Provably Efficient Fictitious Play Policy Optimization for Zero-Sum Markov Games with Structured Transitions

A. Omitted Algorithm for Player 2 in Section 3

Algorithm 4 Optimistic Policy Optimization for Player 2 with Factored Independent Transition
1: Initialize: Forall h € [H], (s!,s%,a,b) € 81 xSa x Ax B: p(:|s!) = L PEO( st a) = 1|84,
1/‘82|7 ?2(7 o) = 52(7 “ ) =0.
2: forepisode k =1,..., K do
Observe Player 1’s pohcy { uh Ay

52,0
i (ls?,b) =

3

4:  Start from state s; = (s1,5?), set VH+11( ) =0.

5 forsteph=H,H—-1,...,1do

6: Estimate the transition and reward function by 735 el and PR -, ) as (1),
7 Update Q-function ¥(s,a,b) € S x A x B:

Q' (s,a,b) = min{ (75 + PF VL] — B (s,a,0), H — h+ 1}

8: Update value-function Vs € S:
_ T ke
Vimt(s) = [my HCls)] Q4 (s, vy H(ls).

9:  end for

10:  Compute the empirical state reaching probability d’,fk’plﬁk (s2) of Player 1 under %, P-*, Vh € [H].
11:  Update policy vF(b|s?) by solving (15), ¥(s2, b, h).

12:  Take actions following b¥ ~ yh( |57 "), Yh e [H].

13:  Observe the trajectory {(sh, ay, by, sy, )}, and rewards {r} (s}, af, bF ) HL .

14: end for

Based on the empirical state reaching probability, the policy improvement step is associated with solving the following
optimization problem

maxz Hvn) + 77 Dir (v ([s7), v (1), (15)

where we define the linear function as é’;_l(,uh) = (wn(]s?) — vE(]s?), Ygies, F,f’k(s,~)dﬁk’731)k(sl)>3 with
Fg’k(s, b) = (Qﬁ(s, b), uk(-|s')) 4. Here (15) is a standard mirror descent step and admits a closed-form solution

as v (bls%) = (V)" 0k 72 (0] 5%) - exp{—y Sares, F2 " (5,0)di 7" (1)) 4}, where ¥V is a probability normal-
ization term.

B. Proofs for Section 3

Lemma B.1. At the k-th episode, the difference between value functions Vl“*’yk (s1) and Vl“k’yk (s1) is

* k k Kk
VI (s1) = VI (s1)

H
=V (s0) = VI (50) 4 S By oo ([0 (L)) T2 (s, g Clsn) | 51}

h=1
+ZEH o { (i Csh) = hClsh). S Bk st P () |shst) 1o
s2€8,
+2HZ > o T T ).

h= 1SL€52

. . —k .
where sy, ap, by, are random variables for state and actions, U (s, a) == (Q} (s, a, ), vE(- | s)) s, and we define the model
prediction error of Q-function as

Zi(sa a, b) = ’I’h<8, a, b) + ,PhVZ—i-l(Sa a, b) - 62(57 a, b) (17)
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Proof. The proof of this lemma starts with decomposing the value function difference as
* ok k ok * ok —k —k ko k
VI (s1) = VI (s1) = VI 7 (s1) = Vi(s1) + Vi(s1) = V7 (s1). (18)

Here the term V’f (s1) — VI Ft (s1) is the bias between the estimated value function V]f (s1) generated by Algorithm 1 and

k Kk
the value function Vl“ v (s1) under the true transition model P at the k-th episode.

ok —k . ok —
We first analyze the term V" " (s1) — V' (s1). For any h and s, we consider to decompose the term V}/* " (s) — VZ(S),

which gives

x k —k
Vit (s) = Vi(s)

= [ (1) T Q" (s, WECls) — [ (19)] (s, vk Cls)

= [ Gl Q" (s, WA Cls) — [ (1) T @ (s, -, ) Cls) )
+ [n (1) T@n (s, Yk Cls) = [k (1)) @nls, - vk (ls)

= [ (1) T[QE™ (5,-,-) = @nls,-, )]k ()

+ [ (1) = iEC19)] " @ns, Ik Cls),

where the first inequality is by the definition of V}* " in (1) and the definition of VZ in Line 1 of Algorithm 1. In addition,
by the definition of Q‘}:*’”k (s,-,-) in (2) and the definition of the model prediction error ZZ for Player one in (36), we have

k

i (1)) T [ (s,+,-) = Qi (s, )] vE ()
= 3 i (als) [ S Puls/]s,a, D) VI () — Vs ()] + 2 (50 b)} vE(0]s)

ac AbeEB s'eS
. * k —k . 3
=Y wials) [ S Pus'ls,ab) [V (1) - vhH(s’)]} dEOls) + 37 ST i (als)Th (5, a, bk (o).
acAbeB s'eS acAbeB

Combining this equality with (19) gives

VI ()~ Vi) = 3O s (als) [ S Pl ls, b [V () - th(s’)ﬂ vE(bls)

acAbeB s’eS

+ D> wilals)ik(s, a, 0 (bls) (20)

ac AbeB

+ 375 [wi(als) — i (als)] @ (s a, bk (bs).

acAbeB

The inequality (20) indicates a recursion of the value function difference V' Ed (s) — V:(s) As we have defined

Vgﬂ" ' (s) =0and VZ +1(s) = 0, by recursively applying (20) from h = 1 to H, we obtain

* Lk —k
Vl“ Y (s1) = Vi(s1)

H
Z {0 CLsn)) T (s Jvh Clsn) | 1}

H 2n
N By L [ Clsn) — il Clsn)] " @h(sn, - vk Clsn) | 51,

h=1

Term(I)

where s, are a random variables denoting the state at the h-th step following a distribution determined jointly by p*, P, v*.
Note that we have the factored independent transition model structure Py, (s'[s, a,b) = PL(s'|s!, a)P?(s*'|s%,b) with
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s = (s!,s%) and s’ = (s, 2') and ,uh(a| ) = uh(a|s ) as well as vy, (b|s) = v, (b|s?). Here we also have the state
reaching probability ¢*" -7 {q“ P } .., under ;¥ and true transition P? for Player 2, and define the empirical

reaching probability d”kvp ( {d" 7) *(s2) M1 under the empirical transition model P2 for Player 2, where we
let Pl (s'|s,a,b) = Pr(s!|s! ,a)”P,f ¥(s%'|s2,b). Then, for Term(I), we have

H
Term() = > B, p e { 15 (1sn) — i Clsn)] @n sy vk Clsn) | 51}
h=1
H
=3 B prpo i { [ Clsh) — b Clsh)] @ (shy 53, WECls3) | 51,57} (22)

h=1
u T k k 2
_ P
E: % 'Pl Mh |Sh) 2('82)] E Qh(sllw‘g%wv)y}lf('s%)qz (S%)|S%a8%}

S%ESQ

The last term of the above inequality (22) can be further bounded as

H
ZE#*vpl{[u;kl('|sfll) |sh Z Qh Shvshv 7')Vh( |sh) sl2z) ’ 8%7‘9%}
h=1

Sh €S>

H
k)7’52,k
Z e o { [ Clsh) — mf(Ish)] Z Qi (shy 53, WECls2)dy P (s2) | s, 82}
h=1 s 682
T —k ijpz uk,ﬁ2’k
+2Eﬂ Pl Clsh) = b Clsh] D0 Qulshost. b Clshlay 7 (1) —dy 77 (s3)] | st, 83}
h=1 52 €S2

Zk
Sh Z Qh Shash7 ) )Vh( |3h) V R i)|3%78%}

h=1 s '682
H Vk PQ 2 l/k 7)2 k 2
w2l Y e T s —d T )

where the factor H in the last term is due to @ﬁ(s}l, si, -,+)| < H. Combining the above inequality with (22), we have

"
% v 7)2 k
Term(D) < Y "By 1 { 17, (Ish) — ph ([s3)] Z Qn(sho 5B,k Cls AL (si) | 51,51}
h=1 s2€8;
(23)

7)2 Wk
Sh dh (Sh)

h=1s /652
Further combining (23) with (18), we eventually have
* l/k l.k l/k
VI (s1) = V7 (s1)

H

<Vils0) = (50) + D0 By o { ik Clsn) 2k (on -, ) Clon) [ 1)
h=1

+ZEM e { (uiClsh) = i Clsh) Y2 FiGshstod T D) | stst

si €S2

H
Vk- 2 l/k B2,k
w28 Y o T — T s

h=1 32’682

9
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where we denote F) " (s}, 52, a) == (@Z(s}t, s?,a,-),vr(+|s2))p for any a € A. This completes our proof. O

Lemma B.2. With setting n = +/log | A|/(K H?), the mirror ascent steps of Algorithm I lead to

S S E, e {(uiClsh) = hClsh), Y2 FRGshstod T sh) sty < 0 (VAT loglA])

k=1h=1 s2€8;

Proof. As shown in (10), the mirror ascent step at the k-th episode is to solve the following maximization problem

H
2k
maximize <uh( |s) Z FF(st % )d 4 > - *ZDKL pin(-]st), ]fb('|51))’

EA(A|S1,H
HEA(A]S1.H) £ =

with Fh1 Fst, %, a) = <§:(sl, s%,a,-),vE(-|s?))g. We equivalently rewrite this maximization problem to a minimization
problem as
L D2, k
minimize — s FF(s',s dV P > D s k(1sh).
HEA(A|S1,H) Z<uh(‘ Z h Z KL Mh | h(| ))
h=1 s2€8,
Note that the closed-form solution ukH to this minimization problem is guaranteed to stay in the relative interior of
its feasible set A(A|Sy, H) if initializing ) (-|s') = 1/|A|. Thus, we apply Lemma C.12 and obtain that for any
p = {un} |, the following inequality holds

n(uk Gl Y0 RGN T D) (st Y R st d T )

s2€8> $2€8,
< Dxr (pn(cls"), i (1Y) = Dw (pa(-[s"), ™ Cls")) = Diw (i (1sh), i (-ls1)).

Then, by rearranging the terms and letting 1, = iy, we have

n(uiClsh) =i Clsh) S0 FRG 2 0d) 7)) |
s2€8;
< D, (i (1Y), k<-|s>>—DKL<uz<-|s>, HEF 1) = Dice (P (1s), ki (19) 4)
it Clst) = b1, Y R st P )
s2€S8,

Due to Pinsker’s inequality, we have

2
= Dxw (P (lsh) ik (1sh)) < Hu’““ BRNTACED]
Further by Cauchy-Schwarz inequality, we have
: v 732’“ o
n(iuk (15" NS ER sty P ) <l ks = s
s2€8s

since we have

3 Rt st a7 ()

s2€8,

oo
k B2,k
:maxg FE(st, 8% a)d) " (s?)
acA
s2€8,
_ =k, 1 2 k(.2 d k Pk
= max <Qh(5 ) S 7a")’yh('|5 )>B ( )
acA
s2e€8,

<Y m-a ") =
s2€8y
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Thus, we further obtain

= D (a7 (I, i (1Y) + n{py (s Z Fi(s' 52 0dr P ()
s GSz
Hﬂ'“+1 B = LY+ nH i st = ik Clsh] 25)
1
é 5,’7 H 9

where the last inequality is by viewing || ukH( |st) — uﬁﬂsl)”l as a variable z and finding the maximal value of
—1/2 - 2% + nHx to obtain the upper bound 1/2 - n?> H?.

Thus, combing (25) with (24), the policy improvement step in Algorithm 1 implies

n(ii(Clsh) = i (1), D2 Bt st T )

s2€82
* 9 * 1
< Dt (4 (181), 1 (1Y) = Der (pr, (ls*)s g (1s1)) + S H?,

which further leads to

Z]Eu P1{<Mh EARSTACEA Z Fy (sh, 5%, )dy ’P2k(8}27,)>A‘8178%}

682

3

< 53 [Dr b D) - De i) )] + S

Taking summation from k& = 1 to K of both sides, we obtain

K H
l/k 52,k
S B {(iClsh) i Clsh), Yo Fhshostody D) | shost)

k=1h=1 57 €S2

H
< B (D1 ) 151) — P (o 15k 1) + o

3\'—‘
>

M= T

1
< = D B [Dicr (i Clsn)s i (lsi))] + GnEH?,

I | =
>
Il
-

where the last inequality is by non-negativity of KL. divergence. With the initialization in Algorithm 1, it is guaranteed
that pj,(-|s*) = 1/|A|, which thus leads to Dky, (i, (-|s*), 7. (-|s')) < log|A| for any s'. Then, with setting n =

V1og |A|/(K H?), we bound the last term as
1 & 1
= By [Dw (15, Clsh), i, ([s3)] + 5nEK H? <O (\/H4Klog |A|) ,

=
which gives
ZZ w* P1{<Hh Ish) = wg(-Ish), Z Fii( Sh’sh")dy P“(Sh)>A‘51a31} < O(VH4K10g|A\)-
k=1 h=1 s 652

This completes the proof.
Lemma B.3. Forany k € [K], h € [H| and all (s,a,b) € S x A x B, with probability at least 1 — §, we have

. ) 4log(|S||Al|BIHK/3)
|75 (s,a,b) — ri(s, a,b)| _\/ max{NF(s,a,b),1}
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Proof. The proof for this theorem is a direct application of Hoeffding’s inequality. For k£ > 1, the definition of ?ﬁ in (11)
indicates that 7% (s, a, b) is the average of NF (s, a, b) samples of the observed rewards at (s, a, b) if Nf(s,a,b) > 0. Then,
for fixed k € [K],h € [H] and state-action tuple (s, a,b) € S x A x B, when N} (s, a,b) > 0, according to Hoeffding’s
inequality, with probability at least 1 — 6" where 6" € (0, 1], we have

log(2/¢")

~k

’rh(s,a, b) — Th(S,a,b)’ < Wa

where we also use the facts that the observed rewards rf € [0, 1] for all k and h, and E [?kh] = ry, for all k and h. For the
case where NJ(s,a,b) = 0, by (11), we know 7¥(s, a,b) = 0 such that [7% (s, a,b) — r4(s,a,b)| = |rn(s,a,b)| < 1. On
the other hand, we have \/21og(2/6') > 1 > |7 (s, a,b) — 74(s, a,b)|. Thus, combining the above results, with probability
atleast 1 — ¢', for fixed k € [K], h € [H] and state-action tuple (s,a,b) € S x A x B, we have

2log(2/4")
max{N}(s,a,b),1}

|7/A\;€L(Saaab) - rh(8,(l,b)| S \/

Moreover, by the union bound, letting § = |S||A||B|HKd'/2, assuming K > 1, with probability at least 1 — ¢, for any
k € [K],h € [H] and any state-action tuple (s, a,b) € S x A x B, we have

4log(|S[|Al|B|H K/6)
max{N}(s,a,b),1}

|?£(S,G/,b) - Th(83a7b)| < \/

This completes the proof. O
In (9), we actually factor the state as s = (s',s2) such that we have |S| = |S)||Sa|. Thus, we set 8" (s, a,b) =

4log(IS|IA[IBIHK/S) _  [4log(|S:1]]S:||Al|BIHK/))
max{N}(s,a,b),1} max{N}(s!,s2,a,b),1}

equivalent to NF(s!, s%, a,b).
Lemma B.4. Forany k € [K], h € [H| and all (s,a) € S x A, with probability at least 1 — §, we have

~ 2|S|log(|S||A|HK /6
Hpﬁ(.\s,a,b) —Ph(.|s,a7b)H1 S\/ lmax{glvkés la) 1}/ )7
h ) b

, which equals the bound in Lemma B.3. The counter N (s, a,b) is

where we have a factored state space s = (s',s%), s’ = (s'',5?'), and an independent state transition Py(s' | s, a,b) =
Pr(s | st a)PL(s? | s%,b) and PF(-|s,a,b) = Pi’k(sl’ | st, a)PZ’k(SQ’ | s2,b).

Proof. Since the state space and the transition model are factored, we need to decompose the term as follows
Bk
th(' |s,a,0) — Pp(-|s, a,b)H1

= 3T [P It a) PR 52, 0) - PV s a)PR(s | 52, 1)|

= Z ‘ {'ﬁi’k(sl/ ‘ sl,a) — 'P;ll(sl/ | sl’a)] ,ﬁz,k(sw ‘ 52,b) +P}l(81/ | sl,a) [ﬁi,k(sw | 82,b) o 73,3(52/ | 52,b)} ‘
81'732'

< 3 {[PEET st a) = PhsY s )| PRRs %, 0) + PalsV | 5" a) [Pt (s | 5%, 0) — PR(s* | %,)| |
51/752/

<> Py (sM ] st a) = Ph(sY | sl,a)( +y ‘732”@(52' |52,b) — P3(s¥ | 52,1))‘

s/ s2/

P15t ) = PACI st a)|| + [P 1520) — PRC 10|

where the last inequality is due to ), 732’]“(32’ |s2,b) =1and Y., PL(s" | s*,a) = 1. Thus, we need to bound the two
terms [Py (| s',a) = PL(s" [ s', a) |1 and [ Pp"(-| s2,b) — PZ(-| 5%, b)|1 separately.
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For k > 1, we have ||[P}*(-| s, a) — PL(-| s, a)|l, = max| | <1 (PYR(-|s',a) — PL(s | s, a),2)s, by the duality.
We construct an -covering net for the set {z € RISt . ||z||, < 1} with the distance induced by || - ||, denoted as N,
such that for any z € RISl there always exists z’ € N, satisfying ||z — z’||o < &. The covering number is [N | = 1/¢l51,
Thus, we know that for any (s, a) € S; x A and any z with ||z||o, < 1, there exists z’ € N such that ||z’ — 2|/, < ¢ and

(PY*(-|s'a) = PL(-| s a),2) g
= <73}11k( |s',a) — Py 81,(1)7Z'>S1 + <73,1lk( |s',a) —Pi(-|st a), 2 — z’>$1
< (PYFCLsh a) = P15t a),2), +2 [ PAC L5 a) = PECLs! )

17
such that we further have
51k
|7 <-\s1,a>—7’1(~|sl,a>H1
= | IﬁlaX <’P (-]s*,a) — PL(-| 517a)),z>81 (26)
1 1 Sk |1 101l
< zHg\}/{ (PyF(-|s ,a)777,l(~|51,a),z/>51 +€HP}L (-]s",a) = Py(-|s ,a)Hl.

By Hoeffding’s inequality and union bound over all z’ € N, when N ,’f(sl7 a) > 0, with probability at least 1 — §’ where

8 € (0,1],

S1.k |S1|log(1/¢) +log 1/8")
B (Py (st a) = Pp(-] 5%, a) \/ ONF (st a) 27

Letting ¢ = 1/2, by (26) and (27), with probability at least 1 — §’, we have

|S]log 2 + log(1/¢")
2NF (st a) ’

When NF(s!,a) = 0, we have H73,1Lk( | st a) —PL(-| sl,ce)H1 = |[|PL(-|s',a)|l = 1 such that 2/ w >

1= ||ﬁ}1Lk( | st a) — PL(-|st, a)”1 always holds. Thus, with probability at least 1 — §’,

[PitCrsta) = PicIsha)| <1

[P 15t a) = Pic 15t )| <2

[Sillog2 1 1og(1/) _ [ 2/81[10(2/5)
1 2max{N}(s!,a),1} —

max{NF(s!,a),1}

Then, by union bound, assuming K > 1, letting 8" = |S;||.A|H K&’ /2, with probability at least 1 — §”, for any (s',a) €
S1 x Aand any h € [H] and k € [K], we have

=~ 2|81 | log(|Sy||A|HK /6"
HP#’msl,a)—P}L<~|sl,a>Hls\/ 161 log (||| A|FLK/6T)

max{Nf(s',a),1}

Similarly, we can also obtain that with probability at least 1 — 6", for any (s%,a) € Sy x Band any h € [H] and k € [K],
we have

S0k | .2 20| 2 2|85 log(|Ss||BIH K/8")
R R e

Further by union bound, we have with probability at least 1 — § where § = 24",

5 2/51|log (2IS1[|A[HK/6)  [21Sy]log(2|S||BIH K /9)
k(. b) — Ph(- b < .
[P 15,0,6) = Putcl5,0.0)]| \/ e NEO T Y V1)

This completes the proof. O



Provably Efficient Fictitious Play Policy Optimization for Zero-Sum Markov Games with Structured Transitions

In (9), we set 3] " (s,a,b) = \/2H2lfnliic{>%\(i\éllll;4\gl{/a) \/2H2|‘:i;?%§‘3§”£|gmé) which equals the product of the

upper bound in Lemma B.4 and the factor H.
Lemma B.5. With probability at least 1 — 26, Algorithm I ensures that

K H
Z ZE#*,P’V’“ (2 (sn, an,br) [ 1] <0
k=1h=1

Proof. We prove the upper bound of the model prediction error term. We can write the instantaneous prediction error at the
h-step of the k-th episode as

T (s,a,b) = (5, a,0) + (Pu(-| 5,0,0), V41 (-)) g — Qp(s.a,b), (28)

where the equality is by the definition of the prediction error in (17). By plugging in the definition of @Z in Line (1) of
Algorithm 1, for any (s, a, b), we bound the following term as

—k —k
Th(&av b) + <7)h( | 5,4, b)v Vh+1(')>g - Qh(s7a’ b)
—k . =) —k
< rh(s,a, b) + <Ph< | s, a, b)’ Vh+1(')>3 — min {?2(57 a,b) + <P}’i<'|57a’ b)v Vh+1(')>5 - B}IivH —h+ 1} (29)
< max {ra(s,a,b) = 75(s,a,0) + (Pu(-] 5,0,0) = PE([s,0,6), Vi ()) g = B0,
where the inequality holds because
—k
rr(s,a,0) + (Pu(-]5,0,0), V311 ())g
—k —k
< Th(sﬂ a, b) + th( | 5,4, b)H1||Vh+1(')||°° <1+ ?’12? ‘Vthl(S/)! <1+ H —h,
since ||Pn(-|s,a,b)||, = 1 and also the truncation step as shown in Line 1 of Algorithm 1 for @k such that for any
1 h41
ses
—k Tk
|Vh+1(8/)‘ = ’ [NZ+1(‘|3I)] Qh+1(5l7 g ')V}]:+1('|S/)‘
—k
< ||/~LZ+1('|S’)H1 HQh+1(5la g ~)1/,’f+1(~\5')||00 (30)
< max ’@iﬂ(s’,a,bﬂ < H.
Combining (28) and (29) gives
h(s,0,b) < max {ra(s,a,0) = 7£(s, a,b) + (Pa(-|5,0,0) = PE(l5,0,0), Viys ()5 = B0} (3D
Note that as shown in (9), we have
BE(s,a,b) = B1"(s,a,b) + B " (s, a,b).
Then, with probability at least 1 — §, we have
(s, a,0) — ¥ (s,a,b) — BrF (s, a,b)
S |'I"h(5, a, b) - ?kh(57 a, b)| - /B}T;vk(57 a, b)
< ﬁ,’;’k(s,a,b) - ;’k(s,a,b) =0,

where the last inequality is by Lemma B.3 and the setting of the bonus for the reward. Moreover, with probability at least
1 — 4, we have

(Pal-1s,a,b) = PE(|s,0,0), Vi ()) s — B (s,a, b)
< [Patc15.0.0) = BhCls,a b [ a Ol . = A7)
< H||Pu(-|s,a,b) = PE([s,a)|, — B (S,a,b)
< BP"(s,a,b) — BL* (s,a,b) =0
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where the first inequality is by Cauchy-Schwarz inequality, the second inequality is due to maxg¢cs HV: (") ||Oo < H as

shown in (30), and the last inequality is by the setting of Bf’k in (9) and also Lemma B.4. Thus, with probability at least
1 — 24, the following inequality holds

Th(sa avb) - ?;CL(S7G’7 b) + <Ph( | s, a, b) - 7/5}]?('|57a7 b)vVZ+1(')>S - ﬂﬁ(sa avb) <0.

Combining the above inequality with (58), we have that with probability at least 1 — 24, for any h € [H| and k € [K], the
following inequality holds

(s,a,0) <0, Y(s,a,b) € S x Ax B,
which leads to
K H
Z ZEH*fP vk Lh sh,ah,bh | 81] § 0.
k=1h=1
This completes the proof. O

Lemma B.6. With probability at least 1 — 9, Algorithm 1 ensures that

K K

J— k k ~
S Vils) = SV (s1) < OWISIPIAIHIK + V/[S:PIBIHTEK + /[Si[[ S A[BIH?K).
k=1 k=1

Proof. We assume that a trajectory { (s}, af,bf, sf )}, forall k € [K] is generated according to the policies p*, v/*,
and the true transition model P. Thus, we expand the bias term at the h-th step of the k-th episode, which is

Vi(sh) = o (1)
[Mh mﬁczh syee) Q“’“*"’“<s£7~7~>}u’;<-|sﬁ>
= CF o+ Qp(sk, af, bE) — QI (sk ak b (32)

:C}If+<Ph('|s§ﬂaﬁ7bﬁ)vvh+1() th+11/ ()> ZZ(SZ»G'Z’I)Q)
—k kK
=Ci+&+ Vh+1(32+1) - Vi (sﬁJrl) T (sk, ak, by),

where the first equality is by Line 2 of Algorithm 2 and (1), the third equality is by plugging in (2) and (36). Specifically, in
the above equality, we introduce two martingale difference sequence, namely, {{ ;’f th>o0k>0 and {& Z}hZO, k>0, which are
defined as

T Ak k vk o
Cilf = [/LZ(|SZ)} [Qh(sfw'v')_QZ ' (827'7')}Vﬁ('|8h rh 8h7a’h7bk) H ( Zva27b2)}7
—k ko k Uk
flfi = <Ph(' ‘ si,ai,bﬁ), Vi () = V,f:_i ()>3 - Wh,+1 5h+1) - Vh+i (Slfl—‘rl)]?
such that
k k k| Tk
Eaﬁw,uh( [sk),bk~vk(-|sk [Ch |‘7:h] =0, Esﬁ+l~73h(~ | sk ak bF) [gh |‘Fh] =0,

with F; ,’f being the filtration of all randomness up to (h — 1)-th step of the k-th episode plus SZ, and F ;’f being the filtration
of all randomness up to (h — 1)-th step of the k-th episode plus s¥,a¥, bF.

The equality (32) forms a recursion for V’;(sﬁ) - Vh“k’"k (s¥). We also have V’;{H(') = 0 and V};:i’k (-) = 0. Thus,
recursively apply (32) from h = 1 to H leads to the following equality

H H H
—k Kk
Vils1) = V"7 (s1) = Z G + Z Z (st @, b).- (33)

h=1 h=1
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Moreover, by (17) and Line 1 of Algorithm 1, we have
_ —k
7Lli€L(Sllfw afw bZ) = 7Th(5]l€m aZa bZ) - <Ph(' | Sh,Qh; bh)v Vh+1(')>3
= —k
+ min {rh (sk, ak bF) + <P,’f(~\sh, an,bp), Vh+1(~)>5 + BR(sk, ak bk, H}.
Then, we can further bound —75 (s¥, a¥, b¥) as follows
—k
Llli(sﬁvahvbk) _rh(sﬁﬂah’bk) <Ph('|Sz’aﬁabﬁ)vvh+1(')>5 +?kh(32aaﬁvb;€z)
—k
<Ph('|sh7 Qps bg), Vh+1(')>g + ﬁ}lf(sfw a}}kw blfi)
< |Th Shv a}u bh) - Th(sfu aﬁ’ blfi)’
+ ’<Ph('|3h7a27bk) Ph( | sk, ap, by), Vh+1 ‘ + Br sk, ap, by),
where the first inequality is due to min{x, y} < x. Additionally, we have
N —k
‘<Ph( | Slfiv alfiﬂ bﬁ) - Pf]f( | 827 (J,Z, blfi)? Vh+1(')>5‘
< thJrl()HOOHPh( ‘ szva};a b’ﬁ) - Pilf( | waafw bZ)||1
< HHPh( | Slfu a’ﬁ7 bﬁ) - 73}1:( ‘ Slfi’aiabl}i) 1

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is by (57). Thus, putting the above
together, we obtain

_LZ(SZ>ahvbk < ‘Th Sh’ah’bk> Th(SZ,aﬁ,bk ‘ + HHPh( ‘ 8270'27[72) - Ph(' ‘ 827a]fivb§)||1 + BE(Sﬁ’afwbi)
< 26 (shvahvbk) +2[3 (Shaa}}kwa;cz)

where the second inequality is by Lemma B.3, Lemma B.4, and the decomposition of the bonus term B}’f as (9). Due to
Lemma B.3 and Lemma B.4, by union bound, for any h € [H], k € [K] and (sp, ap,bp) € S x A x B, the above inequality
holds with probability with probability at least 1 — 2§. Therefore, by (33), with probability at least 1 — 24, we have

3 [Vatsy) = Vi (s1)]
k=1
S

(34)

K H
ZZ Tk Shva’lwbk +2ZZB Sh?a’lwbk)

1h=1 k=1h=1

By Azuma-Hoeffding inequality, with probability at least 1 — 4, the following inequalities hold

1 h=1
K H 1
ZZ&Q <0 <\/H3Klog5> ,
k=1 h=1

where we use the facts that \@Z(sh, ar, bk) Qy 3 (sh,ah, b¥)| < 2H and |V:+1(52+1) Vh“:iyk(sﬁﬂ)\ < 2H. Next,
we need to bound Y1 ST grk sk ah, bEyand STr SO BPR(sk ok bFY in (34). We show that

log(|S1||Sa || A||BIHK /6
DI AT IS 5y SIS AAE/
k=1h=1 k1h1maX{N(h,h,h,)}

Z log( \81||82||AIIB\HK/5)
k=1h=1

(Sh ’Sh ,ah,bk)

n

H Nh (S ,s2.a, b)
<C), ) \/log SISIAIBIHE]5)
h=1

(s',5%,a,b)€S1 XxSax AxB n= 1
N,i((sl,SQ,a,b)>O
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where the second equality is because (sh k. S}2L Foak af,bf) is visited such that N} (sh , si bk af,b¥) > 1. In addition, we have

i Z N (i »a:0) \/log(|51|52|A||B|HK/5)

n
h=1 (s s> ,a, b)eSl><82><A><B n=1

N (s',5%,a,b)>0

> O<\/N5(sl,sz,a7b)1og |Sl||52||?||B|HK>

h=1 (s1,52,a,b)€ES1 XSa X AXB

<0 <H\/K|81|52IIAIB| log

Mm

3

|81||82|A||B|HK>
)

where the last inequality is based on the consideration that Z(Sl 52,0,0) €81 xS x Ax B N[ (st,s?,a,b) = K such that

D (st 52 ap)esy xsax Axs \| Ni (s1,8%,a,0) < O ( K|Sl||82|\A||B|) when K is sufficiently large. Putting the above
together, we obtain

K H
[AlS S1||Sq | A||B|HK
ZZW(sﬁ,aﬁ,b@go<H\/K|sl|52||A|B|10g| il 2|5H | )

K X P £ 2H2|S; | log(2|Sy|| A/ HK/6) 2H?2|S, | log(2]Ss||BIHK/6)
E E Bh, Sh,ah,b E E +
max{Nk(sh ,ah) 1} max{N’“(sh ,bZ) 1}

k=1h=1 k=1h=1

<0 (H\/K|Sl|2|AH2 log

w +H\/K|8228|H210g

2|Sz||B|HK>
— |

Thus, by (34), with probability at least 1 — §, we have

K
k k ~
ZV1 s1) =) VI (1) < O(VISIPIAIH'K + VIS PIBIHK + /81|82 Al[BIH2K),
k=1

where O hides logarithmic terms. This completes the proof. O

Before presenting the next lemma, we first show the following definition of confidence set for the proof of the next lemma.

Definition B.7 (Confidence Set for Player 2). Define the following confidence set for transition models for Player 2
T8 = {P 1| Pu(s1s%,0) = Pr (%152, 0)| < e, [Pl D)l = 1,
and Pp(s%[s%,0) > 0, V(s%,b,5%) € Sy x B x 83,Vk € [K]}

where we define

2k .o Pt (s7!|s,b) log (S| |[BIHEK/3")  141og(|Sa||BIHK /)
ho max{NF(s2,b) — 1,1} 3max{N}F(s2,b) — 1,1}

with NF(s2,b) = 25:1 1{(s%,b) = (S,Ql’T, b;)}, and P2* being the empirical transition model for Player 2.

Lemma B.8. With probability at least 1 — 0, the difference between qzkﬂﬂ and dzk’PM are bounded as

) ID !

k=1h=1s2€8,
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Proof. By the definition of state distribution for Player 2, we have

DI WEAEIETIE 95

k=1h=1 528, k=1h=15s2€8,

wi’k(sz, b) — Z @Z’k(SQ, b)

beB beB

(]

where @Z’k (s2,b) is the occupancy measure under the empirical transition model P2 and the policy v*. Then, since

Prk e Y2k always holds for any £, by Lemma B.11, we can bound the last term of the bound inequality such that with
probability at least 1 — 647,

g P = dl P () < & + &

Then, we compute £; by Lemma B.10. With probability at least 1 — 26’, we have

K ! !
. Z T Y ul ( S| log(Sal|BLHE/3) 1og<|s2||B|HK/6>>

5268, beB max{Ny(s?,b),1} max{N}(s,b),1}

H Ma: [ Mm
Mi ?ML

H So||B|HK
=0 |82< |52||B|K+|82|B|10gK—|—log51)] %

H So||BIHK
=0 <H2|82|\/ |BIK + H?|S,|*?|B|log K + H?/|S,|log 5,> log |2|||}

_ 5
=0 (H*|S:V/IBIK) ,

where we ignore log K when K is sufficiently large such that /K dominates, and O hides logarithm dependence on |Ss|,
|B|, H, K, and 1/¢’. In addition, & depends on ploy(H, |Sz|, |B|) except the factor log W as shown in Lemma
B.11. Thus, & can be ignored comparing to &, if K is sufficiently large. Therefore, we obtain that with probability at least
1 — 8¢’, the following inequality holds

g () = i T ()] < O (S VIBIK)

We further let 6 = 84’ such that log %ﬂ = log w which does not change the order as above. Then, with
o K H v P2 9 VR PR o (172 :

probability atleast 1 —d, wehave Y ;") D> 51 > ecs, @, 7 (57) —d), (s*)| < O(H?|S2|+/|B|K). This completes

the proof. [

B.1. Other Supporting Lemmas

The following lemmas are adapted from the recent papers (Efroni et al., 2020; Jin & Luo, 2019), where we can find their
detailed proofs.

Lemma B.9. With probability at least 1 — 46', the true transition model P? satisfies that for any k € [K),
P e Tk

This lemma indicates that the estimated transition model P2 k( 2152, b) for Player 2 by (11) is closed to the true transition
model P} (s*'|s?, b) with high probability. The upper bound is by empirical Bernstein’s inequality and the union bound.

The next lemma is adapted from Lemma 10 in Jin & Luo (2019).
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Lemma B.10. We let wik (s2,b) denote the occupancy measure at the h-th step of the k-th episode under the true transition
model P? and the current policy v*. Then, with probability at least 1 — 25" we have for all h € [H], the following

inequalities hold

Z > Zmax{w]\’;: zb)b) - (|82||B|logK+1og?/)

k=1s2€S8; beB

and

K

wr(s%,b) _ H
Z Z Z =T O | V|S2||B|K + |S2||Bllog K + log 5 )

k=15s2€8, beB \/max{N;f(s2, b),1

By Lemma B.9 and Lemma B.10, we have the following lemma to show the difference of two occupancy measures, which
is modified from parts of the proof of Lemma 4 in Jin & Luo (2019).

Lemma B.11. For Player 2, we let wi’k(SQ, b) be the occupancy measure at the h-th step of the k-th episode under the
true transition model P? and the current policy v*, and @i’k(sz, b) be the occupancy measure at the h-th step of the k-th

episode under any transition model P2k € Y* and the current policy V¥ for any k. Then, with probability at least 1 — 65’
we have for all h € [H), the following inequalities hold

K K
SOSTST N @t st e) — wipt(sPb)| < &+ &

k=1h=1s€S2 beB

where €1 and & are in the level of

f-0 |y

K
|Sa|log(|Sa|[BIHK/d") | log(|Sz||BIHK/d')
2 wh(s*,b) (\/ max{NF(s2,0),1) max{N}f(sz,b),l}>

and

So||B|HK
£=0 (poly<H, 3], 1B) ~1og"‘"> ,

6/
where poly(H, |Sz|, |B|) denotes the polynomial dependency on H,|Ss|,|B].

C. Proofs for Section 4

Lemma C.1. At the k-th episode, the difference between value functions Vl”*’”k (s1) and Vl”k"’k (s1) is

x Lk kL k —k k ok
VI (s1) = VI (s1) = Vi(s1) = VY (s1)

H
£ 3 By [(ui Clsn) = hClsn), UE (s, ) [ 1]
h=1

H

+ Z E, o« po» [fZ(sh, an,br) | s1]. (35)
h=1

. . —k
where sp,, ap, by, are random variables for state and actions, UF (s, a) := (Q}, (s, a, "), vr (- | s)) s, and we define the model
prediction error of Q-function as

?Z(sv a, b) = Th(sv a, b) + thfﬂ-l(sa CL) - @:(S, a, b) (36)
Proof. We start the proof by decomposing the value function difference as

x Lk k ok x Lk —k —k kK
VI (s1) = VI (s1) = VI (1) = Vi(s1) + Vi(s1) = V7 (s1). (37
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Note that the term V1 (31) V“ v (s1) is the bias between the estimated value function V]f(sl) generated by Algorithm 2

k:
and the value function Vl” 'Y (s1) under the true transition model P at the k-th episode.

We focus on analyzing the other term Vl“*"’k (s1) — V’f(sl) in this proof. For any h and s, we have

VI (5) = Vi(s)

= 1) QL (s, Cls) = [k (1s)] " @nls, - wh Cls)
= [ (1) T QR (5,0, WA 1) — [ (¢ IS)]Tfih( )i (ls) (38)
()] @Qnls, vk (ls)

+ [ 1] @ (5, VECls) = [ (Cls)
— (T [ (s, — @
+ [ (1) — uZ(~IS)]T@]Z(s,~,~)V;’§(-Is :

where the first inequality is by the definition of V“* “*in (1) and the definition of V: in Line 2 of Algorithm 2. Moreover,
by the definition of QZ* " (s,-,-) in (2) and the model prediction error ¢ for Player one in (36), we have

[ (1)) T QY (s,-,) = Gl -, )] vk ()
= 3" Y i (als) [ S Puls']s, ) [V () = Vs ()] + b5, b)} vE(b]s)

ac AbeB s'eS
Lk
=D wilals)Pa(s'ls,a) [V (8) — Vi ()] + >0 uilals)sh (s, a, b)vg (bls).
acAs’'eS ac AbeB

where the last equality holds due to ", v (b| s) = 1. Combining this equality with (38) gives

Vi (s) - =53 wials)Palsls, a) [V (') = Vi (51)]
a€EAs'ES
+ Z Z,Uh 5)57: (5, a, b)vg (bls) (39)
ac AbeB
+ 375 [wi(als) — i (als)] @ (s, bk (bls).
ac AbeEB

Note that (39) indicates a recursion of the value function difference V' Ed (s) — V: (s). Since we define V};_s_i’ ’ (s)=0

and Vl;] +1(s) = 0, by recursively applying (39) from i = 1 to H, we obtain

* Lk —k
Vi (s )_Vl(sl)

_ZEH 73{ l’[’h ‘Sh gh Shsy "y )Vh |Sh |81} (40)

+ ZE#*,P{ (17, (-|sn) — M’Z('|Sh)]T@Z(8h7 Sk (lsn) | s1},

where s;, are a random variables denoting the state at the h-th step following a distribution determined jointly by p*, P.
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Further combining (40) with (37), we eventually have
* l/k k I/k
VI (s1) = VY (1)

H
= Vi(s0) = V¥ (s1) + D e { i Clsn) TS (s Ik Clsn) | 51}

h=1

H
+ ZE/L*,P{ [MZ(‘|5h) - Hlﬁ("sh)}T@Z(Sm Y )V];f(|5h) | 51}
h=1

H

—k ko k -
=Vi(s1) — V1N Y (s1) + ZEm,P,uk [Cg(shaah,bh) ’ 81]
h=1
H
+ " B ip (i Clsn) = 1k Clsn), Uk (s ) 4 | 1]
h=1
where sy, ap, by, are a random variables denoting the state and actions at the h-th step following a distribution determined
jointly by y*, P, v*, and U} (s,a) := (@:_1(5, a,-), vy (-] s))s. This completes our proof. O

Lemma C.2. At the k-th episode, with probability at least 1 — 20, the difference between the value functions Vlﬂk’yk (s1)

and ka’”* (s1) is bound as

H
k Vk Lk v* k
V) =V (s1) <230 3 ol P (s) - i)

h=1s€S
H
YD dh(s)(Wik(s, ) v (ls) = vii(ls))
h=1s€S
H
+23 By por B (sn,an, ba) | 51], (1)
h=1

where sy, ap, by, are random variables for state and actions, and W} (s, b) = (7 (s,-,b), uk (- | s)) 4.

Proof. We start our proof from analyzing the difference for any h and s as follows

= (k1] T @R (s L) = [ Cls)] T @5 (s, i)
=MKMfZTFHWﬂM—M%MfZ”%MWHM )

where the first equality is by the Bellman equation for V/*"”(s) in (1). Moreover, by the Bellman equation for Q)" in (2),
we can expand the last term in (42) as

[ C9] T [RE ™ (5,0) = QE Y (s, )]wii(ls)
=35 dhitals) Yo Pulslsca) [V () = VI ()] v (bls)

a€AbeEB s’eS
k ok ko
=D wilals)Pu(s'|s,a) [V () = Vi ()]

acAs’'eS

(43)
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where the last equality holds due to ),z v (b | s) = 1. Combining (43) with (42) gives

VI () = v (s) = S0 S b als) Q) (s.a,b) [ (bs) — v (b]s)]

acAbeB

+ 305 phals)Puls')s,a) [V (s) = VT ()]

acAs’'eS

(44)

Note that (44) indicates a recursion of the value function difference V,fk"’k (s) — V,ftk"’* (s). Since we define V7, (s) = 0
for any u and v, by recursively applying (44) from h = 1 to H, we obtain

H
Vlﬂk,uk (81) 7 Vl,uk,ll* (31) — ZE“k’P{ [Mz(.|sh)]TQl}jk’Uk (Sha " ) [Vili(|3h) - V;;('|Sh)} ’ Sl}’ (45)
h—

where s;, are a random variables following a distribution determined jointly by ;*, P. Note that since we have defined the
distribution of s, under ;* and P as

g (s) = Pr (sn = s | pF, P, 1),
we can rewrite (45) as

Vo) - T (50 = 3050 3 S P )@t (0 AO) — 0] @9

h=1seSacAbeB

By plugging the Bellman equation for Q-function as (2) into (46), we further expand (46) as

k Vk Lk V*
Vi (s1) = VI (s1)

H
= Z SN P ()b (als) [ra(s,a,0) + (Pals,a), Vi ()] E (Bls) — w3 (0]s)]
h=1s€S acAbeB
H
= Z SOSTS T P )k als) (s, ab)] [ (bls) — v (b]s)]
=1s€S ac A beB
H
= ZZ ECL) Tras, ) [VECls) — vi(ls)],
h=1seS

where the second equality by

Z SN S P ()b (als)(Pulls.a) VL () glvE (b]s) — v (bls)]

h=1s€eS acAbeB

= Z g als)(Pu(ls, @), VI () S Ivh(bls) — vii(Bls)]

h=1seSacA beB
=0.

In particular, the last equality above is due to

> [vhls) —vils)] =1—-1=

beB

Thus, we have

VP o) =V (o) = 30 T Pk o ) — i) @7

h=1seS
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Now we define the following term associated with estimation Pk, h , policies p*, ¥, and the initial state s; as

H Bk
=SS P ) [ 1)) T s, vk Cls),

h=1s€eS
with 7 defined in Line 3 of Algorithm 3, which is
(s, a,b) = max {7} (s,a,b) — "R (s,a,b), 0}.
Thus, we have the following decomposition
VI (s1) = V7 (s1)
uk ok k k wkov*
=V (s1) = Vi(s1) + Vi(s1) = Vi" 7 (s1)
H
* T pr T
=SS {a PG b (19 s, W Cls) = ab T () [k Cls)] T s

h=1s€eS

(48)
Term(I)

H k Dk T k T
Sl T G [k C)) s, Cls) = af T () [k (1)) s i Cls) |

h=1seS

Term(II)
We first bound Term(I) as
' T i T
Term) = 3° 3 [P () b C19)] Trns, - WECLs) — g™ () [ ()] 7o Cls) )

h=1seS

H i .
=2 > dh T[] [ralss) = Th(s - )]va(ls)

h=1seS

uk pr k T k
+ZZ s)=ay " ()| [n(1s)] (s, wi(ls)
h=1seS
7 k pk
<2ZIE kP ok (s,a,b)]—&-z ’qﬁ Pls)y—q " (s)],
h=1s€eS
where the inequality is due to [7} (s, a,b) — rp,(s,a,b)| < 3, *(s, a, b) with probability at least 1 — & because of Lemma

C.4 such that we have

(s, a,b) — 7 (s, a,b) = 1, (s, a,b) — max {?’,ﬁ(s,a,b) - ;’k(s,a,b),O}
= min {ry(s,a,b) — (s, a,b) + B;’k(s, a,b), (s, a,b)}
<rp(s,a,b) — ?Z(s, a,b) + ﬂg’k(s, a,b) < Qﬂg’k(s, a,b),
which yields
k T r
dodi TOEC9)] [rals, ) = (s, )]k (ls) < 2By pn [B7 (5, 0,0)],
seS

and we also have

][u'z<-|s>]%’f<sv-,->uh< s

< ‘ZZu’;<a|s>?ﬁ<s,a,b>uﬁ<b|s>
<ZZM}L als) |rhsab‘ vr(bls) <1,
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because of 7% (s, a, b) = max {?kh(s, a,b) — 52’k(s, a,b), O} < 7%(s,a,b) < 1. Therefore, with probability at least 1 — 4,
we have

Term(I)<22E e p |87 (s an, b)) +ZZ‘% )= 7 ()] (49)

h=1seS

Next, we bound Term(II) in the following way

H Sk
Term(D = Y3 g 7 (s) [uh (1)) (s, ) [P Cls) — v (1s)]

h=1seS
H Sk k

3 [at T ) = df T )] [k 1)) 7 s v Cls)
h=1seS
H Sk

3N P ) )] [T, ) = ralss )] Cls).
h=1seS

Here the first term in the above equality is associated with the mirror descent step in Algorithm 3. The second term can be
k k pk
similarly bounded by 31, Yoees lan P(s) — ¢ " (s)|. With probability at least 1 — 4, the third term is bounded as

H Sk
SO @ P S b Cl)] T [T ) — s, )] Cls)

h=1s€eS

I
NgE

S (s Zum [7%(5,a,b) — (s, a, )] vE (b))
1s€S

h

I
M=

Z Pk Zuh (a]s) max {rh (s,a,b) —rp(s,a,b) — ;’kfl,—rh(s,a,b)}z/ﬁ(ﬂs)
1s€eS

IN
o =

)

k)

since ?,’j_l(s, a,b) —rp(s,a,b) — 6,7;’k_1 < 0 with probability at least 1 — § by Lemma C.4, which reflects the ’optimism
of the algorithm. Thus, with probability at least 1 — §, we have

H Bk
Term(ID) < S 3" gt 7 () [k (1)) "7 (s, ) [V (ls) — v ()]
h=1seS (50)

+Zz]q a7 ().

h=1s€eS

Combining (49), (50) with (48), we obtain that with probability at least 1 — 29, the following inequality holds

H Sk
VI s1) =V (50) < 30N @ P () [b Cls)] 7 (s, ) [VECls) — vi(ls)]

h=1seS
H
+222‘qh —qh s)‘ +22]Ell‘k7'p,yk [ﬁ;’k(sh,ah,bh)].
h=1s€S h=1
This completes our proof. O

Lemma C.3. With setting n = \/log |A|/(K H?), the mirror ascent steps of Algorithm 2 lead to

>3 E, P Cls) = i C19),UE(s,) 4| < 0 (VTR log A

k=1h=1
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Proof. As shown in (13), the mirror ascent step at the k-th episode is to solve the following maximization problem
H

1
imi k k k
maximize -ls) — 'S,U S, - R D 1s), 18)),
g S (1) = 190 UG 3 32 D 19): 1)

. —k . o S C
with UF(s,a) = (Q),(s, a, ), vk (:|s)) 5. We can further equivalently rewrite this maximization problem to a minimization
problem as

H

H
minimize — 3 (un(-[s) — uh(s), UE (s, )  + % S Dict (n(-1s), i (13)).
h=1

A S,H
HEA(A|SH)

Note that the closed-form solution " (als) = (V;F)~'uk(als) exp{n(@:(s, a,+),vF(-|s))p} to this minimization
problem is guaranteed to stay in the relative interior of its feasible set A(A|S, H) when initialize p (-|s) = 1/|.A|. Thus,
we can apply Lemma C.12 and obtain that for any p = {u, }/_,, the following inequality holds

*77<Mk+1 )7U}]f(57')>_,4+n<uh("5)an]f(57')>A
< D, (pn(:[8), 11;(-15)) = Dic (un 1), sy (19)) = Drer (s (1), i (-]s)).-

Then, by rearranging the terms, we have

TACBRTACE ) i (s:)) 4
< Dcr (1, (1), 1 (1)) — DKL(uh 8) 1y (18)) = Dxcr.(uy " ([s), iy (9)) (5D
+n<ui“(|) i (-1s), Uk (5,)) -
Due to Pinsker’s inequality, we have
~ Dicw (17 C1s), (1)) < —5 k™ (ls) — s Cls) 7
Moreover, by Cauchy-Schwarz inequality, we have
(™ Cls) =k Cls), U (s, ) 0 < nH ||y (ls) = i Cls) |-
Thus, we have
LN CARADONTACE )+77<u'“+1 )*u'ﬁ(‘IS),U;’i(s’-DA
< "||M’“+1 ) = uh CIT + |1 (1) = b (1)l (52)
]‘ 2H2
2

where the last inequality is by viewing || pETE(C|s) — pk(-]s) H1 as a variable z and finding the maximal value of —1/2 -
22 + nHzx to obtain the upper bound 1/2 - n? H?.

Thus, combing (52) with (51), the policy improvement step in Algorithm 2 implies

(i (18) = 15, (15), Ur (s,-)) 4 < Dicw (i, (1), 17 (1)) — Der (5, Cls), i (ls)) + %WQHQ,

which further leads to

H
> By e (i Cls) — 1 (13), Uk (s, ) o
h=1

H
< 3 B p (D (1 C1o). 1 C19)) = Dis (1) k7 (1)) + ot
h=1
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Moreover, we take summation from & = 1 to K of both sides and then obtain

K H
>N By [ Cls) = ik Cls), UK(s, ) ]

k=1h=1

H
< % > By [Dxr (17, (-15), k(1)) = Dicw (w5 (1) TG l9)) ] + %nKH?’
h=1

IN

H
1 1
o 2B p [Dicw (7, (19): 1k (19))] + GnECH?,
h=1

where the last inequality is non-negativity of KL divergence. By the initialization in Algorithm 2, it is guaranteed that

1 (-]s) = 1/|.A|, which thus leads to Dxr, (p,(+]s), 1, (-|s)) < log|.A|. Then, with setting = +/log |A]/(K H?), we
bound the last term as

H
1 1
= > B [Dice (i (CJs), ik (19)] + 5k H? < 0 (VETK log [A])

g h=1

which gives

K H
>3 e (uils) = uhCls). Uk (s.) | < O (VETK Tog[A])

k=1h=1
This completes the proof. O

Lemma C4. Foranyk € (K|, h € [H] and all (s,a,b) € S x A x B, with probability at least 1 — 0, we have

4log(|S[|Al|B|H K/9)
max{NF(s,a,b),1}

|?ﬁ(57a;b) - Th(S,LL,b)’ < \/

Proof. The proof for this theorem is a direct application of Hoeffding’s inequality. For k£ > 1, the definition of ?Z in (11)
indicates that 7 (s, a, b) is the average of NJ (s, a, b) samples of the observed rewards at (s, a, b) if Nf(s,a,b) > 0. Then,
for fixed k € [K], h € [H] and state-action tuple (s,a,b) € S x A x B, when N} (s, a,b) > 0, according to Hoeffding’s
inequality, with probability at least 1 — 6" where ¢’ € (0, 1], we have

log(2/4")

~

) ab - ) 7b < YN YRR

’rh(s a,b) —rp(s,a )’ INE (s, a.b)

where we also use the facts that the observed rewards rf € [0, 1] for all k and h, and E [?’;] = ry, for all k and h. For the
case where NJ(s,a,b) = 0, by (11), we know 7¥ (s, a,b) = 0 such that [7% (s, a,b) — r4(s,a,b)| = |rn(s,a,b)| < 1. On
the other hand, we have /21log(2/6') > 1 > |7¥(s,a,b) — 74(s, a, b)|. Thus, combining the above results, with probability
atleast 1 — ¢', for fixed k € [K], h € [H] and state-action tuple (s,a,b) € S x A x B, we have

210g(2/6'
|7/:kh(8’a7b) _Th(s7a’b)| = \/maX{Nk((S/a 2?) 1}
h Pad! 9

Moreover, by the union bound, letting § = |S||A||B|HKd'/2, assuming K > 1, with probability at least 1 — ¢, for any
k € [K],h € [H] and any state-action tuple (s, a,b) € S x A x BB, we have

4log(|S|[|Al|B|H K/6)
max{N}(s,a,b),1}

|?kh(svaab) - rh(saavb)’ < \/

This completes the proof. O
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In (12), we set ﬁZ’k(s, a,b) = 1 f}iﬁfﬁ?giﬂ%ﬁ?) , which equals the bound in Lemma C.4.

Lemma C.5. Forany k € [K|, h € [H] and all (s,a) € S x A, with probability at least 1 — 6, we have

2|5 log(|S||A|H K/d)
max{N}(s,a),1}

|PECIs,0) = Pu[s,0)|| < \/

Proof. For k > 1, we have |[PF(-|s,a) — Pp(-|s,a)|, = max| 4| <1 (PE(-|s,a) — Pu(-|s,a),2)s by the duality. We
construct an e-covering net for the set {z € RIS! : ||z||,, < 1} with the distance induced by || - ||, denoted as A, such
that for any z € RIS!, there always exists z’ € A satisfying ||z — 2’| o < . The covering number is |[N.| = 1/¢!]. Thus,
we know that for any (s,a) € S X A and any z with ||z||s < 1, there exists z’ € N such that ||z’ — z||o, < € and

(Ph(-|5,a) = Pal-| s,a),2) g
= (Pi(|s,a) = Pu(-|5,0),2') s + (PR(-|5,0) = Pa(|5,0),2 — ')
< (PECIs,@) = Pal-|5,0),2) s+ [PEC15,.0) = Pal-] s,0)]|
such that we further have

[PECIs.0) = Pu1s,a)|

= ax (PF(-|5,a) — P(-| 5,0),2) (53)
< max <ﬁ;’f(-|s7a)—Ph(-\s7a),z’>5+€H73,’f(-|S,a)—Ph(~|s,a)H1.

By Hoeffding’s inequality and union bound over all z’ € A, when N/ (s,a) > 0, with probability at least 1 — &' where

8 € (0,1],

|S| log(1/e) +log(1/5’)
S - 2NF(s,a)

max <73h( |s,a) = Pru(-|s,a),2

4
2z EN. (54)

Letting ¢ = 1/2, by (53) and (54), with probability at least 1 — ¢, we have

|S]log 2 + log(1/6")
2N} (s, a) '

When Nf(s,a) = 0, we have | PF(- | s,a) — Pu(-|s,a)||, = |Pa(-|5,a)[1 = 1 such that 2,/ 1511os24losW) 3 —

Hﬁff( |s,a) — Pn(-]s, a)H1 always holds. Thus, with probability at least 1 — §’,

[PECIs.0) = Pu1s.a)]| < 1\/

~ |S]log 2 + log(1/4") 2|S|1log(2/¢")
HP,lf( [5:0) = Pal |s,a)H1 = 2\/ZmaX{N,’f(s,a)7 1} = \/maX{N,’f(s,a), 1}

Then, by union bound, assuming K > 1, letting 6 = |S||.A|H K ¢'/2, with probability at least 1 — J, for any (s,a) € S x A
and any h € [H| and k € [K], we have

2|S|log(|S||A|H K/0)
max{N}(s,a),1}

|PECIs,0) = Pu|s,0)|| < \/

This completes the proof. O

In (12), we set ﬁf’k(& b) = \/ 2H? Lﬂ i({)%\g LS(ISIJ;\)U? }K/ 5), which equals the product of the upper bound in Lemma C.5 and the
R @),
factor H.
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Lemma C.6. With probability at least 1 — 2, Algorithm 2 ensures that
K H
ST T Eepor [Sh(snanbu) | s1] < 0.
k=1h=1

Proof. We prove the upper bound of the model prediction error term. We can decompose the instantaneous prediction error
at the h-step of the k-th episode as

fﬁ(sa a, b) = Th(sﬂ a, b) + <Ph( | S, a)vv:+1(')>3 - @:(57 a7b)7 (55)

where the equality is by the definition of the prediction error in (36). By plugging in the definition of @Z in Line (2) of
Algorithm 2, for any (s, a, b), we bound the following term as

i (5,0,0) + (Pu(-|5,), Vs () — Qnls a,)
< n(s,,6) + (Pu(-15,0), Viar () = min {7h(s,0,8) + (P ([s,a), Vi1 () g — B H —h+1}
< max {ra(s,a,b) = 75(s,0,6) + (Pu(- 5,0) = P([s,a), Vi1 () g = 81,0}, (56)
where the inequality holds because

—k
(8, a,0) + (Pr(- | snyan), Vi () g
—k —k
<7 (5,,0) [ PaC-L s an) [, [V his Olloo < 14 max [ ()] < 1 H ~ b,

. . Lo . —k
since || Py (- | sp,an) H1 = 1 and also the truncation step as shown in Line 2 of Algorithm 2 for ()}, , ; such that for any
ses

|V:+1(5l)| = ’ [H£+1('|5')]T@Z+1(Sla g ')V]ff+1(‘|5/)
< i M @ha (s i (1) -
< max [ Q. (5, a.b)|
<H —h.
Combining (55) and (56) gives
<h(s,a,) < max {ru(s.a,b) = (s, 0,6) + (Pu(- | s,0) = Ph(]s,0), Vir,a () — BE, 0} (58)

Note that as shown in (12), we have
Bi(s,0,0) = 5" (5,0,0) + 8" (5, ).
Then, with probability at least 1 — §, we have
1 (s,a,0) — TE(s,a,b) — By* (s, a,b)
< ’rh(s,a,b) — ?kh(s,a,b)’ — Z’k(s,a,b)
< B (s,a,b) = B (s,a,b) = 0,

where the last inequality is by Lemma C.4 and the setting of the bonus for the reward. Moreover, with probability at least
1 — 4, we have

(Pu(-|5,a) = PE(15,0), Vi1 ())g — BE (s, 0)
< [Pu(-15.0) = BECls, @), [ Viaa O], = 87 (s0)
< H||Pu(-|s,a) = PF(-|s,a)||, = B} " (s, a)

< Bf’k(&a) - }?)k(&a) =0,
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where the first inequality is by Cauchy-Schwarz inequality, the second inequality is due to maxg¢cs HV: (") ||Oo < H as

shown in (57), and the last inequality is by the setting of Bf’k and also Lemma C.5. Thus, with probability at least 1 — 24,
the following inequality holds

Th(S,G,,b) - ?Z(Svaab) + <Ph( | Saa) - 7/5}]3('|57a)7vz+1(')>3 - B}]f(svaa b) <0.

Combining the above inequality with (58), we have that with probability at least 1 — 24, for any h € [H| and k € [K], the
following inequality holds

K (s,a,0) <0, Y(s,a,b) € S x Ax B,
which leads to
K H
ZZE#* P [Sh(Sn, an, br) |s1] < 0.
k=1h=1
This completes the proof. O

Lemma C.7. With probability at least 1 — 6§, Algorithm 2 ensures that

K K
S Vils) = v (1) < O (VISPIATHTE + /IS[ABIHK )
k=1

k=1

Proof. We assume that a trajectory { (s}, af,bf, sf | )}L, forall k € [K] is generated according to the policies x*, v/*,

and the true transition model P. Thus, we expand the bias term at the h-th step of the k-th episode, which is

Vi(sh) = Vi (sh)
[Mh |5h ]T[Qh sh? 7' ng’yk(327'7')}l/§('|3§)
= ¢k + Qn(sh i, bf) — Qi " (k. af ) (59)
=$+@wu%@iﬁm>vﬁ:mg—¢@mmm

—k Uk _
= Ch &k + Vi (shn) = VIGT (shy) = Sh(sh,af, o),

where the first equality is by Line 2 of Algorithm 2 and (1), the third equality is by plugging in (2) and (36). Specifically, in
the above equality, we introduce two martingale difference sequence, namely, {¢F},>0 k>0 and {&F },>0, k>0, Which are
defined as

K Kok g Rk ok
C}lj = [/’(‘ ( I )} [Qh S}m 7') _QZ : (8 )}Vh |Sh rh shaahabk) Qlft (Sﬁ7afwb2)}a
k l/k V
& = (P sp.ay), Vh+1() Vit i ()>5 - rh+1 Spi1) _th+i (SZH)L
such that
k| Tk
Eab oyt (15,0~ (k) [Ch | Fh) = 0, Bk ~Pu( | sk al &k | FF] =0,

with F; ,]f being the filtration of all randomness up to (h — 1)-th step of the k-th episode plus sfl, and F }’f being the filtration
of all randomness up to (h — 1)-th step of the k-th episode plus s’,i, aﬁ, bﬁ.

. . —k k ok —k
We can observe that the equality (59) construct a recursion for V, (s¥) — V" (s§). Moreover, we also have V ()=0

and Vﬁi'{ ' (-) = 0. Thus, recursively apply (59) from h = 1 to H leads to the following equality

H H H

—k ok

Vis1) = V{7 (s1) = ZC}? + Z Z (sh, a, b).- (60)
h=1 —1

h=1
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Moreover, by (36) and Line 2 of Algorithm 2, we have

_ —k
_CI;L(SZ’ alfi’ bﬁ) = _rh(sg7 aﬁfw bk - <Ph : |Sh7ah) Vh+1(')>5

+m1n {Th Sh,a/h,bk +<Ph |Sh7ah) Vh-‘rl >S+ﬂh Sh,ah,bk) H h+ 1}

Then, we can further bound —<7 (¥, ak | bF) as follows

_k . —k R
_gl}i(slfw (l];“ b,}i) < _rh(slfcu ai’ bﬁ) - <Ph( | wa aﬁ)v Vh+1(')>3 + ?Z(Slfia aga blli)
= —k
+ <,P}]: '|Sli€u alfi)v V}L+1(')>5 + /B}If(séﬂu CLZ, bZ)
< |Th Sh7ah7bk) Th(527a27bk)|
o |[(Pu- sk ah) = Pk ah), Vi ()| + Bh sk ak 06,
where the first inequality is due to min{x, y} < z. Additionally, we have
= —k
[(PuC- 15k, k) = PG|k ah), Vs ()|
—k ~
< VaiaOll o [PuC1 sk o) =P ab)lly
§H||Ph(|5fmaﬁ) ( ‘5h7ah ||1a

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is by (57). Thus, putting the above
together, we obtain

_ —k —k
7§];L(SZ7 alfu b%) < |?kh(5;€m a’fcm bﬁ) - rh(slfcm afm bﬁ)‘ + H||Vh+1() - Vh+1(’)H1 + Blff(sﬁa a‘];;,’ bﬁ)
< 26, (sh, aff, 0F) + 26, (sf, af),

where the second inequality is by Lemma C.4, Lemma C.5, and the decomposition of the bonus term 3¥ as (12). Due to
Lemma C.4 and Lemma C.5, by union bound, for any h € [H], k € [K] and (sp, ap,bp) € S x A x B, the above inequality
holds with probability with probability at least 1 — 24. Therefore, by (60), with probability at least 1 — 2§, we have

Zrl 51) Y s1)]
ZZ G+ Zth+2225 (sK,ak bF) +QZZB (5K, am).

k=1 k=1h=1 k=1h=1 k=1h=1

(61)

By Azuma-Hoeffding mequahty, with probability at least 1 — §, the following inequalities hold

where we use the facts that \@Z(sh, ah, bk) Q’}fkyk (sh,ah, b¥)| < 2H and |V:+1(s’fb+1) Vh“iiyk(sﬁ_ﬂ)\ < 2H. Next,
we need to bound Zk 1 Zh L BrF (sk ak bk and Zk SO PR (sk ak) in (61). We show that

' (s (S| AIBLH /)
ZZB hva}mb CZZ max{Nk(Sh,ah,bk) 1}

k=1h=1 k=1h=1
log(|S||A||B|HK/9)
=C
kz:lhzzl NFE(sk ak, bF)

H N (s,a,b)
<oy ) \/log ISHAIIBIHK/5)

n
h=1 (s,a,b)eSxAxB n= 1
N (s,a,b)>0
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where the second equality is because (sF, a¥, b¥) is visited such that N} (s¥, af bf) > 1. In addition, we have

n

H N (s,a,b)
log(|S||A[|B|H K/d)
SIS SN ST

(s,a,b)ESXAXB n=1
N (s,a,b)>0

H
<> > O(\/N}{{(&a,b)logwglﬂm{)

h=1 (s,a,b)ESXAXB

)

<0 <H\/K|S|A||B| 1og'5'““'[f“”<)

where the last inequality is based on the consideration that »° . ., cc. axs Vi (s,a,b) = K such that

D (s.a.b)ESX AXB NE(s,a,b) < O (\/K|SHA||B|> when K is sufficiently large. Putting the above together, we
obtain

K H
k=1h=1

r S||A[BIHE
Bk (sh,af, bf) <O (H\/K|S|A||B| log ||||L|> .

Similarly, we have

i \/H2|S|1og<|S|A|HK/6>

max{N}f(sZ,aZ),l}

Z O(\/N,f((s7a)H2|8|log|SHé|HK>

h=1 (s,a)eSxA

H
<> > o <\/Z Ng(s,a,b)ﬂﬂsmgW)

h=1 (s,a)eSxA beB

9

<0 (1 wiseuarios L)

where the second inequality is due to Y, s N/<(s,a,b) = NjX(s,a), and the last inequality is based on the consider-

ation that 32, , 1) e axs VA (5:0,0) = K such that 2, s, 4 \/Spen NE (5,0,0) < O(V/KIS[[A]) when K is
sufficiently large.

Thus, by (61), with probability at least 1 — §, we have

K K
—k k ok ~
Y Vils1) = > V" (s1) < O(ISPIAIHAK + /|8 AIBIH?K)
k=1 k=1
where O hides logarithm terms. This completes the proof. O

Lemma C.8. With setting v = +/|S|log |B|/ K, the mirror descent steps of Algorithm 3 lead to

ST AW s, ), vk Cls) — vi(1s) < O (VEISTK Tog]B])

k=1h=1seS

Proof. Similar to the proof of Lemma C.3, and also by Lemma C.12, for any v = {yh}hH:1 and s € S, the mirror descent
step in Algorithm 3 leads to

7dl}i(s)<W}]f(S")7V}];+1('|3)>3 _’de(sxwflf(sv')’Vh("8)>3
< Dk, (Vh(|5)7l/flf(|3)) — DkL (Vh('|3)7V]1§+1('|3)> - DKL(V§+1('|5)7V}’§('|S))a
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according to (14), where W/ (s,a) = (vf(-|s), 7 (s, a,-)). Then, by rearranging the terms, we have

vy () (Wi (s, ), vii (|s) — v (+19)) 5
< Dxw (vi(+]5), vi (-|s)) = Dxe (vi (-]s), v T (1)) — Dxw (v 7' (ls), v (-] ) (62)
— i (s)(Wr (5,-), v T (-]s) = v (-]s)) -
Due to Pinsker’s inequality, we have
~ Dicw (v (), v (1) < — 5 [k I5 (63)

Moreover, we have

=i (s) (Wi (5. ). v (ls) — v T (- |s>>5
SAOIACRI Hv’““ —vhCl9l, (64

<y (9)[|v (L) — i (- Hl,

where the last inequality is by

W5 (s, )l = max Wi(s,b)

| A

b
,Jax Wii(s,b)

k—1
Jax (7 (s, 0), (-] 9))

e (17 (s D)Lk L)l

IN

IN
IN
—_

due to the definition of W} and 7% (s, a, b) = max{7¥ (s, a,b) — ;’k, 0} < 7%(s,a,b) < 1. Combining (63) and (64) gives

— Dky, (v k+1('|$),V§('\S)) — dji(s) (W (s, ), vi (-]s) — Vk+1('\8)>
< - Hl/kH( |s) — vk (- Hl + ~dk (s) Hukﬂ( |ls) — vk(. Hl
afm] * < Sk,

where the second inequality is obtained via solving max, {—1/2 - 22 + vd} (s) - 2} if letting = = || (:|s) — vF(:|s) 1.
Plugging the above inequality into (62) gives

Yy () (Wi (5,), v (1s) = Vi (-19)) 5 < Dxu (v (1s), v (1)) — Dxu (v (1s), vy 7 (ls)) + %d'ﬁ(S)vQ

Thus, the policy improvement step implies

H
DD A (Wi(s, ) vh(ls) = vi (1)) 5

h=1s€eS
H
< %ZZ DKL Vh | ) V}’f(‘s)) _DKL(V;;(-|S) V}If—H ZZ d
h=1seS h 1868
1 & 1
= v 4 ZZ Dy (v (¢]8), vr(:|s)) — Dxr(vi(:]s), vy (+]s))] + S H.
h=1s€8
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Further summing on both sides of the above inequality from & = 1 to K gives

K H
oD D A (Wik(s, ) v Cls) = vi(ls))

k=1h=1s€S
" 1
< *ZZ (D1 (v (1), va(5) = Dxu(vi(Cls) v (1)) + S HEY
h 1seS
1
S*ZZDKL vp (- (-|S))+§HK’7.
h 1seS
Note that by the initialization in Algorithm 3, it is guaranteed that vji(-|]s) = 1/|B|, which thus leads to

Dy (15 (¢|s), u3.(+s)) < log|B|. By setting v = 1/|S|log | B|/K, we further bound the term as

L Z " D (vi(ls), vk Cls)) + 5 HEA < O (\/AZISTK 08B )

h 1seS

which gives

K H
SO S A (Wik(s ), vk Cls) — viltls)) s < O (VHISTK Tog [B]) -

This completes the proof. O

Before giving the next lemma, we first present the following definition for the proof of the next lemma.

Definition C.9 (Confidence Set). Define the following confidence set for transition models

T+ = {B 1 |Pu(sl5,0) = Ph(sIs, )| < e, IPaCls @)l =1,

and Py(s'|s,a) > 0, ¥(s,a,s") € S x Ax S,Vk € [K}}

where we define

g | PR ls,a)log(S||AIHE /&) | 1410g(|S||AIH /&)
ho max{N}(s,a) — 1,1} 3max{Nf(s,a) — 1,1}

with NF(s,a) == Zle 1{(s,a) = (s}, a},)}, and P* being the empirical transition model.

Lemma C.10. With probability at least 1 — 9, the difference between q“k*P and d* are bounded as

DI

k=1h=1s€eS

17 (s) — di(s) < O (H2ISIVIAIK)
Proof. By the definition of state distribution, we first have

SES -] =Y

k=1h=1s€eS k=1h=1s€eS

Z wy(s,a) — Z wy (s, a)

acA acA

iiZZ‘whsa (sa)’

k=1h=1seSacA

IN
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where tﬁﬁ (s, a) is the occupancy measure under the empirical transition model P* and the policy y*. Then, since Pk c Tk
always holds for any k, by Lemma C.15, we can bound the last term of the bound inequality such that with probability at
least 1 — 647,

< & + &s.

iiZ\q“ 5) ~ dhts)

=1h=1s€eS

Next, we compute the order of & by Lemma C.14. With probability at least 1 — 20’, we have

[ H h—1 K
_ |S[log(IS||AIHEK/6") | log(|S||AIHK/d")
f1=0 Z Z Z Z Z wh(s,a) (\/ max{N}(s,a),1} * max{N}(s,a),1} >]

Lh=2 h'=1k=1s€S acA

[y, |8|\A|HK
=0 Z > VISIH VISIAIK + [S]]A| logK+1og 5 ) log =
=2h’'=1

S||A|HK
=0 (H2|S|\/|A|K+H2|S3/2|A|logK+H2\/|8 log — ) gH&}

-0 <H2|S\\/\A|K>,

where we ignore log K terms when K is sufficiently large such that v/K dominates, and O hides logarithm dependence on
|S|, |A|, H, K, and 1/¢’. On the other hand, &, also depends on ploy(H, |S|, |.A|) except the factor log ISH?ﬂ as shown
in Lemma C.15. Thus, & can be ignored comparing to &; if K is sufficiently large. Therefore, we eventually obtain that
with probability at least 1 — 8¢', the following inequality holds

Sy a7 () = di(s)| < O (HISIVIAIK)

k=1h=1scS

We let 6 = 89 such that log ‘S”?,‘HK = log without changing the order as shown above. Then, with probability

at least 1 — &, we have Zszl 25:1 Y oecs |qﬁk’P(s) — d¥(s)| < O(H?|S|/]AJK). This completes the proof. O
Lemma C.11. With probability at least 1 — 0, the following inequality holds

8|S||A|H K
5

K H
Z ZEMk,P,uk [ﬁka(sh,ah,bh) | 31] < (5( |S||A|\B|H2K> )

k=1h=1

Proof. Since we have

K H
Z Z B,k p0x (B (shan,bi) | 1]

C \/log(ISIIAIBHK/é)
N,’f(s,a,b)

_ SIAIBIHE - 5- 1
= C\/logézZE'ak’pﬂjk W 5

k=1h=1
then we can apply Lemma C.16 and obtain

K H

DD B pur B  (snyan by) [s1] <O ( |8||AHB|H2K) ,

k=1h=1

with probability at least 1 — 8. Here O hides logarithm dependence on |S|, |A|, |B|, H, K, and 1/5. This completes the
proof. O
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C.1. Other Supporting Lemmas

Lemma C.12. Let f : A — R be a convex function, where A is the probability simplex defined as A == {x € R%: ||x||; =
land x; > 0,Vi € [d]}. Foranya > 0,z € A, andy € A° where A° C A with only relative interior points of A, supposing
x%P" = argmin, ¢, f(x) + aDkuy(X,y), then the following inequality holds

f(x°P") + aDkr(x",y) < f(z) + aDkL(z,y) — aDky(z,x°P").

This lemma is for mirror descent algorithms, whose proof can be found in existing works (Tseng, 2008; Nemirovski et al.,
2009; Wei et al., 2019).

Lemma C.13. With probability at least 1 — 40, the true transition model P satisfies that for any k € [K),
P ek

This lemma implies that the estimated transition model 73;:(5’ |s,a) by (11) is closed to the true transition model Py, (s’|s, a)
with high probability. The upper bound for their difference is by empirical Bernstein’s inequality and the union bound.

The next lemma is modified from Lemma 10 in Jin & Luo (2019).

Lemma C.14. We [et w,’f(s, a) denote the occupancy measure at the h-th step of the k-th episode under the true transition
model P and the current policy u*. Then, with probability at least 1 — 25’ we have for all h € [H], the following inequalities
hold

wk(s,a) _ H
ZZZ max (N (s, 0), 1] =0 <|S|A|logK+log 5/),

k=1se€SacA

and

K wk(s,a) =
>33 o (VST 4 Sl 4o )
k=1

—1s€SacA \/max{N}’f(s,a .1

Furthermore, by Lemma C.13 and Lemma C.14, we give the following lemma to characterize the difference of two occupancy
measures, which is modified from parts of the proof of Lemma 4 in Jin & Luo (2019).

Lemma C.15. Let w,}j (s, a) be the occupancy measure at the h-th step of the k-th episode under the true transition model P
and the current policy ji*, and ﬁﬁ(s, a) be the occupancy measure at the h-th step of the k-th episode under any transition

model P* € Y* and the current policy pF for any k. Then, with probability at least 1 — 65’ we have for all h € [H)|, the
following inequalities hold

K K
ZZZZW% (s,a) — wf (s, a)| < & + &,

k=1h=1s€SacA

where £1 and &5 are in the level of

H h—1 K
o [SToa(SIAIHK) | loa(iS|AHE/®)
Z Z ZZ Z w(s:0) ( max{Nf(s,a),1} * max{NF(s,a),1} >]

h=2h'=1k=1seS acA

and

S||A|HK
&2 = 0 (pots(#7 5114 1o S ),
where poly(H, |S|, | A|) denotes the polynomial dependency on H,|S|,|Al.

Lemma C.16. With probability at least 1 — 0, the following inequality hold

K H
1 ~
k k < 2
S S Euep [\/maX{N;’f(s,a,b),l} < O (VISIAIBIHK + |S||Al|BIH)

k=1h=1

where O hides logarithm terms.
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Proof. The zero-sum Markov game with single controller in this paper can interpreted as a regular MDP learning problem
with policies w¥ (a,b|s) = u¥ (als)vf(b|s) and a transition model Py, (s'|s, a,b) = P (s'|s, a) with a joint action (a, b) in
the action space of size |.A||B|. Thus, we apply Lemma 19 of Efroni et al. (2020), which extends lemmas in Zanette &
Brunskill (2019); Efroni et al. (2019) to MDP with non-stationary dynamics by adding a factor of H, to obtain our lemma.
This completes the proof. ]



