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Abstract

While single-agent policy optimization in a fixed
environment has attracted a lot of research atten-
tion recently in the reinforcement learning com-
munity, much less is known theoretically when
there are multiple agents playing in a potentially
competitive environment. We take steps forward
by proposing and analyzing new fictitious play
policy optimization algorithms for two-player
zero-sum Markov games with structured but un-
known transitions. We consider two classes of
transition structures: factored independent tran-
sition and single-controller transition. For both
scenarios, we prove tight O(+/T') regret bounds
after T' steps in a two-agent competitive game
scenario. The regret of each player is measured
against a potentially adversarial opponent who
can choose a single best policy in hindsight af-
ter observing the full policy sequence. Our algo-
rithms feature a combination of Upper Confidence
Bound (UCB)-type optimism and fictitious play
under the scope of simultaneous policy optimiza-
tion in a non-stationary environment. When both
players adopt the proposed algorithms, their over-
all optimality gap is O(v/T).

1. Introduction

Widely applied in multi-agent reinforcement learning (Sut-
ton & Barto, 2018; Bu et al., 2008), Policy Optimization
(PO) has achieved tremendous empirical success (Foerster
et al., 2016; Leibo et al., 2017; Silver et al., 2016; 2017;
Berner et al., 2019; Vinyals et al., 2019), due to its high effi-
ciency and easiness to combine with different optimization
techniques. Despite these empirical successes, theoretical
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understanding of multi-agent policy optimization, especially
the zero-sum Markov game (Littman, 1994) via policy opti-
mization, lags rather behind. Most recent works studying
zero-sum Markov games (e.g. Xie et al. (2020); Bai & Jin
(2020)) focus on value-based methods achieving O(+/T') re-
grets and they assume there is a central controller available
solving for coarse correlated equilibrium or Nash equilib-
rium at each step, which introduces extra computational cost.
On the other hand, although there has been great progress
on understanding single-agent PO algorithms (Sutton et al.,
2000; Kakade, 2002; Schulman et al., 2015; Papini et al.,
2018; Cai et al., 2019; Bhandari & Russo, 2019; Liu et al.,
2019), directly extending single-agent PO to multi-agent
setting encounters a main challenge of non-stationary en-
vironments caused by agents changing their own policies
simultaneously (Bu et al., 2008; Zhang et al., 2019a). In this
paper, we aim to answer the following open question:

Can policy optimization probably solve zero-sum Markov
games to achieve O(\/T) regrets?

As an initial attempt to tackle the problem, in this work, we
focus on two non-trivial classes of zero-sum Markov games
with structured transitions: factored independent transition
and single-controller transition. For the game with the fac-
tored independent transition, the transition model is factored
into two independent parts, and each player makes transition
following their own transition model. The single-controller
zero-sum game assumes that the transition model is entirely
controlled by the actions of Player 1. In both settings, the
rewards received are decided jointly by the actions of both
players. These two problems capture the non-stationarity
of the multi-agent reinforcement learning in the following
aspects: (1) the rewards depend on both players’ poten-
tially adversarial actions and policies in both settings; (2)
Player 2 in the single-controller setting faces non-stationary
states determined by Player 1’s policies. In addition to the
non-stationarity, practically, the true transition model of the
environment could be unknown to players and only bandit
feedback is accessible to players. Thus, the non-stationarity,
as well as the unknown transition model and the full reward
function, poses great challenges to the design and theoretical
analysis of the multi-agent PO algorithms.

In this paper, we propose two novel optimistic Fictitious
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Play (FP) policy optimization algorithms for the games with
factored independent transition and single-controller zero-
sum games respectively. Our algorithms are motivated by
the close connection between multi-agent PO and FP frame-
work. Specifically, FP (Robinson, 1951) is a classical model
for solving games based on simultaneous policy updates,
which includes two major steps: inferring the opponent (in-
cluding learning the opponent’s policy), and taking the best
response policy against the estimated policy of the opponent.
As an extension of FP to Markov games, our proposed PO
algorithms possess two phases of learning, namely policy
evaluation and policy improvement. The policy evaluation
phase involves exchanging the policies of the previous step,
which is motivated by the step of inferring the opponent in
FP. By making use of the policies from the previous step,
the algorithms further compute the value function and the
Q-function with the estimated reward function and transi-
tion model. By the principle of “optimism in the face of
uncertainty” (Auer et al., 2002; Bubeck & Cesa-Bianchi,
2012), their estimation incorporates bonus terms to handle
the non-stationarity of the environment as well as the un-
certainty arising from only observing finite historical data.
Furthermore, the policy improvement phase corresponds to
taking the (regularized) best response policy via a mirror
descent/ascent step (where the regularization comes from
KL divergence), which can be viewed as soft-greedy step
based on the historical information about the opponent and
the environment. This step resembles the smoothed FP (Fu-
denberg & Levine, 1995; Perolat et al., 2018; Zhang et al.,
2019a) for normal form games (or matrix games). During
this phase, both players in the factored independent tran-
sition setting and Player 2 in the single-controller setting
demand to estimate the opponent’s state reaching probability
to handle the non-stationarity.

For each player, we measure the performance of its algo-
rithm by the regret of the learned policy sequence compar-
ing against the best policy in hindsight after 7" steps. In
the two settings, our proposed algorithms can achieve an
O(V/T) regret for both players, matching the regret of value-
based algorithms. Furthermore, with both players running
the proposed PO algorithms, they have O+/T optimality
gap. To the best of our knowledge, this seems the first
provably sample-efficient fictitious play policy optimization
algorithm for zero-sum Markov games (with structured tran-
sitions). Our work also partially solves one open question
in Bai & Jin (2020) that how to solve a zero-sum Markov
game of multiple steps (H > 2) with an O(+/T) regret via
mirror descent-type (policy optimization) algorithms.

Related Work. There have been a large number of classical
works studying the games with the independent transition
model, e.g., Altman et al. (2005; 2008); Flesch et al. (2008);
Singh & Hemachandra (2014). In addition, the single-
controller games are also broadly investigated in many ex-

isting works, .e.g, Parthasarathy & Raghavan (1981); Filar
& Raghavan (1984); Rosenberg et al. (2004); Guan et al.
(2016). Most of the aforementioned works do not focus
on the non-asymptotic regret analysis. Guan et al. (2016)
studies the regret of the single-controller zero-sum game
but with an assumption that the transition model is known
to players. In contrast, our work provide a regret analysis
for both transition models under a more realistic setting
that the transition model is unknown. The games with the
two structured transition models is closely associated with
the applications in communications. The game with the
factored independent transition (Altman et al., 2005) finds
applications in wireless communications. An application
example of the single-controller game is the attack-defense
modeling in communications (Eldosouky et al., 2016).

Recently, there are many works focusing on the non-
asymptotic analysis of Markov games (Heinrich & Silver,
2016; Guan et al., 2016; Wei et al., 2017; Perolat et al.,
2018; Zhang et al., 2019b; Xie et al., 2020; Bai & Jin, 2020).
Some of them aim to propose sample-efficient algorithms
with theoretical regret guarantees for zero-sum games. Wei
et al. (2017) proposes an algorithm extending single-agent
UCRL2 algorithm (Jaksch et al., 2010), which requires
solving an constrained optimization problem each round.
Zhang et al. (2019b) also studies PO algorithms but does
not provide regret analysis, which also assume extra linear
quadratic structure and known transition model. In addition,
recent works on Markov games (Xie et al., 2020; Bai & Jin,
2020; Liu et al., 2020; Bai et al., 2020) propose value-based
algorithms under the assumption that there exists a central
controller that specifies the policies of agents by finding
the coarse correlated equilibrium or Nash equilibrium for
a set of matrix games in each episode. Bai & Jin (2020)
also makes an attempt to investigate PO algorithms in zero-
sum games. However, this work shows restrictive results
where each player only play one step in each episode. A
concurrent work (Tian et al., 2020) studies zero-sum games
under a different online agnostic setting with PO methods
and achieves an O(T3/*) regret. Comparing with aforemen-
tioned works, motivated by classical fictitious play works
(Robinson, 1951; Fudenberg & Levine, 1995; Heinrich et al.,
2015; Perolat et al., 2020), recently, we focus on the setting
where there is no central controller which determines the
policies of the two players and we propose an fictitious play
policy optimization algorithm where each player updates
its own policy based solely on the historical information
at hand. Moreover, our result matches the O(+/T') regret
upper bounds in Xie et al. (2020); Bai & Jin (2020) that are
obtained by value-based methods .

Furthermore, we note that the game for each individual
player can be viewed as a special case of MDP with adver-
sarial rewards and bandit feedback due to the adversarial
actions of opponents. For such a class of MDP models in
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general, Jin & Luo (2019) proposes an algorithm based on
mirror descent involving occupancy measures and attains
an O(v/T) regret. However, each update step of the algo-
rithm requires solving another optimization problem which
is more computationally demanding than our PO method.
Besides, it is also unclear whether the algorithm in Jin &
Luo (2019) can be extended to zero-sum games. Moreover,
for the same MDP model, Efroni et al. (2020) proposes a
optimistic policy optimization algorithm that achieves an
O(T?/3) regret. Thus, directly applying this result would
yield an O(T?/3) regret. In fact, regarding the problem as
an MDP with adversarial rewards neglects the fact that such
“adversarial reward functions” are determined by the actions
and policies of the opponent. Thus, since each player knows
the past actions taken and policies executed by the opponent
under the FP framework, both players can construct accu-
rate estimators of the reward functions after a sufficiently
large number of episodes. As we will show in Sections
3 and 4, the proposed PO methods explicitly utilizes the
information of the opponent in the policy evaluation step,
which is critical for the method to obtain an O(+/T)) regret.

2. Background and Preliminaries

In this section, we formally introduce notations and setups.
Then, we describe the two transition structures in detail .

2.1. Notations and Setups

We define a tabular episodic two-player zero-sum Markov
game (MG) by the tuple (S, A, B, H, P,r), where S is a
finite state space, .4 and B are finite action spaces of Player
1 and Player 2 respectively, H is the length of each episode,
Pr(s’|s,a) denotes the transition probability at the h-th
step to the state s in the (h + 1)-th step when Player 1 takes
action a € Ain an episode, ry, : S X Ax B — [0, 1] denotes
the reward function at the h-step, with the value normalized
in the range [0, 1]. In this paper, we let P = {P,}L be
the true transition model, which is unknown to both play-
ers. Throughout this paper, we let {-,-)s, (-,-) 4, and (-, )5
denote the inner product over S, A, and B respectively.

The policy of Player 1 is a collection of probability distribu-
tions p = {un }, where py(als) € A4 with A 4 denot-
ing a probability simplex defined on space A. Analogously,
we have the policy of Player 2 as a collection of probabil-
ity distributions v = {v;, }}_,, where v, (b|s) € Ag with
Ap denoting the probability simplex on space 5. We de-
note u* = {uF}H_ and v* = {vF}/L | as the policies at
episode & for Players 1 and 2.

Fictitious Play. At the beginning of the k-th episode, each
player observes the opponent’s policy during the (k — 1)-th
episode. For simplicity of theoretical analysis, we assume
there exists an oracle to exchange players’ past policies.
Then, they take regularized best response policies via a mir-

ror descent/ascent step for the current episode and make
simultaneous moves. By the end of the k-th episodes, each
player observes only the trajectory { (s}, ay, bf, sf 1)},
and the bandit feedback along the trajectory. The bandit
setting is more challenging than the full-information setting,
where only the reward values {r¥(sf, a¥ b¥)}L  on the
trajectory are observed rather than the exact value function
rh(s,a,b) for all (s,a,b) € S x A x B. Moreover, the
rewards 7 (-, -,-) € [0, 1] is time-varying with its expecta-
tion rj, = E[r¥] which can be adversarially affected by the
opponent’s action or policy, indicating the non-stationarity
of the environment.

Value Function. We define the value function V" :

S +~— R under any policies p = {up}l,, v =
{vp}L | and the transition model P = {P,}/_, by
V¥ (s) = E[Zg:h Th(Spryaprybps) | Sp = 8], where

the expectation is taken over the random state-action pairs
{(shryans, by ) HE_, . The corresponding action-value func-
tion (Q-function) Q" : & x A x B+ R is then defined as
Q" (s,a,b) = B[S _p rar (s, ans, b) | s = 5,05 =
a, b, = b]. Therefore, according to the above definitions,
we have the following Bellman equation

th’u(s) = [/J’h(|s)}—r Z’V(Sv ) ')Vh(‘|s)v (1)
Q" (s,a,b) = ri(s,a,b) + (Pp(:|s,a,b), V,{ﬂ;”l(-)>5, (2)

where 5, (+|s) and vy, (+|s) are column vectors over the space
A and the space B respectively, V}/"" (-) is a column vector
over the space S, and QZ’"(S, -, +) is a matrix over the space
A x B. The above Bellman equation holds for all A € [H]|
with setting V1, (s) = 0,Vs € S. Hereafter, to simplify
the notation, we let PV (s, a, b) := (P(-|s, a, b), V(~)>S for
any value function V' and transition P.

Nash Equilibrium. We define the Nash equilibrium (NE)
as (u', v") as a solution to max,, min, V{""(s1). Then, we
further have the following relation
Vl“T’V*(sl) = max min V" (s1) = minmax V/*"(s1).
w v v n
Thus, we say a policy pair (i, V) is an e-approximate Nash
equilibrium if it satisfies
max V" (s1) — min V" (s1) <,
n v
where the weak duality max,, V/*"(s;) > V{‘T"ﬁ (s1) >
min, V/*¥(s1) always holds.

Regret and Optimality Gap. The goal for Player 1 is to
learn a sequence of policies, {11*}1~0, to have a small regret
as possible in K episodes, which is defined as

K
.k ko
Regret, (K) := [Vl“ Y(s) =V (s1)], )
k=1
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and {v* le is any possible and potentially adversar-
ial policy sequence of Player 2. The policy p* is the
best policies in hindsight, which is defined as u* :=
argmax,, e Vf""k (s1) for any specific {*}£ . Simi-
larly, Player 2 aims to learn a sequence of policies, {¢*}x~0,
to have a small regret defined as

K
k Kk k%
Regret, () := Y [ (s1) = V¥ (s1)]. )
k=1

where {£*}5_| is any possible policy sequence of Player 1.
The policies v* is also the best policies in hindsight which
is defined as v* := argmin,, Zszl Vl“k’”(sl) for any spe-
cific {*}£ . Note that u* and v* depend on opponents’
policy sequence and is non-deterministic, and we drop such
a dependency in the notation for simplicity. We further
define the optimality gap Gap(K) as follows

Gap(K) :=Regret; (K) + Regret, (K). (5)

Our definition of optimality gap is consistent with a certain
form of the regret to measure the learning performance of
zero-sum games defined in Bai & Jin (2020, Definition 8).
Specifically, when the two players executes their algorithms
to have small regrets, i.e., Regret; (K') and Regret, (K) are
small, then their optimality gap Gap(K) is small as well.

On the other hand, letting the uniform mixture policies
i ~ Unif(pt,...,p%) and 7 ~ Unif(v!,...,v%) be
random policies sampled uniformly from the learned poli-
cies, then (f, V) can be viewed as an e-approximate NE if
Regret(K)/K < e. This build a connection between the
approximate NE and the optimality gap.

2.2. Structured Transition Models

Factored Independent Transition. Consider a two-player
MG where the state space are factored as S = &1 x Sy such
that a state can be represented as s = (s!, s?) with s! € $
and s®2 € S,. Under this setting, the transition model is
factored into two independent components, i.e.,

Pn(s'|s,a,b) = Pi(s'|s',a)P2(s* | s%,b), (6)

where we also have s’ = (s, s?"), and Py, (s'' | s!, a) is the
transition model for Player 1 and Py, (s*' | s, b) for Player
2. Additionally, we consider the case where the policy of
Player 1 only depends on its own state s such that we have
u(als) = u(alst) and meanwhile Player 2 similarly has the
policy of the form v(b|s) = v(b|s?). Though the transitions,
policies, and state spaces of two players are independent of
each other, the reward function still depends on both players’
actions and states, i.e., 7, (s, a,b) = 7, (s, 5%, a,b).

Single-Controller Transition. In this setting, we take steps
forward by not assuming the relatively independent struc-
tures of the policies and state spaces for two players. For

the single-controller game, we consider that the transition
model is controlled by the action of one player, e.g., Player
1 in this paper, which is thus characterized by

Pr(s"|s,a,b) = Pp(s'|s,a). (7)

In addition, the policies remain to be p(a|s) and v(b|s) that
depend on the state s jointly decided by both players, and
reward 71, (s, a, b) is determined by both players as well.

Remark 2.1 (Misspecification). The above assumptions are
made only for ease of theoretical analysis. When the above
transition models may not be ideally satisfied, one can poten-
tially consider scenarios that the transitions satisfy, for ex-
ample, | Pr(- | s,a,b) — Pr(s' | s',a)Pr(s? | s%,b)]|0o <
oor ||Pu(-|s,a,b) —Pu(-]s,0)|lcc <0 V(s,a,b), witha
misspecification error 9. One can still follow the techniques
in this paper to analyze such misspecified scenarios, and
obtain regrets with an extra bias term 0T, as the misspecifi-
cation error o will be accumulated across T' episodes. When
o is small, it implies that the MG has approximately fac-
tored independent transition or single-controller transition
structures, and then the extra bias term 0T should be small.

3. MG with Factored Independent Transition

In this section, we propose and analyze optimistic policy
optimization algorithms for both players under the setting
of the factored independent transition.

Algorithm for Player 1. The algorithm for Player 1 is
illustrated in Algorithm 1. Assume that the game starts from
a fixed state s; = (s, s7) each round. We also assume that
the true transition model P is not known to Player 1, and
Player 1 can only access the bandit feedback of the rewards
along this trajectory instead of the full information. Thus,
Player 1 needs to empirically estimate the reward function
and the transition model for all (s, a, b, s’) and h € [H| via

k
271 L{(s.a,b)=(s],af.00)}Th (S, @, D)

&
b) =
(s, 0,0) max{N}(s,a,b),1} ’

k
1
2rm1 L(sta,s1)=(sb7 ap sLT 1))

. , ®
maX{Nh (sla Cl), 1}

73,1’]“(81’|51,a) =

k
D1 Li(s2,52ry=(s27 7 sii)}

h "h?

max{N}(s?,b),1} ’

Pt (s¥]s,b) =

where we denote 1,4 as an indicator function, and
NE(s,a,b) counts the empirical number of observation
for a certain tuple (s,a,b) at step h until k-th iteration
as well as N¥(st,a) for (s!,a) and N (s2,b) for (s2,b).
’Ehen, we have thg\ estimation of /:[he overall transition as
Pr(s'|s,a,b) = Pr¥(s[s', a)Pp* (s¥|s2,b). For sim-
plicity of presentation, in this section, we let s = (s!, s?)
and we use s', s2 separately when necessary.
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Based on the estimation of the transition model and re-
ward function, we further estimate the Q-function and value-
function as shown in Line 7 and 8 in Algorithm 1. In terms
of the principle of “optimism in the face of uncertainty”,
bonus terms are introduced to construct a UCB update for
Q-function as shown in Line 7 of Algorithm 1. We set the
bonus term as

Br (s, a,b) *(s,a,b),  (9)

= B*(s,a,b) + B

\/410g(|81HSQHAIIB\HK/(S)

where we define B,Tl’k(s, a,b) = e [N oo ) 17

TS Tloa (215 1A 5
H(5,0.8) = \/2H Ry T+

2H?|S2|log(2|Ss||B|HK /S .
TSI i s < 0

compose B’g(s, a,b) into two terms where [3;’

as well as BZ:’

1). Here, we de-

F(s,a,b) is
the bonus term for the reward and 3 "* (s, a) for the tran-
sition estimation. As shown in Lemmas B.3 and B.4 of
the supplementary material, the bonus terms BZ’k(s, a,b)
and BZ:
equality. Note that the two terms in the definition of ﬂf’k

stem from the uncertainties of estimating both transitions
Pi(s' | s, a) and PE(s* | s%,b).

*(s,a,b) are obtained by using Hoeffding’s in-

Next, we introduce the notion of the state reaching proba-
bility "7’ (s2) for any state s2 € S, under the policy v*
and the true transition P2, which is defined as

VP(

a, ) := Pr(sj, = 5> | ", P?,57),Vh € [H].

To handle non-stationarity of the opponent, as in Line 10,
Player 1 needs to estimate the state reaching probability of
Player 2 by the empirical reaching probability under the
empirical transition model P2 for Player 2, i.e.,

d” L ( 2) = Pr(s} = s |V, P>*, s2),Vh € [H].

The empirical reaching probability can be 51mply com-

puted dynamically from h = 1 to H by d” k(SQ) =
252’652 Za’GA dz T
Based on the estimated state reaching probability, the
policy improvement step is associated with solving the
following optimization problem (denoting by Dy, the KL
divergence)

maxZ — 7' Dxr(pa(-ls'), gy (-|sh))], (10)

where we define the linear function as éf_l(uh) =
1 k(o1 1,k VR PR g

(n(-[s) — pp(ls )7252652 Fy (57')dh (5%))

with F7F(s,a) = <Q:(s,a,~),y}’f(-|52)>5. One can see
that (10) is a mirror ascent step and admits a closed-
form solution as uf(als') = (V1) ~'ui~(als') -

1,k VR PR o k-1 .
exp{n 252652 F, " (s,a)dy (s*))s}, where Y, is
a probability normalization term.

C(2EL (V] PE (5252 1),

Algorithm 1 Optimistic Policy Optimization for Player 1
1: Initialize: For all h € [H], (s',5% a,b) € §; x Sy x
A x B: g ([s') = 1/|AL PyOClst a) = 1/I81],
PrO(|s%,b) = 1/|Sa, 79 ) = BR( ) = 0.
for episode k =1,..., K do
Observe Player 2’s policy {uh’l}h 1
Start from state s; = (s1,5?), set VH+11( ) =0.
forsteph=H,H—-1,...,1do
Estimate the transition and reward function by
Pflfil('|'a ) and %\271('7 ) ) as (1 1)
7: Update Q-function ¥(s, a, b) eESxAxB:

AN

@:_1(s,a,b) :min{( +73,]f 1Vh+1
+[3,’f_1)(s,a,b),H— h+1}7.
8: Update value-function Vs € S:
—k—1 k—1 T—k—1 k—1
Vi ()= [y 'Cl9)] @ (s, v (:ls).
9: end for

10:  Compute the empirical state reaching probability
k B2,k ~
dy 77" (%) of Player 2 under v*, P>*, Vh € [H].
11:  Update policy uF (a|s') by solving (10), V(st, a, h).
12:  Take actions following af ~ 1% (|s;*), Vh € [H].
13:  Observe the trajectory {(s}, ay, by, sF, )}, and

rewards {rfb(sﬁ, aﬁv bZ)}thl'
14: end for

Algorithm for Player 2. For the setting of MG with fac-
tored independent transition, the algorithm for Player 2 is
trying to minimize the expected cumulative reward w.r.t.
ri(-,+,+). In another word, Player 2 is maximizing the
expected cumulative reward w.r.t. —7rp,(-,-,-). From this
perspective, one can view the algorithm for Player 2 as a
‘symmetric’ version of Algorithm 1. Due to the limit of space
here, we present Algorithm 4 in Section A of the supple-
mentary material. Specifically, in this algorithm, Player 2
also estimates the transition model and the reward function
the same as (11). Since Player 2 is minimizing the expected
cumulative reward, the bonus terms as (9) are subtracted
in the Q-function estimation step by the UCB optimism
principle. The algorithm further estimates the state reaching
probability of Player 1, ¢} *P (s'), by the empirical one
d’,jk’pm (s'), which can be dynamically computed. For the
policy improvement step, Algorithm 1 performs a mirror
descent step based on the empirical reaching probability.
Please see more details in Section A.

3.1. Theoretical Results
Theorem 3.1. By setting n = \/log | A|/(K H?), with prob-

ability at least 1 — 49, Algorithm 1 ensures the sublinear
regret bound for Player 1' i.e., Regret,(K) < O (C’ﬁ),

"Hereafter, we use O to hide the logarithmic factors on
|S|, |Al, |B|, H, K, and 1/§.
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where T' = HK is the number of steps, and the constant
C = V(ISP + [S:PIB)H? + /|81 IS Al B H.

Theorem 3.1 shows that Player 1 can obtain an O(v/T) re-
gret by Algorithm 1, when the opponent, Player 2, performs
potentially adversarial policies.

Theorem 3.2. By setting v = +/log |B|/(K H?), with prob-

ability at least 1 — 49, Algorithm 4 ensures the sublinear
regret bound for Player 2, i.e., Regrety(K) < (’)(C’\/T),
where T' = H K is the number of steps, and the constant
C = /(IS1[P|A] + [S2[2[B) H? + \/|S1]|S2 || Al B H.

Theorem 3.2 shows that Regret,(K) admits the same
o (v/T) regret as Theorem 3.1 given any arbitrary and ad-
versarial policies of the opponent Player 1, due to the sym-
metric nature of the two algorithms.

From the perspective of each individual player, the game
can be viewed as a special case of an MDP with adversarial
bandit feedback due to the potentially adversarial actions or
policies of the opponent. For MDPs with adversarial bandit
feedback, Jin & Luo (2019) attains an O(+/T') regret via an
occupancy measure based method, which requires solving a
constrained optimization problem in each update step that
is more computationally demanding than PO. Efroni et al.
(2020) proposes a PO method for the same MDP model,
achieving an O(TQ/ 3) regret. Thus, directly applying this
result would yield an O(T2/3) regret. However, for the
problem of zero-sum games, regarding the problem faced by
one player as an MDP with adversarial rewards neglects the
fact that such “adversarial reward functions” are determined
by the actions and policies of the opponent. Thus, under the
FP framework, by utilizing the past actions and policies of
the opponent, Algorithm 1 and 4 obtain an O(v/T) regret.

In particular, if Player 1 runs Algorithm 1 and Player 2 runs
Algorithm 4 simultaneously, then we have the following
corollary of Theorems 3.1 and 3.2.

Corollary 3.3. By setting n and ~ as in Theorem 3.1 and
Theorem 3.2, letting T' = H K, with probability at least
1 — 84, Algorithm 1 and Algorithm 4 ensures the following
optimality gap Gap(K) < O(ﬁ)

4. MG with Single-Controller Transition

In this section, we propose and analyze optimistic policy
optimization algorithms for the single-controller game.

Algorithm for Player 1. The algorithm for Player 1 is illus-
trated in Algorithm 2. Since transition model is unknown
and only bandit feedback of the rewards is available, Player
1 needs to empirically estimate the reward function and the

transition model for all (s, a, b, s’) and h € [H] via

k o
27:1 1{(8,(1,17):(3;;,@;;,17;;)}7’2(5, a, b)

=~k
s ’b = ] ’
Th(s a ) max{N{:‘(S,a,b% 1}

(11)
k
> ore1 Y(sa,8)=(s7 0f 5T, 1)}

max{Nf(s,a),1}

PE(s'|s,a) =

Based on the estimations, Algorithm (2) further estimates
the Q-function and value-function for policy evaluation. In
terms of the optimism principle, bonus terms are added to
construct a UCB update for Q-function as shown in Line 7
of Algorithm 2. The bonus terms are computed as

B,’f(s, a,b) = Z’k(s, a,b) + 5,7:’k(s, a),

where the two bonus terms above are expressed as

rk . [a1og(ISN|AIIBIHK/S Pk o
WEsab) = R Ty and B (s,a) 1=

2H?|S|log(|S||A|HK/6) i
\/ max{ N} (s.a).1} for § € (0,1). Here we also de

compose 3% (s, a, b) into two terms with ﬁg’k(s, a, b) denot-
ing the bonus term for the reward and B,?’k(s, a) for the
transition estimation. Note that the transition bonus are only
associated with (s, a) due to the single-controller structure.
The bonus terms are derived in Lemmas C.4 and C.5 of the
supplementary material.

12)

Different from Algorithm 1, in this algorithm for Player 1,
there is no need to estimate the state reaching probability
of the opponent as the transition only depends on Player 1.
The policy improvement step is then associated with solving
the following optimization problem

H
max Y- (L () = De (o), ™ ()], (13)
h=1

where we define the function fiil(uh) = [pn(]s) —

T an] T@ffl(s, -, -)vF71(-|s). This is a mirror ascent
step and admits the closed-form solution as pf(a|s) =

IR —k—1
(Zy D) g el s) exp{n(@y, (s,a,), v (1 9)) 51
where Z }’f ~1 is a probability normalization term.

Algorithm for Player 2. The algorithm for Player 2 is illus-
trated in Algorithm 3. Player 2 also estimates the transition
model and the reward function the same as (11). How-
ever, due to the asymmetric nature of the single-controller
transition model, Player 2 has a different way to learn-
ing the policy. The main differences to Algorithm 2 are
summarized in the following three aspects: First, accord-
ing to our theoretical analysis shown in Lemma C.2, no
transition model estimation are involved. Instead, only
a reward function estimation is considered in Line 7 of
Algorithm 3. Second, in the policy improvement step,
Player 2 needs to approximate the state reaching proba-

bility qﬁk’P(s) := Pr(sp, = s|u*,P,s1) under ¥ and
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Algorithm 2 Optimistic Policy Optimization for Player 1

Algorithm 3 Optimistic Policy Optimization for Player 2

1: Initialize: 119 (-|s) = 1/|.A| forall s € S and h € [H].
Ph( |s,a) =1/|S| forall (s,a) € S x Aand h € [H].
rh( ) ﬂh(a ,~)—0f01'allh€[H]

2: for eplsode k=1,...,Kdo

3:  Observe Player s policy {vy 1ML .

4:  Start from s§ = sy, and set V’;:_ll() =0.

5 forsteph=H,H—1,...,1do

6 Estimate the transition and reward function by

PEL(], ) and 7E7E(- -, ) as (1),
7: Update Q-function V(s,a,b) € S x A x B:
@i_l(s,a, b) = min{7} (s, a,b)

+ 73;]?_17:3(87 a) + Br(s,a,b), H —h+ 1} T

8: Update value-function Vs € S:
—k—1 T=k—1
Vh (S) [MZ 1(| )} Qh ( S, )V}k; 1( |S)

9:  end for

10:  Update policy p¥ (a|s) by solving (13), V(s, a, h).

11:  Take actions following a¥ ~ uﬁf(|s§), Vh € [H].

12:  Observe the trajectory {(s}, ay, by, sf, )}, and
rewards {rf(sk, a¥ bF)}E .

13: end for

true transition P by the empirical reaching probability
d¥(s) = Pr(s, = s|u*, Pk, s1) with the empirical transi-
tion model P*, which can also be computed dynamically
from h = 1 to H. Third, we subtract a reward bonus term

Z’k_l in Line 7 instead of adding the bonus. Similar to
our discussion in Section 3, it is still a UCB step if view-
ing Player 2 is maximizing the cumulative reward w.r.t.

-7y (.7 ” )
Particularly, the policy improvement step of Algorithm 3 is
associated with solving the following minimization problem

mln Z{L

where we define LF~*(vy) = dit(s)[us 1 (-]s)]T -
(s, ) [vn(-|s) — v 1(+|s)]. This is a mirror descent
step with the closed-form solution v} (a|s) = (Z} 1)~}
vh(bs) exp{—yd; " (s )(77;’? Hs,0)o (] 8))als
with the denominator Z ! being a normalization term.

(vn) + 7 " Dxi(va(-ls), v~ (]s))}, (14)

4.1. Theoretical Results

Theorem 4.1. By setting n = +/log | A|/(K H?), with prob-

ability at least 1 — 30, Algorithm 2 ensures the following
regret bound for Player 1 Regret,(K) < O(C VT ), where
T = HK is the total number of steps, and the constant

1: Initialize: v/)(:|s) = 1/|B| forall s € S and h € [H].
PO(|s,a) = 1/|8| forall (s,a) € S x Aand h € [H].
() =B, -,-) = 0 forall h € [H].

2: forepisode k =1,..., K do

3. Observe Player 1’s policy {uf '} .

4:  Start from the initial state s} = s;.

5. forsteph=1,2,...,H do

6 Estlmate the transmon and reward function by

77 Land 781 as (11).
7: Update ?ﬁ_l, Y(s,a,b) € S x Ax B:
r,lf Y(s,a,Db)
= max {ﬁ;l(s,a, b) — ;L"k_l(s7 a,b),0}.
8: Estimate the reaching probability by dfb_l (s) with
/ﬂfb_l and ?,]f_l,VS €s.
9:  end for

10:  Update policy ¥ (b|s) by solving (14), V(s, b, h).

11:  Take actions following b} ~ vf(-|sk),Vh € [H].

12:  Observe the trajectory {(s}, ay, by, sf, )}, and
revards {rL(sh af, b} .

13: end for

C = V/ISPIAIH? + /IS AJIBIH.

Theorem 4.1 shows that Regret, (K) is in the level of
O(V/T), for arbitrary policies of Player 2. Similar to the
discussion after Theorem 3.2, from the perspective of Player
1, the game can also be viewed as a special case of an MDP
with adversarial bandit feedback. Under the FP framework,
by utilizing the past policies of Player 2, Algorithm 2 can
achieve an O(v/T') regret, comparing to O(TQ/ 3) regret by
the PO method (Efroni et al., 2020) and O(T/2) regret by
a computationally demanding non-PO method (Jin & Luo,
2019) for MDP with adversarial rewards.

Theorem 4.2. By setting v = \/|S|log |B|/ K, with prob-
ability at least 1 — 20, Algorithm 3 ensures the sublinear

regret bound for Player 2, i.e., Regret,(K) < O(CV/T),
where T = HK is the total number of steps, and the con-
stant C = \/|S|2|A|H3 + \/|S||A||B|H.

Interestingly, Theorem 4.2 also shows that Regret,(K)
has the same bound (including the constant factor C') as
Regret, (K) given any opponent’s policy, though the tran-
sition model bonus is not involved in Algorithm 3 and the
learning process for two players are essentially different. In
fact, although the bonus term for estimating the transition
is not involved in this algorithm, approximating the state
reaching probability of Player 1 implicitly reflects the gap
between the empirical transition P* and the true transition
‘P, which can explain the same upper bound in Theorems
4.1 and 4.2.
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Moreover, if Player 1 runs Algorithm 1 and Player 2 runs
Algorithm 4 simultaneously, we have the following corollary
of the above two theorems.

Corollary 4.3. By setting n and v as in Theorem 4.1 and
Theorem 4.2, letting T' = H K, with probability at least
1 — 56, Algorithm 2 and Algorithm 3 ensures the optimality
gap Gap(K) < O(VT).

5. Theoretical Analysis
5.1. Proofs of Theorems 3.1 and 3.2

Proof. To bound Regret, (K) , we need to analyze the
value function difference for the instantaneous regret at
the k-th episode, i.e., Vl“*’”k (s1)— Vl“k’”k (s1). By Lemma
B.1, we decompose the difference between V//* "t (s1) and
Vl”k’”k (s1) into four terms

.k k ok —k k ok
VI (s1) =V (s1) SV (s1) = VY (s1)

u Erry (L1)

+ 3 By p i {1 Clsn) T (sn, -, vk (lsn) | 51}

h=1

Errg (1.2)

H
+ 3 By (i Clsh) — ik Clsh), Mg (s, )| 51}
h=1

Erry (1.3)

H
ok P2 LR ERS
+2HY Y gy T (sh) —dy T (sh)l,

h=1 Si €Ss

Errg (14)

k B2,k
k(el k(el o2 v PTE 2
where M;(sy,, ) s2€Ss Fy (s 81,5 )d), (s3)-
Here we define the model prediction error of QQ-function as
_k —k —k
75 (s,a,0) = rp(s,a,b) + PpVi1(s,a,b) — Qy(s,a,b).
Let s}, 57, ap, by, be random variables for state and actions.

Specifically, Errg(I.1) is the difference between the esti-
mated value function and the true value function, Erry (1.2)
is associated with the model prediction error z¢ (s, a, b) for
Q-function, Errg(1.3) is the error from the policy mirror
ascent step, and Erry(1.4) is the error for reaching prob-
ability estimation. As shown in Lemmas B.6, B.5, B.2,
B.8, we have that "1 | Erry (L1) < O(y/[S12JA[H'K +
VIS22BIHAK + /|S81]|S2||AJ|B|/H2K), then the sec-
ond error term is bounded as Zszl Erri(I12) < 0,
the third error term is bounded as Zle Err,(1.3) <
O(y/H*Klog|A|), and the last error term is bounded
as Y1, Erry,(14) < O(H?|S,|\/|BIK). The above in-
equalities hold with probability at least 1 — 4§ by union
bound. As shown above, by the UCB optimism, the sec-
ond error term is always bounded by 0, which shows the

significance of the principle of “optimism in the face of
uncertainty. Therefore, letting T' = H K, by the relation

that Regret, (K) = Zle[Vf*’”k(sl) — Vl“k’yk (s1)] <
Zszl [Err(L.1) + Errg (1.2) + Errg (1.3) + Erry (L4)], we
can obtain the result in Theorem 3.1.

Due to the symmetric nature of Algorithm 1 and Algorithm
4 as we discussed in Section 3, the proof for Theorem 3.2
exactly follows the proof of Theorem 3.2. This completes
the proof. O

5.2. Proofs of Theorems 4.1 and 4.2

Proof. We first show the proof of Theorem 4.1. By lemma
C.1, we have that the difference between value functions
k k

VY (s1) and Vl"k’” (s1) is bounded by three terms

.k k Lk —k k Lk
VI (s1) = VI (s1) S Vi(s1) = VY (s1)

I Erry (IL1)

+ ) By p (7, (Isn) =k Clsn), U (sn,-))a | s1]
h=1

" Err (IL2)

+ Z EM*JD,V’“ [ffl(shv ap, bh) | 51]7
h=1

Erry (11.3)

where sy, ay, b, are random variables for state and ac-
) —k

tions, UF(s,a) := (Q)(s,a,-),vE(-|s))s, and we define
the model prediction error of Q-function as ?’g(s, a,b) =

—k —k
rn(s,a,0) +PrV 5 1(s,a) — Qp(s,a,b).
Particularly, Errg(IL.1) is the difference between the es-

timated V’f(sﬁ and the true value function Vl“k’”k(sl),
Errg (IL.2) characterizes the error from the policy mirror
ascent step, and Errg(IL.3) is associated with the model
prediction error 62(37 a,b) for Q-function. As shown in
Lemma C.7, Yr Errp(IL1) < O(\/|SPJAHIK +

VS| A||B|H2K) with probability at least 1 — ¢. In addi-
tion, Lemma C.3 shows the cumulative error for the mirror
ascent step is Zszl Err,(IL2) < O(y/H*K log |A|) with
setting n = \/log | A|/(K H?). Furthermore, by the UCB
optimism, we have Zszl Errg (I1.3) < 0 with probability
at least 1 — 26 as shown in Lemma C.6, which shows the
significance of the principle of “optimism in the face of
uncertainty. Therefore, letting 7' = H K, further by the re-
lation that Regret, (K) < >, [Err,(IL1) 4 Erry, (IL2) 4+
Errg (I1.3)], we can obtain the result in Theorem 4.1 with
probability at least 1 — 36 by the union bound.

Next, we show the proof of Theorem 4.2. By Lemma C.2,
k k
we can decompose the difference between V" ' (s1) and
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k %
v} ¥ (s1) into three terms

H
Lk l/k k v* Lk
VIT (s1) = VI (s1) < ZZ |9, P (s) = df(s)|
€s

h=1s

Erry (1IL1)

H
+ YD dr () (Wi, ), v (ls) = vi(19)) 5

h=1s€eS

Erry (1I1.2)
H

k
+ E E/Lk,P,Vk [6}:’ (sha Qp, bh) | 81]7
h=1

Erry (111.3)

with Wk (s,b) = (7% (s, -, b), u¥ (- | s)).4. Due to the single-
controller structure, distinct from the decomposition for
Theorem 4.1, here we have that Erry(IIl.1) is the dif-
ference between the true state reaching probability and
the empirical one, Err(IIL2) is the error from the pol-
icy mirror descent step, and Errg(IIL3) is the expecta-
tion of reward bonus term. Technically, in the proof of

. k yk‘ k o=
this lemma, we can show VI (s1) — V/"" (s1) =

H kp *
Sohet ses @ Sl T rals, )y = vi)(ls),
where the value function difference is only related to the
reward function r(s, -, -) instead of Q-function, which is
the reason that only the reward bonus and reward-based
mirror descent step appear in Algorithm 3.

As shown in Lemmas C.10, C.8, and C.11, we can obtain
upper bounds that Zkl,(zl Err, (IIL1) < O(H?|S|/]A|K),

S B (L2) < O(/H?[S[K log|B]), and also
Zszl Erry,(IIL3) < O(y/[S[[A[[B[H?K) by taking sum-
mation of the three error terms from k£ = 1 to K. The above
inequalities hold with probability at least 1 — 24 by union
bound. Therefore, letting 7' = H K, further by the rela-
tion that Regret, (K) < Y"1, [Err(IL1) + Erry (I12) +
Erry (I1.3)], we can obtain the result in Theorem 4.2. This
completes the proof. O

6. Conclusion and Discussion

In this paper, we propose and analyze new fictitious play
policy optimization algorithms for two-player zero-sum
Markov games with structured but unknown transitions. We
consider two classes of transition structures: factored in-
dependent transition and single-controller transition. For
both scenarios, we prove O(+/T') regret bounds for each
player after 7" steps in a two-agent competitive game sce-
nario. When both players adopt the proposed algorithms,
their overall optimality gap is O(v/T).

Our proposed algorithms and the associated analysis can
be potentially extended to different game settings, e.g., the
extensions to the multi-player or general-sum game with the

factored independent transition, and the extensions from the
two-player single controller game to the multi-player game
with a single controller. We leave them as our future work.
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