,

(52)

where the last inequality is by viewing
∥∥µk+1

h (·|s) − µkh(·|s)
∥∥

1
as a variable x and finding the maximal value of −1/2 ·

x2 + ηHx to obtain the upper bound 1/2 · η2H2.

Thus, combing (52) with (51), the policy improvement step in Algorithm 2 implies

η
〈
µ∗h(·|s)− µkh(·|s), Ukh (s, ·)

〉
A ≤ DKL

(
µ∗h(·|s), µkh(·|s)

)
−DKL

(
µ∗h(·|s), µk+1

h (·|s)
)

+
1

2
η2H2,

which further leads to

H∑
h=1

Eµ∗,P
[〈
µ∗h(·|s)− µkh(·|s), Ukh (s, ·)

〉
A

]
≤ 1

η

H∑
h=1

Eµ∗,P
[
DKL

(
µ∗h(·|s), µkh(·|s)

)
−DKL

(
µ∗h(·|s), µk+1

h (·|s)
)]

+
1

2
ηH3.
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Moreover, we take summation from k = 1 to K of both sides and then obtain

K∑
k=1

H∑
h=1

Eµ∗,P
[〈
µ∗h(·|s)− µkh(·|s), Ukh (s, ·)

〉
A

]
≤ 1

η

H∑
h=1

Eµ∗,P
[
DKL

(
µ∗h(·|s), µ1

h(·|s)
)
−DKL

(
µ∗h(·|s), µK+1

h (·|s)
)]

+
1

2
ηKH3

≤ 1

η

H∑
h=1

Eµ∗,P
[
DKL

(
µ∗h(·|s), µ1

h(·|s)
)]

+
1

2
ηKH3,

where the last inequality is non-negativity of KL divergence. By the initialization in Algorithm 2, it is guaranteed that
µ1
h(·|s) = 1/|A|, which thus leads to DKL

(
µ∗h(·|s), µ1

h(·|s)
)
≤ log |A|. Then, with setting η =

√
log |A|/(KH2), we

bound the last term as

1

η

H∑
h=1

Eµ∗,P
[
DKL

(
µ∗h(·|s), µ1

h(·|s)
)]

+
1

2
ηKH3 ≤ O

(√
H4K log |A|

)
,

which gives

K∑
k=1

H∑
h=1

Eµ∗,P
[〈
µ∗h(·|s)− µkh(·|s), Ukh (s, ·)

〉
A

]
≤ O

(√
H4K log |A|

)
,

This completes the proof.

Lemma C.4. For any k ∈ [K], h ∈ [H] and all (s, a, b) ∈ S ×A× B, with probability at least 1− δ, we have

∣∣r̂kh(s, a, b)− rh(s, a, b)
∣∣ ≤√4 log(|S||A||B|HK/δ)

max{Nk
h (s, a, b), 1}

.

Proof. The proof for this theorem is a direct application of Hoeffding’s inequality. For k ≥ 1, the definition of r̂kh in (11)
indicates that r̂kh(s, a, b) is the average of Nk

h (s, a, b) samples of the observed rewards at (s, a, b) if Nk
h (s, a, b) > 0. Then,

for fixed k ∈ [K], h ∈ [H] and state-action tuple (s, a, b) ∈ S ×A× B, when Nk
h (s, a, b) > 0, according to Hoeffding’s

inequality, with probability at least 1− δ′ where δ′ ∈ (0, 1], we have

∣∣r̂kh(s, a, b)− rh(s, a, b)
∣∣ ≤√ log(2/δ′)

2Nk
h (s, a, b)

,

where we also use the facts that the observed rewards rkh ∈ [0, 1] for all k and h, and E
[
r̂kh
]

= rh for all k and h. For the
case where Nk

h (s, a, b) = 0, by (11), we know r̂kh(s, a, b) = 0 such that |r̂kh(s, a, b)− rh(s, a, b)| = |rh(s, a, b)| ≤ 1. On
the other hand, we have

√
2 log(2/δ′) ≥ 1 > |r̂kh(s, a, b)− rh(s, a, b)|. Thus, combining the above results, with probability

at least 1− δ′, for fixed k ∈ [K], h ∈ [H] and state-action tuple (s, a, b) ∈ S ×A× B, we have

∣∣r̂kh(s, a, b)− rh(s, a, b)
∣∣ ≤√ 2 log(2/δ′)

max{Nk
h (s, a, b), 1}

.

Moreover, by the union bound, letting δ = |S||A||B|HKδ′/2, assuming K > 1, with probability at least 1 − δ, for any
k ∈ [K], h ∈ [H] and any state-action tuple (s, a, b) ∈ S ×A× B, we have

∣∣r̂kh(s, a, b)− rh(s, a, b)
∣∣ ≤√4 log(|S||A||B|HK/δ)

max{Nk
h (s, a, b), 1}

.

This completes the proof.
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In (12), we set βr,kh (s, a, b) =
√

4 log(|S||A||B|HK/δ)
max{Nkh (s,a,b),1} , which equals the bound in Lemma C.4.

Lemma C.5. For any k ∈ [K], h ∈ [H] and all (s, a) ∈ S ×A, with probability at least 1− δ, we have

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
≤

√
2|S| log(|S||A|HK/δ)

max{Nk
h (s, a), 1}

.

Proof. For k ≥ 1, we have ‖P̂kh(· | s, a)− Ph(· | s, a)‖1 = max‖z‖∞≤1 〈P̂kh(· | s, a)− Ph(· | s, a), z〉S by the duality. We
construct an ε-covering net for the set {z ∈ R|S| : ‖z‖∞ ≤ 1} with the distance induced by ‖ · ‖∞, denoted as Nε, such
that for any z ∈ R|S|, there always exists z′ ∈ Nε satisfying ‖z− z′‖∞ ≤ ε. The covering number is |Nε| = 1/ε|S|. Thus,
we know that for any (s, a) ∈ S ×A and any z with ‖z‖∞ ≤ 1, there exists z′ ∈ Nε such that ‖z′ − z‖∞ ≤ ε and〈

P̂kh(· | s, a)− Ph(· | s, a), z
〉
S

=
〈
P̂kh(· | s, a)− Ph(· | s, a), z′

〉
S +

〈
P̂kh(· | s, a)− Ph(· | s, a), z− z′

〉
S

≤
〈
P̂kh(· | s, a)− Ph(· | s, a), z′

〉
S + ε

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
,

such that we further have∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1

= max
‖z‖∞≤1

〈
P̂kh(· | s, a)− Ph(· | s, a), z

〉
S

≤ max
z′∈Nε

〈
P̂kh(· | s, a)− Ph(· | s, a), z′

〉
S + ε

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
.

(53)

By Hoeffding’s inequality and union bound over all z′ ∈ Nε, when Nk
h (s, a) > 0, with probability at least 1− δ′ where

δ′ ∈ (0, 1],

max
z′∈Nε

〈
P̂kh(· | s, a)− Ph(· | s, a), z′

〉
S ≤

√
|S| log(1/ε) + log(1/δ′)

2Nk
h (s, a)

. (54)

Letting ε = 1/2, by (53) and (54), with probability at least 1− δ′, we have

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
≤ 1

√
|S| log 2 + log(1/δ′)

2Nk
h (s, a)

.

When Nk
h (s, a) = 0, we have

∥∥P̂kh(· | s, a) − Ph(· | s, a)
∥∥

1
= ‖Ph(· | s, a)‖1 = 1 such that 2

√
|S| log 2+log(1/δ′)

2 > 1 =∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥

1
always holds. Thus, with probability at least 1− δ′,

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
≤ 2

√
|S| log 2 + log(1/δ′)

2 max{Nk
h (s, a), 1}

≤

√
2|S| log(2/δ′)

max{Nk
h (s, a), 1}

.

Then, by union bound, assuming K > 1, letting δ = |S||A|HKδ′/2, with probability at least 1− δ, for any (s, a) ∈ S ×A
and any h ∈ [H] and k ∈ [K], we have

∥∥∥P̂kh(· | s, a)− Ph(· | s, a)
∥∥∥

1
≤

√
2|S| log(|S||A|HK/δ)

max{Nk
h (s, a), 1}

,

This completes the proof.

In (12), we set βP,kh (a, b) =
√

2H2|S| log(|S||A|HK/δ)
max{Nkh (s,a),1} , which equals the product of the upper bound in Lemma C.5 and the

factor H .
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Lemma C.6. With probability at least 1− 2δ, Algorithm 2 ensures that

K∑
k=1

H∑
h=1

Eµ∗,P,νk
[
ςkh(sh, ah, bh)

∣∣ s1

]
≤ 0.

Proof. We prove the upper bound of the model prediction error term. We can decompose the instantaneous prediction error
at the h-step of the k-th episode as

ςkh(s, a, b) = rh(s, a, b) +
〈
Ph(· | s, a), V

k

h+1(·)
〉
S −Q

k

h(s, a, b), (55)

where the equality is by the definition of the prediction error in (36). By plugging in the definition of Q
k

h in Line (2) of
Algorithm 2, for any (s, a, b), we bound the following term as

rh(s, a, b) +
〈
Ph(· | s, a), V

k

h+1(·)
〉
S −Q

k

h(s, a, b)

≤ rh(s, a, b) +
〈
Ph(· | s, a), V

k

h+1(·)
〉
S −min

{
r̂kh(s, a, b) +

〈
P̂kh(·|s, a), V

k

h+1(·)
〉
S − β

k
h, H − h+ 1

}
≤ max

{
rh(s, a, b)− r̂kh(s, a, b) +

〈
Ph(· | s, a)− P̂kh(·|s, a), V

k

h+1(·)
〉
S − β

k
h, 0
}
, (56)

where the inequality holds because

rh(s, a, b) +
〈
Ph(· | sh, ah), V

k

h+1(·)
〉
S

≤ rh(s, a, b) +
∥∥Ph(· | sh, ah)

∥∥
1
‖V kh+1(·)‖∞ ≤ 1 + max

s′∈S

∣∣V kh+1(s′)
∣∣ ≤ 1 +H − h,

since
∥∥Ph(· | sh, ah)

∥∥
1

= 1 and also the truncation step as shown in Line 2 of Algorithm 2 for Q
k

h+1 such that for any
s′ ∈ S ∣∣V kh+1(s′)

∣∣ =
∣∣∣[µkh+1(·|s′)

]>
Q
k

h+1(s′, ·, ·)νkh+1(·|s′)
∣∣∣

≤
∥∥µkh+1(·|s′)

∥∥
1

∥∥Qkh+1(s′, ·, ·)νkh+1(·|s′)
∥∥
∞

≤ max
a,b

∣∣Qkh+1(s′, a, b)
∣∣

≤ H − h.

(57)

Combining (55) and (56) gives

ςkh(s, a, b) ≤ max
{
rh(s, a, b)− r̂kh(s, a, b) +

〈
Ph(· | s, a)− P̂kh(·|s, a), V

k

h+1(·)
〉
S − β

k
h, 0
}
. (58)

Note that as shown in (12), we have

βkh(s, a, b) = βr,kh (s, a, b) + βP,kh (s, a).

Then, with probability at least 1− δ, we have

rh(s, a, b)− r̂kh(s, a, b)− βr,kh (s, a, b)

≤
∣∣rh(s, a, b)− r̂kh(s, a, b)

∣∣− βr,kh (s, a, b)

≤ βr,kh (s, a, b)− βr,kh (s, a, b) = 0,

where the last inequality is by Lemma C.4 and the setting of the bonus for the reward. Moreover, with probability at least
1− δ, we have 〈

Ph(· | s, a)− P̂kh(·|s, a), V
k

h+1(·)
〉
S − β

P,k
h (s, a)

≤
∥∥Ph(· | s, a)− P̂kh(·|s, a)

∥∥
1

∥∥V kh+1(·)
∥∥
∞ − β

P,k
h (s, a)

≤ H
∥∥Ph(· | s, a)− P̂kh(·|s, a)

∥∥
1
− βP,kh (s, a)

≤ βP,kh (s, a)− βP,kh (s, a) = 0,
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where the first inequality is by Cauchy-Schwarz inequality, the second inequality is due to maxs′∈S
∥∥V kh+1(s′)

∥∥
∞ ≤ H as

shown in (57), and the last inequality is by the setting of βP,kh and also Lemma C.5. Thus, with probability at least 1− 2δ,
the following inequality holds

rh(s, a, b)− r̂kh(s, a, b) +
〈
Ph(· | s, a)− P̂kh(·|s, a), V

k

h+1(·)
〉
S − β

k
h(s, a, b) ≤ 0.

Combining the above inequality with (58), we have that with probability at least 1− 2δ, for any h ∈ [H] and k ∈ [K], the
following inequality holds

ςkh(s, a, b) ≤ 0, ∀(s, a, b) ∈ S ×A× B,

which leads to

K∑
k=1

H∑
h=1

Eµ∗,P,νk
[
ςkh(sh, ah, bh)

∣∣ s1

]
≤ 0.

This completes the proof.

Lemma C.7. With probability at least 1− δ, Algorithm 2 ensures that

K∑
k=1

V
k

1(s1)−
K∑
k=1

V µ
k,νk

1 (s1) ≤ Õ
(√
|S|2|A|H4K +

√
|S||A||B|H2K

)
.

Proof. We assume that a trajectory {(skh, akh, bkh, skh+1)}Hh=1 for all k ∈ [K] is generated according to the policies µk, νk,
and the true transition model P . Thus, we expand the bias term at the h-th step of the k-th episode, which is

V
k

h(skh)− V µ
k,νk

h (skh)

=
[
µkh(·|skh)

]>[
Q
k

h(skh, ·, ·)−Q
µk,νk

h (skh, ·, ·)
]
νkh(·|skh)

= ζkh +Q
k

h(skh, a
k
h, b

k
h)−Qµ

k,νk

h (skh, a
k
h, b

k
h)

= ζkh +
〈
Ph(· | skh, akh), V

k

h+1(·)− V µ
k,νk

h+1 (·)
〉
S − ς

k
h(skh, a

k
h, b

k
h)

= ζkh + ξkh + V
k

h+1(skh+1)− V µ
k,νk

h+1 (skh+1)− ςkh(skh, a
k
h, b

k
h),

(59)

where the first equality is by Line 2 of Algorithm 2 and (1), the third equality is by plugging in (2) and (36). Specifically, in
the above equality, we introduce two martingale difference sequence, namely, {ζkh}h≥0,k≥0 and {ξkh}h≥0,k≥0, which are
defined as

ζkh :=
[
µkh(·|skh)

]>[
Q
k

h(skh, ·, ·)−Q
µk,νk

h (skh, ·, ·)
]
νkh(·|skh)−

[
Q
k

h(skh, a
k
h, b

k
h)−Qµ

k,νk

h (skh, a
k
h, b

k
h)
]
,

ξkh :=
〈
Ph(· | skh, akh), V

k

h+1(·)− V µ
k,νk

h+1 (·)
〉
S −

[
V
k

h+1(skh+1)− V µ
k,νk

h+1 (skh+1)
]
,

such that

Eakh∼µkh(·|skh),bkh∼ν
k
h(·|skh)

[
ζkh
∣∣Fkh ] = 0, Eskh+1∼Ph(· | skh,a

k
h)

[
ξkh
∣∣ F̃kh] = 0,

with Fkh being the filtration of all randomness up to (h− 1)-th step of the k-th episode plus skh, and F̃kh being the filtration
of all randomness up to (h− 1)-th step of the k-th episode plus skh, a

k
h, b

k
h.

We can observe that the equality (59) construct a recursion for V
k

h(skh)−V µ
k,νk

h (skh). Moreover, we also have V
k

H+1(·) = 0

and V µ
k,νk

H+1 (·) = 0. Thus, recursively apply (59) from h = 1 to H leads to the following equality

V
k

1(s1)− V µ
k,νk

1 (s1) =

H∑
h=1

ζkh +

H∑
h=1

ξkh −
H∑
h=1

ςkh(skh, a
k
h, b

k
h). (60)
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Moreover, by (36) and Line 2 of Algorithm 2, we have

−ςkh(skh, a
k
h, b

k
h) = −rh(skh, a

k
h, b

k
h)−

〈
Ph(· | sh, ah), V

k

h+1(·)
〉
S

+ min
{
r̂kh(skh, a

k
h, b

k
h) +

〈
P̂kh(·|sh, ah), V

k

h+1(·)
〉
S + βkh(skh, a

k
h, b

k
h), H − h+ 1

}
.

Then, we can further bound −ςkh(skh, a
k
h, b

k
h) as follows

−ςkh(skh, a
k
h, b

k
h) ≤ −rh(skh, a

k
h, b

k
h)−

〈
Ph(· | skh, akh), V

k

h+1(·)
〉
S + r̂kh(skh, a

k
h, b

k
h)

+
〈
P̂kh(·|skh, akh), V

k

h+1(·)
〉
S + βkh(skh, a

k
h, b

k
h)

≤
∣∣r̂kh(skh, a

k
h, b

k
h)− rh(skh, a

k
h, b

k
h)
∣∣

+
∣∣∣〈Ph(· | skh, akh)− P̂kh(· | skh, akh), V

k

h+1(·)
〉
S

∣∣∣+ βkh(skh, a
k
h, b

k
h),

where the first inequality is due to min{x, y} ≤ x. Additionally, we have∣∣∣〈Ph(· | skh, akh)− P̂kh(· | skh, akh), V
k

h+1(·)
〉
S

∣∣∣
≤
∥∥V kh+1(·)

∥∥
∞

∥∥Ph(· | skh, akh)− P̂kh(· | skh, akh)
∥∥

1

≤ H
∥∥Ph(· | skh, akh)− P̂kh(· | skh, akh)

∥∥
1
,

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is by (57). Thus, putting the above
together, we obtain

−ςkh(skh, a
k
h, b

k
h) ≤

∣∣r̂kh(skh, a
k
h, b

k
h)− rh(skh, a

k
h, b

k
h)
∣∣+H

∥∥V kh+1(·)− V kh+1(·)
∥∥

1
+ βkh(skh, a

k
h, b

k
h)

≤ 2βr,kh (skh, a
k
h, b

k
h) + 2βP,kh (skh, a

k
h),

where the second inequality is by Lemma C.4, Lemma C.5, and the decomposition of the bonus term βkh as (12). Due to
Lemma C.4 and Lemma C.5, by union bound, for any h ∈ [H], k ∈ [K] and (sh, ah, bh) ∈ S ×A×B, the above inequality
holds with probability with probability at least 1− 2δ. Therefore, by (60), with probability at least 1− 2δ, we have

K∑
k=1

[
V
k

1(s1)− V µ
k,νk

1 (s1)
]

≤
K∑
k=1

H∑
h=1

ζkh +

K∑
k=1

H∑
h=1

ξkh + 2

K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) + 2

K∑
k=1

H∑
h=1

βP,kh (skh, a
k
h).

(61)

By Azuma-Hoeffding inequality, with probability at least 1− δ, the following inequalities hold
K∑
k=1

H∑
h=1

ζkh ≤ O

(√
H3K log

1

δ

)
,

K∑
k=1

H∑
h=1

ξkh ≤ O

(√
H3K log

1

δ

)
,

where we use the facts that |Qkh(skh, a
k
h, b

k
h)−Qµ

k,νk

h (skh, a
k
h, b

k
h)| ≤ 2H and |V kh+1(skh+1)− V µ

k,νk

h+1 (skh+1)| ≤ 2H . Next,
we need to bound

∑K
k=1

∑H
h=1 β

r,k
h (skh, a

k
h, b

k
h) and

∑K
k=1

∑H
h=1 β

P,k
h (skh, a

k
h) in (61). We show that

K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) = C

K∑
k=1

H∑
h=1

√
log(|S||A||B|HK/δ)

max{Nk
h (skh, a

k
h, b

k
h), 1}

= C

K∑
k=1

H∑
h=1

√
log(|S||A||B|HK/δ)

Nk
h (skh, a

k
h, b

k
h)

≤ C
H∑
h=1

∑
(s,a,b)∈S×A×B
NKh (s,a,b)>0

NKh (s,a,b)∑
n=1

√
log(|S||A||B|HK/δ)

n
,
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where the second equality is because (skh, a
k
h, b

k
h) is visited such that Nk

h (skh, a
k
h, b

k
h) ≥ 1. In addition, we have

H∑
h=1

∑
(s,a,b)∈S×A×B
NKh (s,a,b)>0

NKh (s,a,b)∑
n=1

√
log(|S||A||B|HK/δ)

n

≤
H∑
h=1

∑
(s,a,b)∈S×A×B

O

(√
NK
h (s, a, b) log

|S||A||B|HK
δ

)

≤ O

(
H

√
K|S||A||B| log

|S||A||B|HK
δ

)
,

where the last inequality is based on the consideration that
∑

(s,a,b)∈S×A×BN
K
h (s, a, b) = K such that∑

(s,a,b)∈S×A×B

√
NK
h (s, a, b) ≤ O

(√
K|S||A||B|

)
when K is sufficiently large. Putting the above together, we

obtain
K∑
k=1

H∑
h=1

βr,kh (skh, a
k
h, b

k
h) ≤ O

(
H

√
K|S||A||B| log

|S||A||B|HK
δ

)
.

Similarly, we have

K∑
k=1

H∑
h=1

βP,kh (skh, a
k
h) =

K∑
k=1

H∑
h=1

√
H2|S| log(|S||A|HK/δ)

max{Nk
h (skh, a

k
h), 1}

≤
H∑
h=1

∑
(s,a)∈S×A

O

(√
NK
h (s, a)H2|S| log

|S||A|HK
δ

)

≤
H∑
h=1

∑
(s,a)∈S×A

O

(√∑
b∈B

NK
h (s, a, b)H2|S| log

|S||A|HK
δ

)

≤ O

(
H

√
K|S|2|A|H2 log

|S||A|HK
δ

)
,

where the second inequality is due to
∑
b∈BN

K
h (s, a, b) = NK

h (s, a), and the last inequality is based on the consider-

ation that
∑

(s,a,b)∈S×A×BN
K
h (s, a, b) = K such that

∑
(s,a)∈S×A

√∑
b∈BN

K
h (s, a, b) ≤ O(

√
K|S||A|) when K is

sufficiently large.

Thus, by (61), with probability at least 1− δ, we have

K∑
k=1

V
k

1(s1)−
K∑
k=1

V µ
k,νk

1 (s1) ≤ Õ(
√
|S|2|A|H4K +

√
|S||A||B|H2K)

where Õ hides logarithm terms. This completes the proof.

Lemma C.8. With setting γ =
√
|S| log |B|/K, the mirror descent steps of Algorithm 3 lead to

K∑
k=1

H∑
h=1

∑
s∈S

dkh(s)
〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
≤ O

(√
H2|S|K log |B|

)
.

Proof. Similar to the proof of Lemma C.3, and also by Lemma C.12, for any ν = {νh}Hh=1 and s ∈ S, the mirror descent
step in Algorithm 3 leads to

γdkh(s)
〈
W k
h (s, ·), νk+1

h (·|s)
〉
B − γd

k
h(s)

〈
W k
h (s, ·), νh(·|s)

〉
B

≤ DKL

(
νh(·|s), νkh(·|s)

)
−DKL

(
νh(·|s), νk+1

h (·|s)
)
−DKL

(
νk+1
h (·|s), νkh(·|s)

)
,
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according to (14), where W k
h (s, a) =

〈
νkh(·|s), r̃kh(s, a, ·)

〉
. Then, by rearranging the terms, we have

γdkh(s)
〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B

≤ DKL

(
ν∗h(·|s), νkh(·|s)

)
−DKL

(
ν∗h(·|s), νk+1

h (·|s)
)
−DKL

(
νk+1
h (·|s), νkh(·|s)

)
− γdkh(s)

〈
W k
h (s, ·), νk+1

h (·|s)− νkh(·|s)
〉
B.

(62)

Due to Pinsker’s inequality, we have

−DKL

(
νk+1
h (·|s), νkh(·|s)

)
≤ −1

2

∥∥νk+1
h (·|s)− νkh(·|s)

∥∥2

1
. (63)

Moreover, we have

− γdkh(s)
〈
W k
h (s, ·), νkh(·|s)− νk+1

h (·|s)
〉
B

≤ γdkh(s)
∥∥W k

h (s, ·)
∥∥
∞

∥∥νk+1
h (·|s)− νkh(·|s)

∥∥
1

≤ γdkh(s)
∥∥νk+1
h (·|s)− νkh(·|s)

∥∥
1
,

(64)

where the last inequality is by

‖W k
h (s, ·)‖∞ = max

b∈B
W k
h (s, b)

≤ max
s∈S,b∈B

W k
h (s, b)

≤ max
s∈S,b∈B

〈
r̃k−1
h (s, ·, b), µkh(· | s)

〉
≤ max
s∈S,b∈B

∥∥r̃k−1
h (s, ·, b)

∥∥
∞

∥∥µkh(· | s)
∥∥

1
≤ 1.

due to the definition of W k
h and r̃kh(s, a, b) = max{r̂kh(s, a, b)− βr,kh , 0} ≤ r̂kh(s, a, b) ≤ 1. Combining (63) and (64) gives

−DKL

(
νk+1
h (·|s), νkh(·|s)

)
− γdkh(s)

〈
W k
h (s, ·), νkh(·|s)− νk+1

h (·|s)
〉

≤ −1

2

∥∥νk+1
h (·|s)− νkh(·|s)

∥∥2

1
+ γdkh(s)

∥∥νk+1
h (·|s)− νkh(·|s)

∥∥
1

≤ 1

2

[
dkh(s)

]2
γ2 ≤ 1

2
dkh(s)γ2,

where the second inequality is obtained via solving maxx{−1/2 · x2 + γdkh(s) · x} if letting x = ‖νk+1
h (·|s)− νkh(·|s)‖1.

Plugging the above inequality into (62) gives

γdkh(s)
〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B ≤ DKL

(
ν∗h(·|s), νkh(·|s)

)
−DKL

(
ν∗h(·|s), νk+1

h (·|s)
)

+
1

2
dkh(s)γ2.

Thus, the policy improvement step implies

H∑
h=1

∑
s∈S

dkh(s)
〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B

≤ 1

γ

H∑
h=1

∑
s∈S

[
DKL

(
ν∗h(·|s), νkh(·|s)

)
−DKL

(
ν∗h(·|s), νk+1

h (·|s)
)]

+
1

γ

H∑
h=1

∑
s∈S

1

2
dkh(s)γ2

≤ 1

γ

H∑
h=1

∑
s∈S

[
DKL

(
ν∗h(·|s), νkh(·|s)

)
−DKL

(
ν∗h(·|s), νk+1

h (·|s)
)]

+
1

2
Hγ.
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Further summing on both sides of the above inequality from k = 1 to K gives

K∑
k=1

H∑
h=1

∑
s∈S

dkh(s)
〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B

≤ 1

γ

H∑
h=1

∑
s∈S

[
DKL

(
ν∗h(·|s), ν1

h(·|s)
)
−DKL

(
ν∗h(·|s), νK+1

h (·|s)
)]

+
1

2
HKγ

≤ 1

γ

H∑
h=1

∑
s∈S

DKL

(
ν∗h(·|s), ν1

h(·|s)
)

+
1

2
HKγ.

Note that by the initialization in Algorithm 3, it is guaranteed that ν1
h(·|s) = 1/|B|, which thus leads to

DKL

(
µ∗h(·|s), µ1

h(·|s)
)
≤ log |B|. By setting γ =

√
|S| log |B|/K, we further bound the term as

1

γ

H∑
h=1

∑
s∈S

DKL

(
ν∗h(·|s), ν1

h(·|s)
)

+
1

2
HKγ ≤ O

(√
H2|S|K log |B|

)
,

which gives

K∑
k=1

H∑
h=1

∑
s∈S

dkh(s)
〈
W k
h (s, ·), νkh(·|s)− ν∗h(·|s)

〉
B ≤ O

(√
H2|S|K log |B|

)
.

This completes the proof.

Before giving the next lemma, we first present the following definition for the proof of the next lemma.

Definition C.9 (Confidence Set). Define the following confidence set for transition models

Υk :=
{
P̃ :
∣∣∣P̃h(s′|s, a)− P̂kh(s′|s, a)

∣∣∣ ≤ εkh, ‖P̃h(·|s, a)‖1 = 1,

and P̃h(s′|s, a) ≥ 0, ∀(s, a, s′) ∈ S ×A× S,∀k ∈ [K]
}

where we define

εkh := 2

√
P̂kh(s′|s, a) log(|S||A|HK/δ′)

max{Nk
h (s, a)− 1, 1}

+
14 log(|S||A|HK/δ′)

3 max{Nk
h (s, a)− 1, 1}

with Nk
h (s, a) :=

∑k
τ=1 1{(s, a) = (sτh, a

τ
h)}, and P̂k being the empirical transition model.

Lemma C.10. With probability at least 1− δ, the difference between qµ
k,P and dk are bounded as

K∑
k=1

H∑
h=1

∑
s∈S

∣∣∣qµk,Ph (s)− dkh(s)
∣∣∣ ≤ Õ (H2|S|

√
|A|K

)
.

Proof. By the definition of state distribution, we first have

K∑
k=1

H∑
h=1

∑
s∈S

∣∣∣qµk,Ph (s)− dkh(s)
∣∣∣ =

K∑
k=1

H∑
h=1

∑
s∈S

∣∣∣∣∣∑
a∈A

wkh(s, a)−
∑
a∈A

ŵkh(s, a)

∣∣∣∣∣
≤

K∑
k=1

H∑
h=1

∑
s∈S

∑
a∈A

∣∣wkh(s, a)− ŵkh(s, a)
∣∣.
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where ŵkh(s, a) is the occupancy measure under the empirical transition model P̂k and the policy µk. Then, since P̂k ∈ Υk

always holds for any k, by Lemma C.15, we can bound the last term of the bound inequality such that with probability at
least 1− 6δ′,

K∑
k=1

H∑
h=1

∑
s∈S

∣∣∣qµk,Ph (s)− dkh(s)
∣∣∣ ≤ E1 + E2.

Next, we compute the order of E1 by Lemma C.14. With probability at least 1− 2δ′, we have

E1 = O

[
H∑
h=2

h−1∑
h′=1

K∑
k=1

∑
s∈S

∑
a∈A

wkh(s, a)

(√
|S| log(|S||A|HK/δ′)

max{Nk
h (s, a), 1}

+
log(|S||A|HK/δ′)
max{Nk

h (s, a), 1}

)]

= O

[
H∑
h=2

h−1∑
h′=1

√
|S|
(√
|S||A|K + |S||A| logK + log

H

δ′

)
log
|S||A|HK

δ′

]

= O
[(
H2|S|

√
|A|K +H2|S|3/2|A| logK +H2

√
|S| log

H

δ′

)
log
|S||A|HK

δ′

]
= Õ

(
H2|S|

√
|A|K

)
,

where we ignore logK terms when K is sufficiently large such that
√
K dominates, and Õ hides logarithm dependence on

|S|, |A|, H , K, and 1/δ′. On the other hand, E2 also depends on ploy(H, |S|, |A|) except the factor log |S||A|HKδ′ as shown
in Lemma C.15. Thus, E2 can be ignored comparing to E1 if K is sufficiently large. Therefore, we eventually obtain that
with probability at least 1− 8δ′, the following inequality holds

K∑
k=1

H∑
h=1

∑
s∈S

∣∣∣qµk,Ph (s)− dkh(s)
∣∣∣ ≤ Õ (H2|S|

√
|A|K

)
.

We let δ = 8δ′ such that log |S||A|HKδ′ = log 8|S||A|HK
δ without changing the order as shown above. Then, with probability

at least 1− δ, we have
∑K
k=1

∑H
h=1

∑
s∈S |q

µk,P
h (s)− dkh(s)| ≤ Õ(H2|S|

√
|A|K). This completes the proof.

Lemma C.11. With probability at least 1− δ, the following inequality holds

K∑
k=1

H∑
h=1

Eµk,P,νk
[
βr,kh (sh, ah, bh)

∣∣ s1

]
≤ Õ

(√
|S||A||B|H2K

)
.

Proof. Since we have

K∑
k=1

H∑
h=1

Eµk,P,νk
[
βr,kh (sh, ah, bh)

∣∣ s1

]
=

K∑
k=1

H∑
h=1

Eµk,P,νk

[
C

√
log(|S||A||B|HK/δ)

Nk
h (s, a, b)

]

= C

√
log
|S||A||B|HK

δ

K∑
k=1

H∑
h=1

Eµk,P,νk

[√
1

Nk
h (s, a, b)

]
,

then we can apply Lemma C.16 and obtain

K∑
k=1

H∑
h=1

Eµk,P,νk
[
βr,kh (sh, ah, bh)

∣∣ s1

]
≤ Õ

(√
|S||A||B|H2K

)
,

with probability at least 1 − δ. Here Õ hides logarithm dependence on |S|, |A|, |B|, H,K, and 1/δ. This completes the
proof.
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C.1. Other Supporting Lemmas

Lemma C.12. Let f : Λ 7→ R be a convex function, where Λ is the probability simplex defined as Λ := {x ∈ Rd : ‖x‖1 =
1 and xi ≥ 0,∀i ∈ [d]}. For any α ≥ 0, z ∈ Λ, and y ∈ Λo where Λo ⊂ Λ with only relative interior points of Λ, supposing
xopt = argminx∈Λ f(x) + αDKL(x,y), then the following inequality holds

f(xopt) + αDKL(xopt,y) ≤ f(z) + αDKL(z,y)− αDKL(z,xopt).

This lemma is for mirror descent algorithms, whose proof can be found in existing works (Tseng, 2008; Nemirovski et al.,
2009; Wei et al., 2019).
Lemma C.13. With probability at least 1− 4δ′, the true transition model P satisfies that for any k ∈ [K],

P ∈ Υk.

This lemma implies that the estimated transition model P̂kh(s′|s, a) by (11) is closed to the true transition model Ph(s′|s, a)
with high probability. The upper bound for their difference is by empirical Bernstein’s inequality and the union bound.

The next lemma is modified from Lemma 10 in Jin & Luo (2019).
Lemma C.14. We let wkh(s, a) denote the occupancy measure at the h-th step of the k-th episode under the true transition
model P and the current policy µk. Then, with probability at least 1−2δ′ we have for all h ∈ [H], the following inequalities
hold

K∑
k=1

∑
s∈S

∑
a∈A

wkh(s, a)

max{Nk
h (s, a), 1}

= O
(
|S||A| logK + log

H

δ′

)
,

and
K∑
k=1

∑
s∈S

∑
a∈A

wkh(s, a)√
max{Nk

h (s, a), 1}
= O

(√
|S||A|K + |S||A| logK + log

H

δ′

)
.

Furthermore, by Lemma C.13 and Lemma C.14, we give the following lemma to characterize the difference of two occupancy
measures, which is modified from parts of the proof of Lemma 4 in Jin & Luo (2019).
Lemma C.15. Let wkh(s, a) be the occupancy measure at the h-th step of the k-th episode under the true transition model P
and the current policy µk, and w̃kh(s, a) be the occupancy measure at the h-th step of the k-th episode under any transition
model P̃k ∈ Υk and the current policy µk for any k. Then, with probability at least 1− 6δ′ we have for all h ∈ [H], the
following inequalities hold

K∑
k=1

K∑
h=1

∑
s∈S

∑
a∈A

∣∣w̃kh(s, a)− wkh(s, a)
∣∣ ≤ E1 + E2,

where E1 and E2 are in the level of

E1 = O

[
H∑
h=2

h−1∑
h′=1

K∑
k=1

∑
s∈S

∑
a∈A

wkh(s, a)

(√
|S| log(|S||A|HK/δ′)

max{Nk
h (s, a), 1}

+
log(|S||A|HK/δ′)
max{Nk

h (s, a), 1}

)]
and

E2 = O
(

poly(H, |S|, |A|) · log
|S||A|HK

δ′

)
,

where poly(H, |S|, |A|) denotes the polynomial dependency on H, |S|, |A|.
Lemma C.16. With probability at least 1− δ, the following inequality hold

K∑
k=1

H∑
h=1

Eµk,P,νk

[√
1

max{Nk
h (s, a, b), 1}

]
≤ Õ

(√
|S||A||B|H2K + |S||A||B|H

)
,

where Õ hides logarithm terms.
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Proof. The zero-sum Markov game with single controller in this paper can interpreted as a regular MDP learning problem
with policies wkh(a, b | s) = µkh(a|s)νkh(b|s) and a transition model Ph(s′|s, a, b) = Ph(s′|s, a) with a joint action (a, b) in
the action space of size |A||B|. Thus, we apply Lemma 19 of Efroni et al. (2020), which extends lemmas in Zanette &
Brunskill (2019); Efroni et al. (2019) to MDP with non-stationary dynamics by adding a factor of H , to obtain our lemma.
This completes the proof.


