On Reward-Free RL with Kernel and Neural Function Approximations

A. Discussion of Function Space Complexity

To characterize the function space complexity, we first introduce the notions for the eigenvalues of the RKHS. Define £2(Z)
as the space of square-integrable functions on Z w.r.t. Lebesgue measure and define (-, -) 02 as the inner product on the
space L2(Z). According to Mercer’s Theorem (Steinwart & Christmann, 2008), the kernel function ker(z, z’) has a spectral
expansion as ker(z, z') = >, 0;0:(2)0;(2") where {;};>1 are a set of orthonormal basis on £?(Z) and {o;};>; are
positive eigenvalues. In this paper, we consider two types of eigenvalues’ properties and make the following assumptions.

Assumption A.1. Assume {0;};>1 satisfies one of the following eigenvalue decay conditions for some constant vy > 0:

(a) ~y-finite spectrum: we have o; = 0 for all i > ~y;

(b) ~-exponential spectral decay: there exist constants Cy > 0 and Cy > 0 such that o; < Cy exp(—Cy - i7) forall i > 1.

Covering Numbers. Next, we characterize the upper bound of the covering numbers of the Q-function sets 9(c, R, B) and
9(¢, R, B). For any Q1, Q2 € Q(c, R, B), we have

Qu() = min {e(=) + T ml(w1, )] + B - max{l0(2) o, H/BY 1)
Qa(z) = min {e(2) + T s (w2, 6] + B - ma{[6() |1, H/BY |

for some w1, wo satisfying ||w1 ||y < Rand ||wz|/5y < R. Then, due to the fact that the truncation operator is non-expansive,
we have

191() = Q2()lloo < sup (w1 — w2, 6(2))| + Bsup [ ¢(2)llxr — 6(2)ll55:

z

The above inequality shows that it suffices to bound the covering numbers of of the RKHS norm ball of radius R and
the set of functions of the form ||¢(z)||A51. Thus, we define the function class Fy := {||¢(-)|lr : [|T|lop < 1/A} since

A5 |op < 1/X according to the definition of Ap. Let Noo(€; R, B) be the e-covering number of Q w.rt. || - [|c,
N (€, H, R) be the e-covering number of RKHS norm ball of radius R w.r.t. || - ||, and N (€, F, 1/X) be the e-covering
number of F w.r.t. || - || Thus, we have

No(e R, B) < Noo(€/2,H, R) - Noo(e/(2B), F, 1/X).
We define the upper bound
Noo(& R, B) := Noo(€/2,H, R) - Noo(¢/(2B), F, 1/X),
in the main text of this paper. Then, we know
1og N (€; R, B) = log N (€/2, M, R) + log N (¢/(2B), F, 1/X).
Moreover, for any Q1, Qs € Q(c, R, B), we have
Qi(2) = min {e(z) + Mo, ml{w1, 0(2))] — B - max{[6() |1, H/SY H
Qa(z) = min {e(2) + Mo, ml{wa, 6(2))] — B - max{6(:) |, H/SY H
which also implies

1Q1() = Q2()lloe < Sup [(W1 — w2, 0(2))n| + Bsup le()llazr = lo(2)llas

Thus, we can bound the covering number ' (¢; R, B) of Q(c, R, B) in the same way, i.e., N (&; R, B) < N (¢; R, B).

According to Yang et al. (2020), we have the following covering number upper bounds
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(a) ~y-finite spectrum:

log N (€/2,H, R) < C3y[log(2R/€) + Cu],  log Neo(e/(2B), F, 1/X) < C5v*[log(2B/e) + Cel;

(b) ~-exponential spectral decay:

log Noo(€¢/2,H, R) < Cs[log(2R/€) + C4]* /7, logNuo(e/(2B), F,1/A) < Cs[log(2B/€) 4+ Cg]'+2/7.

Maximal Information Gain. Here we give the definition of maximal information gain and discuss its upper bounds based
on different kernels.

Definition A.2 (Maximal Information Gain (Srinivas et al., 2009)). For any fixed integer € and any o > 0, we define the
maximal information gain associated with the RKHS H as

1
(€, \;ker) = sup = logdet(I + Kp/A),
pCz 2

where the supremum is taken over all discrete subsets of Z with cardinality no more than €, and Kp is the Gram matrix
induced by D C Z based on the kernel ker.

According to Theorem 5 in Srinivas et al. (2009), we have the maximal information gain characterized as follows
(a) ~y-finite spectrum:
(K, A; ker) < Crylog K
(b) ~-exponential spectral decay:
[(K, X ker) < Cr(log K)'1/7,
Sample Complexity. Given the above results, for the kernel approximation setting, according to the discussion in the proof

of Corollary 4.4 in Yang et al. (2020), under the parameter settings in Theorem 3.3 or Theorem 4.1, we have that for ~-finite
spectrum setting,

8= O(vH\log(vKH)), logNu(s*; Ri,28) = O(v*log(vK H)), T(K,A;ker) = O(ylog K),

which implies after K episodes of exploration, the upper bound in Theorem 3.3 or Theorem 4.1 is

@ (\/ Hb~3log? (K H) /K> .

This result further implies that to obtain an e-suboptimal policy or e-approximate NE, it requires 6(H 643 /&%) rounds of
exploration. In addition, for the y-exponential spectral decay setting, we have

ﬂ - O(Hm(log K)l/’Y), log,/\/'oo(g*; RK; 26) —_ O((log K)l+2/’y + (loglog H)1+2/7)7
(K, \; ker) = O((log [()1'*‘1/’7)7

which implies that after K episodes of exploration, the upper bound in Theorem 3.3 or Theorem 4.1 is

o (\/ H61og*™3/" (K H) /K) .

Then, to obtain an e-suboptimal policy or e-approximate NE, it requires O(HOC,, log%/7(e71) /e2) = O(HC,, /£?)
episodes of exploration, where C., is some constant depending on 1/7.

The above results also hold for the neural function approximation under both single-agent MDP and Markov game setting if
the kernel ker,,, satisfies the y-finite spectrum or y-exponential spectral decay and the network width m is sufficiently large
such that the error term H28: < ¢. Then, we can similarly obtain the upper bounds in Theorems 3.5 and 4.2.
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Linear and Tabular Cases. For the linear function approximation case, we have a feature map ¢(s) € R®, where 0 is the
feature dimension. Therefore, the associated kernel can be represented as ker(s, s’) = ¢(s) T ¢(s') = Z?:l i (8)di(s).
Thus, we know that under the linear setting, the kernel ker has 0-finite spectrum. Thus, letting v = 9 in the y-finite spectrum
case, we have

B =00OH\/log0KH)), logNu(s*; Ri,28) = O@*log(0KH)), T(K,\;ker)=0O(dlogK),
which further implies that to achieve V;*(s1,) — Vi (s1,7) < &, it requires O(H®3 /22) rounds of exploration. This is
consistent with the result in Wang et al. (2020a) for the single-agent MDP. This result also hold for the Markov game setting.

For the tabular case, since ¢(z) = e, is the canonical basis in RIZ!, we have v = | Z| for the above -finite spectrum case.
Therefore, for the single-agent MDP setting, we have | Z| = |S||.A|, which implies

8= O(H|S|[A|V1og(IS[IA[KH)), log Noo(s*; Ric, 28) = O(IS|?|A[* log(|S||A|K H)),
(K, \; ker) = O(|S||A|log K).

Then, the sample complexity becomes O (H®|S|3|.A|/?) to obtain an e-suboptimal policy. For the two-player Markov
game setting, we have |Z| = |S||.A||B|, which implies

B = O(H|S||A||B|\/1og(|S||A||BIKH)), logNuo(s*;: R, 28) = O(IS]*|A]*|B|* log(|S||.Al|B| K H)),
(K, \: ker) = O(|S||A||B| log K).

Then, the sample complexity becomes O(H6|S|3|.A|3|B|3/<2) to obtain an -approximate NE.

B. Proofs for Single-Agent MDP Setting with Kernel Function Approximation
B.1. Lemmas

Lemma B.1 (Solution of Kernel Ridge Regression). The approximation vector ﬁf € H is obtained by solving the following
kernel ridge regression problem

minimize ) [Vi'1(s741) = F(0)nd? + Al fI%,

such that we have

where we define

1#}]3(2) = (I)QQS(Z) = [ker(zv Zilz)a T 7ker(zv 2271)]1—’
5 = [0(zh), (7)., oz I

y;’i = [fo+1(5ill+1)v th+1(5%+1)’ T thkﬂ(Siﬁ)]Ta (13)
ker(z},z}) ... ker(z}, 2t
K :=of(@f)" = : : ,
ker(zF 71 2)) oo ker(zp Tl 2t

with denoting z = (s, a) and z], = (s}, a},), and ker(z,y) = (¢(2), ¢(2'))n, V2,2 € Z2 =8 x A.

Proof. We seek to solve the following kernel ridge regression problem in the RKHS

k—1

= ar}gg{inz[vhm(sm — f(shoal) el + A FII3,

T=1
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which is equivalent to
k-1

= arfgg{inZ[ml(sal) — (f.6(s5,a7))ae)® + MS. £

T=1

By the first-order optimality condition, the above kernel ridge regression problem admits the following closed-form solution
Ii =@ Ty, (14)

where we define
k—1
AL =" d(sh,aR)é(sh,ah) T+ A Ty = X - I + (@) T ®F,
=1

with I3, being the identity mapping in RKHS. Thus, by (14), we have

(FE, () m = (AR) @) Tyk, és, a))a, V(2) €8 x A, (15)

which can be further rewritten in terms of kernel ker as follows

(FE o)) = (AD) 1 @) TyE, 6(2))n
=6(2) T\ Iy + (F) T@f] L (@) Tyk

B (16)
=(2) (D) TN T+ @5(0F) ]y
=Pr(2) T (A T+KE) yE.
The third equality is by
(®5) TN T+ 5(D5) 1] = [N Iy + (BF) T @F](@5) T,
such that
A T+ (@) @3] (@R) T = (®F) AT+ @5(PR) ], (17)

where [ is an identity matrix in R(*=1)*(*=1) The last equality in (16) is by the definitions of ¢)¥(z) and KC¥ in (13). This
completes the proof. O

Lemma B.2 (Boundedness of Solution). When A > 1, for any (k, h) € [K] x [H], ﬂf defined in (14) satisfies

1Pl < H\J2/A - log det(] + K /A) < 2H \/T(E, A ker),
where ICZ is defined in (13) and T'(K, \; ker) is defined in Definition A.2.

Proof. For any vector f € H, we have

k—1 k—1
[ FEYal = 1T AR T @) Tykl = [FT AR D o ap) Vil (shy)| < H Y |FT(AR) " o(sh,ap)]
=1 =1

where the last inequality is due to [V}¥,, (s}, ;)| < H. Then, with Lemma F.2, the rest of the proof is the same as the proof
of Lemma C.5 in Yang et al. (2020), which finishes the proof. O
Lemma B.3. With probability at least 1 — &', we have ¥(h, k) € [H| x [K],

k—1 2

Z B(sh, GZ)[Vf+1(SE+1) - PthkH(SZ, ap,)]

T=1

()
< 4H?T(K, \;ker) + 10H? 4+ 4H? log Noo (s*; Ric, Bi) + 4H? log(K/5'),

where we set ¢* = H/K and A =1+ 1/K.
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Proof. We first define a value function class as follows
V(O,R,B)={V: V()= max Q(-,a) with Q € Q(0, R, B)},

where Q is defined in (10). We denote the covering number of V(0, R, B) w.r.t. the distance dist as /| (Est(e; R, B), where
the distance dist is defined by dist(V1, Va) = supses |Vi(s) — Va(s)|. Specifically, for any k x h € [K] x [H], we assume
that there exist constants Rx and By that depend on the number of episodes K such that any th € V(0, Rk, Bi) with
Ric = 2H/T(K, Aker) and By = (1+1/H)f since Vi(s) = (rf + ufl + f})(2) = To.m [(FF, 6(2))n) + (1 +
1/H)B - min{||¢(2) [l ar) -1, H}™ (See the next lemma for the reformulation of the bonus term). By Lemma F.1 with §' /K,
we have

2

k—1
Z P(sh, a’;—L)[th+1<S;—l+1) - thiﬁrl(s;—w ap)]
=1 (Aﬁ)—l
k-1 2
< sup > d(shap)[V(s4a) = PaV(sh,af)]
VEV(O,RK,BK) =1 (A’;,',)71

< 2H?logdet(I + Ki/A) + 2H?k(A — 1) + 4H?log(KNY.. (¢; Ric, Bi)/8') + 8k%€% /A
< 4H?T (K, \; ker) + 10H? + 4H? log N (s*; Ry, Bre) + 4H? log(K /8,

where the last inequality is by setting A = 1+ 1/K and e = ¢* = H/K. Moreover, the last inequality is also due to

dist(V1, Vo) = sup |Vi(s) — Va(s)| = sup

max Q1(s, a) — max Qs(s, a)

s€S SES | a€
< sup [Qi(s,a) — Qa(s,a)| = [[Q1 — Q2w
(s,a)eESxA
which indicates that A, (Est (s*; Rx, Bx) upper bounded by the covering number of the class Q w.r.t. || - ||oo, such that

Ndvist(g*;RK7BK) < Noo(g*§RK,BK).

Here N (€; R, B) denotes the upper bound of the covering number of Q(h, R, B) w.r.t. £,,-norm, which is characterized
in Section A. Further by union bound, we know that the above inequality holds for all & € [K] with probability at least
1 — ¢’. This completes the proof. O

Lemma B.4. We define the event £ as that the following inequality holds ¥z = (s,a) € S x A,V(h, k) € [H] x [K],
[PrVis1(2) = fi (2)] < uk(2),

where fF(z) = min{fF(z), H}" and uf(z) = min{wk(z), H}* with wk(z) = BA2[ker(z,2) — ¥F(z)T (A +
KCFY 2k (2)]Y/2. Thus, setting 3 = By /(1 + 1/H), if By satisfies

16H?[Rg, + 2T (K, A; ker) + 5 + log Noo (s*; Ric, Brc) + 2log(K/8")] < B, Vh € [H],
then we have that with probability at least 1 — §', the event € happens, i.e.,
Pr(&)>1-4¢".

Proof. We assume that P, Vi¥, | (s,a) = (fF, ¢(s, a))# for some f} € . Then, we bound the difference between ff(z)
and P, V¥, (s, a) in the following way

|thh],€+1(sa a) - ff]f(sa a)|

S |<ff]f7 ¢(Sva)>7'l - w}]j,(sa a)T()‘ I + Kﬁ)_lyz
ING(s,a) T (M) TE + o (s,a) T (A T+ K5) T F TF — g (s,0)T(A- T+ KE) " tyk
= A(s,a) T(A) TR 4+ gl (s, 0) TN T+ KE) TN @ Ty — vE),
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where the first inequality is due to non-expansiveness of the operator min{-, H }* and the definition of ﬁf (2), and the first
equality is due to

#(s,a) = (AR) "' ALG(s,a) = (AR) (A T+ (@) @) (s, a)
= MAR) T'o(s,a) + (AR)TH (@) " @Ro(s, a)
(18)
= MAR) T o(s,a) + (@) T (A T+ K) "' @56(s, a)
= AR 1o(s,a) + (@) T (A T+ K3) (s, a)

Thus, we have

IPAViEr (5 a,r) = SR (s, a) < Mlo(s, a) T (AR) Ml - IR e + |95 (s,@) TN - T+ K5) (@R fF = k)| (19)

Term(I) Term(II)

For Term(I), we have

Term(I) < \[\RQH\/QS(s,a)T(A’fL)—l ‘A - (AF) 1 o(s,a)

< VARQH\[6(s,a)T (M) =1 - A} - (AF)~16(s, ) (20)

< VARQH\[¢(s,a) T (A)~Lo(s,a) = VARGH|¢(s,a) | (rs)

where the first inequality is due to Assumption 3.2 and the second inequality is by 67 (®5) T ®%0 = ||®56||3; > 0 for any
0 eH.

For Term(II), we have

k-1
Term(II) = |¢( a) " (AR)” {Z¢ sk ah) [Vida (sh41) — PhV}f+1(527a2)]}|

T=1
k—1
- ‘«b(& a) " (AR) V2 (AR) {Z o5, aR) Vi (s71) — PRV (7, aﬁ)]}‘ @1
T=1
k—1
< l6(s, @)ll(ary-1 || (s an) [Vilrr (s741) — BaVikyy (57, af)]
=1 (Aﬁ)—l

By Lemma B.3, we have that with probability at least 1 — ¢’, the following inequality holds for all k& € [K]

k—1
> o(sq. af) Vikir (sh1) — PrVire (s7,. ap)]

=1

(Af)~1
< [AH?T(K, \; ker) + 10H? + 4H?log Nao (¢*; Rk, Bi ) + 4H? log (K /6")]'/2.

Thus, Term(II) can be further bounded as
Term(Il) < [4HT (K, \; ker) + 10H? + 4H? log No (s™; Ric, Bic) + 4H? log(K/6)] /2| 6(s, @) | a1
Plugging the upper bounds of Term(I) and Term(II) into (19), we obtain

PRV (s,a,7%) = fhi (s, )|
< [VARQH + [AH?T (K, \;ker) + 10H? + 4H?log N (s*; Ric, Bre) + 4H? log (K /6")]'/?] [6(s, @)l (ak)—
< [2ARLH? + 8H2T (K, X; ker) + 20H? + 4H2 log Noo (s™; Ric, Bie) + 8H? log(K/6)]?[[6(5,a) | (ax -
< Bllg(s, )l ar)-1 = BAT?[ker(z, 2) — ¢pi(s,a) T (A + K)o (s, 0)]/2,
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where ¢* = H/K,and A =1+ 1/K as in Lemma B.3. In the last equality, we also use the identity that

||¢(S,G)||%A’ﬁ)—1 = A_l(b(& a)T¢(s7a) - A_lwlﬁ(sa a’)T(/\ I+ be)_lwé(& a) 22)
= A" tker(z,2) = A (s, ) T AT+ KCE) T g (s, ).

This is proved by
l6(s, a)ll3, = ¢(s,a) TINAR) " (s, a) + (RF) (A I + k)" @h(s, a)]
= Ag(s,a) T (A}) (s, a) + i (s,a) T (A T+ KF) " (s, ),
where the first equality is by (18).

According to Lemma B.2, we know that fh satisfies Hfh |l < H\/2/>\ logdet(I + Kk/\) < 2H./T'(K, \; ker). Then,
one can set Ry = 2H /T'(K, A\; ker). Moreover, as we set (1 + 1/H )3 = By, then § = Bg /(1 + 1/H). Thus, we let

[2AR% H? + 8HT (K, s ker) + 20H? + 4H? log Nio (s*; Ric, Bic) + 8H2log(K/8')]"* < 8 = By /(1 + 1/H),
which can be further guaranteed by
16H? R, + 2T(K, A; ker) + 5 + log Noo (6*; Ric, Bi) + 2log(K/6")] < B
as (1+1/H)<2and\=1+1/K < 2.

According to the above result, letting wf = 3||¢(s, a)llary-1 = BATY2[ker(z, z) — ¥E(s,a) T (A + KF) 1k (s, a)]Y/?,
we have —wf < PpViF. (s,a,m%) — fF(s,a) < w}. Note that we also have [P, V¥, (s,a,7%) — fF(s,a)] < H due to
0 < ff(s,a) < Hand 0 < P,VF, (s,a,r") < H. Thus, there is [P,V (s, a,7%) — fF(s,a)] < min{w}, H}. This
completes the proof. O

Lemma B.5. Conditioned on the event £ defined in Lemma B.4, with probability at least 1 — ', we have

K K
S Vst <Y V(s <0 (\/H3Klog(1/6’) + BVH?2K -T(K, A, ker)) .
k=1 k=1

Proof. We first show the first inequality in this lemma, i.e., Z,If:l Vi (sq,7F) < Z,[f:l V[ (s1). To show this inequality
holds, it suffices to show V;*(s,7%) < V}¥(s) for all s € S, h € [H]. We prove it by induction.

When h = H + 1, we know V7, (s,7%) = 0 and V};,; (s) = O such that V}7 (s, r*) = V| (s1). Now we assume that
Vi1 (s,7%) < ViF. | (s). Then, conditioned on the event & defined in Lemma B.4, for all s € S, (h, k) € [H] x [K], we
further have
QZ(& a, Tk) - Qﬁ(sv a)
=1 (s,a) + Py Vi1 (s,a,r") — min{[rf (s, a) + fr(s,a) + uf(s,a)], H}"

< min{[PyVy" 1 (s, a,7%) — fr(s,a) — uj(s,a)],0} (23)
< min{[Pthk+1(S, a) — fh (s,a) — uh(sa a)],0}
<0

where the first inequality is due to 0 < 7 (s,a) + Py V)7, (s,a,r*) < H and min{z,y}* > min{z,y}, the second
inequality is by the assumption that V;*,  (s,7%) < V;F, | (s), the last inequality is by Lemma B.4 such that P, V¥, (s, a) —
fK(s,a) < uk(s,a)holds for any (s,a) € S x Aand (k,h) € [K] x [H]. The above inequality (23) further leads to

k k k k
Vi (s, ) = max Q7 (5,0, %) < max Qh(5,0) = Vi (s).

Therefore, we obtain that conditioned on event £, we have

K
ZVlsr =2 W
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Next, we prove the second inequality in this lemma, namely the upper bound of Zszl V¥ (s1). Specifically, conditioned on
£ defined in Lemma B.4, we have

Vi (sh) = Qh(sh, ai) < fi; (s, ap) + iy (sh, af) + uk(sh, ap)
< PuViia (s, ai) + uk sy, ak) + i (sh, afp) + g (sk, ay)
< PuViiia (st ai) + (2 + 1/H)wj;
= G + Virea(h4a) + 2+ 1/H)Bllé(sh, ap) [l am) -1

where the second inequality is due to Lemma B.4 and in the last equality, we define

Ch —PthH(SZ,ah) Vh+1(s§+1)

Recursively applying the above inequality gives

H H
<Y G+ @+ 1/H)BY 6k ap)llar)-1s

h=1 h=1

where we use the fact that V} +1(+) = 0. Taking summation on both sides of the above inequality, we have

K
> Vi(si) = ZZ% (2+1/H) 5ZZ”¢ Shoan)llag)-1-
k=1

k=1h=1 k=1h=1

By Azuma-Hoeffding inequality, with probability at least 1 — ¢’, the following inequalities hold

1
,’j <0 (, | H3K log 5/) .
On the other hand, by Lemma F.2, we have

K H K H
SO Iosh ) lany o = 30 3 \folsk, ab) T(AE)1o(sk, ab)

k=1 h=1 k=1 h=1

HM

k=1

M= i

K
KZ¢ spap) T (AF) "1 o(sy, af)
k=1

=
Il

1

\/2Klogdet [+ ACK) = 2H /K T(K, X ker).

uMm

where the first inequality is by Jensen’s inequality. Thus, conditioned on event £, we obtain that with probability at least
1 — ¢, there is

VE(s) <O (x/Hi"Klog(l/é’) + BH2K -T(K, \; ker)) ,

gt

which completes the proof. O
Lemma B.6. We define the event € as that the following inequality holds Nz = (s,a) € S x A,Vh € [H],
PpVit1(2) — fa(2)] < un(2),

where up,(2) = min{wp(2), H} withwy(2) = BAY2[ker(z, 2) —n (2) T (M +K1) " on (2)]/2. Thus, setting 5 = By,
if By satisfies

AH?[R% + 2T(K, \;ker) + 5 + log Noo (*; Ric, Bie) + 2log(K/8')] < By, Vh € [H],
then we have that with probability at least 1 — §', the event € happens, i.e.,

Pr(g) >1-4.
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Proof. The proof of this lemma is nearly the same as the proof of Lemma B.4. We provide the sketch of this proof below.

We assume that the true transition is formulated as Pj, V4 1(2) = (fa, ¢(2))% =: fn(2). We have the following definitions

K
O, = [(sh, an) d(shran), - d(shaf )]s An =Y ¢(sh,ap)b(s7,a7) " + X Ty = X Ty + (B5) @y,
=1

Yh = [Vas1(shi1)s Ve (shgn)s s Vasa(siga)] s Kn = @u®y,  ¥n(s,a) = ®ro(s,a).
Then, we bound the following term
PhVisi(s,a) = fu(s,a)
< |(fnr 8(5,0)) 3 — Yn(s,0) (N T+ Kn) "yl
= Ao(s,a) "N, A vn(s,a) T T+ Kn) T @ — vnls,a) T (A - T+ Kn) "yl
= IAd(s,0) AL f + O (s,0) T T+ Kn) T (@0 fi — ya)l,
where the first equality is by the same reformulation as (18) such that
d(s,a) = AN, L p(s,a) + (@p) T (N T+ Kp)  n(s, a).
Thus, we have

IPL Vit (s,a) — fu(s,a)| < Mlo(s,a) A e | Fullse + [n(s,a) T T+ Kn) " H(@nfu —ya)|. (24

Term(I) Term(II)

Analogous to (20), for Term(I) here, we have
Term(I) < \/XRQHH(b(S,a)HA;l.

Similar to (21), for Term(II), we have

K
> iy a) Vit (s7a1) = PaVira (i, ap)]

T=1

Term(IT) < ||¢(s, a)||A;1

—1
Ay

Then, we need to bound the last factor in the above inequality. Here we apply the similar argument as Lemma B.3. We have
the function class for V}, is

V(rh,EK,EK) ={V.:V()= gléﬁ(Q(,a) with Q € @(rh,RK,EK)}.

By Lemma F.1 with ¢, we have

K
> ok ap)Visa(sig1) = BaVisr (sh, ap)]

T=1

(An)—t
2

K
> osisan) [V (sipa) = PuV(sf, af)]

T=1

< sw
VeV(ry,Ri,Bx)

(Ap)~t
< 2H?log det(I + K/A) + 2H?K (A — 1) + 4H?1og(N Y, (6; Ric, B )/8') + 8K2€% /A
< 4H?T(K, X;ker) + 10H? + 4H? log Noo (¢ Ric, Bxc) + 4H?log(1/4'),

where the last inequality is by setting A = 1 + 1/K and e = ¢* = H/K, and also due to

N(Est(g*;EKng) < NOO(C*;EK,.EK).
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We have that with probability at least 1 — ¢’, the following inequality holds for all k& € [K]

K
D d(shy ap) Vi (s741) = PuaVilia (s7, 7))

=1

A
< [AH?T(K, \;ker) + 10H? 4+ 4H?log Nxo (s*; Ric, Bxc) + 4H? log (K /6")] /2.
Thus, Term(II) can be further bounded as
Term(Il) < [4H2T (K, X;ker) + 10H? + 4H2 log No (s™: R, Bic) + 4H?log(K/6)] "% |6 (5,a) | (ar )+
Plugging the upper bounds of Term(I) and Term(II) into (24), we obtain
[PrVhi1(s,a) = fu(s, a)l
< un(s,a) < Bllg(s,a)lly -1 = BAT P lker(z, 2) = yu(s,a) T (A + Kn) " n(s, a)]'/2,

where we let z = (s,a),¢* = H/K,and A = 1 + 1/ K. In the last equality, similar to (22), we have

16(s, )13+ = A" 6(s,0) T $(s,a) = A7 b(5,0) T (@n) TN + i (Pn) '] Rrb(s, 0)

(25)
= A"tker(z, 2) — XY (s,a) TN+ KCp) "M ebn (s, a).

Similar to Lemma B.2, we know that the estimated function f, satisfies || fr||n < H\/2/)\ logdet(I + Kk/X\) <
2H \/T(K, A; ker). Then, one can set Ry = 2H /T'(K, \; ker). Moreover, as we set 5 = By. Thus, we let
[2AR% H? + 8HT (K, \; ker) + 20H? + 4H? log Nio (s*; Ric, Bic) + 8H? log(K/8')]'/* < 8 = B,
which can be further guaranteed by
AH?[R% + 2T'(K, A ker) + 5 + log Noo (s Ryc, Bi) + 2log(K/6')] < By
as(14+1/H) <2and A =1+ 1/K < 2. This completes the proof. O

Lemma B.7. Conditioned on the event € as defined in Lemma B.6, we have
Vii(s,1) < Vi(s) < rp(s,mh(8)) + ProVihg1(s, ma(s)) + 2un(s, mn(s)), Vs € S,Vh € [H],

where ,(s) = argmax, ¢ 4 Qn(s, a).

Proof. We first prove the first inequality in this lemma. We prove it by induction. For h = H + 1, by the planning algorithm,
we have V7 1(s,7) = Viy1(s) = 0 forany s € S. Then, we assume that V;*,; (s,7) < Vj,41(s). Thus, conditioned on

the event & as defined in Lemma B.6, we have

QZ(‘% a, T) - Qh(87 a’)

=rn(s,a) + PpVi (s, a,r) — min{[ra(s, a) + fu(s, @) +un(s, a)], H}*

< min{[PyVy 1 (s,a,7) — fr(s,a) — un(s,a)],0}

< min{[PpVht1(s,a) — fu(s,a) — un(s,a)],0}

<0
where the first inequality is due to 0 < r1,(s,a)+PpV}", 1 (s, a,7) < H and min{z, y}* > min{z,y}, the second inequality
is by the assumption that V', (s,a,7) < Vi y1(s, a), the last inequality is by Lemma B.6 such that [PV}, 11(s,a) —
fr(s,a)| < up(s,a) holds for any (s,a) € S x Aand (k, h) € [K] x [H]. The above inequality further leads to

vy = n < = Wi(s).
n(s,7) = max @ (s, a,r) < max Qn(s, a) = Va(s)
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Therefore, we have
Vii(s,m) < Vi(s),Yh € [H],Vs € S.
In addition, we prove the second inequality in this lemma. We have

Qn(s,a) = min{[ry(s,a) + fn(s,a) + un(s,a)], H}
< min{[ry(s,a) + PpVis1(s, a) + 2up(s,a)], H}+
< rp(s,a) + PrViii(s,a) + 2upn(s, a),

where the first inequality is also by Lemma B.6 such that |P,V},11(s,a) — fa(s,a)| < up(s,a), and the last inequality is
because of the non-negativity of 71, (s, a) + Py Vh11(s, a) + 2up (s, a). Therefore, we have

Vi(s) = max Qr(s,a) = Qn(s, mr(8)) < rp(s,mn(8)) + PrVis1(s, mh(s)) + 2upn(s, mr(s)).

This completes the proof. O

Lemma B.8. With the exploration and planning phases, we have the following inequality

K
K-V (s1,u/H) < SV (s1,0%).
k=1

Proof. As shown in (25), we know that

K 1
wh(s?a) :ﬁ”¢(8’a)”A;1 =p ¢(3’a)—r Ay +Z¢(S;’a2)¢(827a2)—r‘| (ﬁ(S,CL).

T7=1

On the other hand, by (22), we similarly have

k—1

Ay + Z¢(s;7aﬁ)¢(sﬁ7a;)T] (s, a).

T=1

’U)Z(S,a) = B"(b(S?a)H(AZ)—l = 6 ¢<S7G)T

Since k — 1 < K and f T ¢(s],al)p(s],al) " f = [f T ¢(s7,a})]? > 0, then we know that

K k—1

Ap = ALy + Y 6(sq,ap)d(sh,ah) " = A+ > d(sh, a)d(s7, af) T = Af.

=1 =1
The above relation further implies that A, ' < (A¥)~! such that ¢(s,a) T A} '¢(s,a) < ¢(s,a) " (AF)~1¢(s,a). This can
be proved by extending the standard matrix case to the self-adjoint operator here. Thus, we have

wp(s,a) < w,’i(s,a).
Since rf = H - uf(s,a) = H - min{wf(s,a), H}" and uy (s, a) = min{wy, (s, a), H}*, then we have
up(s,a)/H < k(s a),
such that
Vi'(s1,u/H) < Vi (s1,7),

and thus

K
K-V (s1,u/H) <Y Vi(s1,m%).
k=1

This completes the proof. O
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B.2. Proof of Theorem 3.3
Proof. Conditioned on the event £ defined in Lemma B.4 and the event & defined in Lemma B.6, we have

Vit (s1,7) = Vi (s1,7) < Vi(s1) — Vi"(s1,7), (26)
where the inequality is by Lemma B.7. Further by this lemma, we have

Vi(s) = Vi (s,7) < ru(s, mn(s)) + PpVaga(s, ma(s)) 4 2un(s, ma(s)) — Qi (s, mn(s),7)
= ri(8, Th(8)) + PrVig1 (s, ma(s)) 4 2un(s, mn(s)) — rn(s, mn(s)) — PrnVy i (s, mn(s), )
= PpVit1(s, mh(s)) — PrVi 1 (s, ma(s), ) + 2up (s, mh(s)).

Recursively applying the above inequality and making use of V7, (s,7) = Vg 11(s) = 0 gives

H

Vi(s1) = Vi (51,7) < Evhe[H): spp1~Pu(lsnomn(sn) [Z 2up(sh, T (sn))
h=1

4

=2H -V (s1,u/H).
Combining this inequality with (26) gives

K
2H
Vi (s1,7) = Vi (s1,7) < 2H - V" (s1,u/H) < °d ZVl*(sl,rk)

k=1

< 220 (VIR I08(15) + /IR T(K, Aker))

= 0 ([VH 10g(1/3") + B/ H* T (K, X ker) | /VE )

where the second inequality is due to Lemma B.8 and the last inequality is by Lemma B.S5.

By union bound, we have P(E AE) > 1 —2¢" . Therefore, by setting ' = §/2, we obtain that with probability at least 1 — ¢

Vi (s1,7) = Vi (s1,7) < O ([v/HP10g(2/8) + BY/HT-T(K, Asken)]/VE ) .

Note that £ A € happens when the following two conditions are satisfied, i.e.,
AH?[R%) + 20(K, A ker) + 5 + log Noo (s; Ry, Bi) + 2log(2K/6)] < B,
16H? R, + 2I'(K, A; ker) + 5 + log Noo (¢*; R, Bi) + 2log(2K/6)] < B, Vh € [H],

where 8 = By, (1+1/H) = B, A = 1 + 1)K, Rx = Rg = 2H+\/T(K, X;ker), and ¢* = H/K. The above
inequalities hold if we further let S5 satisfy

16H? R} + 2T (K, \; ker) + 5 4 log Noo (¢*; Rk, 28) + 21og(2K/6)] < 82,Vh € [H],

since 28 > (14 1/H)B > B such that N (s*; Ric, 28) > Noo(s*; Rk, Bx) > Noo(s*;: Ric, Bxc). Since the above
conditions imply that 8 > H, further setting § = 1/(2K2H?), we obtain that

Vi (s1,7) = Vi (s1,7) < O (8y/HID(K, Asker) + log (K] /VE )
with further letting
16H?[R?) + 2T'(K, A;ker) 4 5 + log Noo (¥ Ri, 28) + 6log(2K H)| < °,Vh € [H].

This completes the proof. O
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C. Proofs for Single-Agent MDP Setting with Neural Function Approximation
C.1. Lemmas

Lemma C.1 (Lemma C.7 of Yang et al. (2020)). With TH? = O(m lo«gf6 ), then there exists an constant F > 1 such that
the following inequalities hold with probability at least 1 — 1/m? for any z € S x Aand any W € {W : |[W — W(©O)|| <

H\/K/\},
(2 W) — p(z; WOYT (W — WO < FK2BHA3m=Y6, /logm,
lo(z W) = (z: W) < F(KH? /m) ' logm, — |lp(z W) < F.

Lemma C.2. We define the event £ as that the following inequality holds ¥/(s,a) € S x A, ¥Y(h, k) € [H] x [K],

PRV (s.a) = fi (s, 0)| < uji(s,a) + Be,

oz Wil gy = ez WO gey | < o
where . = 5K/ 12HY/ 61112 10gY4 m and we define
k-1 kel
AL =" o5k, ah Wi )(s,ans Wi T+ X1, Af = o(sq,an: W) e(sh, ap; WO T+ X 1,
T7=1 T=1

Setting (1+ 1/H)f = By, Rx = HVK, ¢* = H/K, and A\ = F?(1 + 1/K), ¢* = H/K, if we set
8% > 8RLH?(1+ /A/d)? + 32HT (K, A;ker,,) + 80H? + 32H? log Noo (s*; Ric, Brc) + 32H? log(K /9'),
and also
m = Q(K¥YH"log®m),
then we have that with probability at least 1 — 2/m? — &', the event £ happens, i.e.,

Pr(&) >1-2/m? -4
Proof. Recall that we assume PV}, for any V' can be expressed as

PnViii(z) = / act'(w'2) - 2" a(w)dpy(w),
Rd
which thus implies that we have
PaVE () = [ act/wT ) 2T afw)dm(w),
Rd

for some af (w). Our algorithm suggests to estimate PthkH (s,a) via learning the parameters W} by solving

k—1
Wy = argmin > Wik (sha0) = Fshoafs WP 4+ AW = W2, @7

T=1

such that we have the estimation of P, V/¥ | (s, a) as fF(z) = Ijo g [fF (2)] with

FEWE) = —2—S v act (W] 2).
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Furthermore, we have

k—1
1 T T T
Wy =W < X ( [Vitia (s71) = f(shs afs Wi )I? + AWy — W(O)II2>
T=1
1 k—1
<3 ( Vi (shaa) = F(shy afs WO + AW — W<°)||2>
T=1
1 k-1
D\ [Vf+1(3£+1)]2 < H?K/),

T=1

where the second inequality is due to W}’f is the minimizer of the objective function.

We also define a linearization of the function f(z; W) at the point W), which is
Fuin(z W) = f(z; W)+ {o(z W), W = W) = (p(z W), W — W), (28)
where
(W) =Vwf(z: W) = [V, f(5 W), , Vi, f(z W)].

Based on this linearization formulation, we similarly define a parameter matrix I/Vfin ,, that is generated by solving an
optimization problem with the linearied function fi;,, such that

k—1
W, = argmin > WV (ST1) = Frin(shyan; W2+ MW — WO 12, (29)

T7=1

Due to the linear structure of f;;,(z; W), one can easily solve the above optimization problem and obtain the closed form
of the solution WP, which is

Wi = WO+ () 71(®) Ty, (30)
where we define Af, ®F, and y¥ as
) = [p(sh a; W), - o(si ™ ai WO

k—1
AL = w(sh,ap W) o(sh, ap; WO + X T =X T+ (9F) T 0F,
=1

i = [foﬁrl(sfllﬂ)avhkﬂ(siﬂ)a e ,Vhﬁl(siﬁ)]
Here we also have the upper bound of || W, — WO as
L[k
Wl = WO < 5 (Z Vil (870) = Frsa (7 afs WEL )PP + AW <°>||2>

T=1

=

=3 (Z Vi (8he1) = frin(shyafs WON2 4 MW@ — W<0>2>

—1

> =

k-1
Z Vit (sh)]? < HPE /A,
=1

where the second inequality is due to Wk, »p 1s the minimizer of the objective function. Based on the matrix Wlln > WE
define the function

Fron(2) =T mlfrin(zs W L),
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where ITj z7[] is short for min{-, H}*.

Moreover, we further define an approximation of Py, thJr1 as

1
f(Z) = H[O,H] ﬁ Z aCt/(Wi(O)TZ)zTai ;

=1

where ||a;|| < RgH/vdm. According to Gao et al. (2019), we have that with probability at least 1 — 1/m? over the
randomness of initialization, for any (h, k) € [H] x [K], there exists a constant C,.. such that

Py Vi (2 Z act/( T2)2T | <10C... RgHA\/log(mK H)/m, Yz = (s,a) €S x A.

which further implies that
IPLViE 1 (2) = F(2)] < 10C.cc RoH/log(mK H)/m, ¥z = (s,a) € S x A. (31)

This indicates that f(z) can be regarded as a good surrogate of P, th+1 (2) particularly when m is large, i.e., their difference

10C.ct RoH+/log(mK H)/m is small.

Now, based on the above definitions and descriptions, we are ready to present our proof of this lemma. Overall, the basic
idea of proving the upper bound of | P, V¥, (z) — fF(z)| is to bound the following difference terms, i.e.,

RG) = (@) and |ff () = F(2)]. (32)

As we already have known the upper bound of the term [P, V)", | (2) — f(2)|in (31), one can immediately obtain the upper
bound of [P, V¥, () — fF(z)| by decomposing it into the two aforementioned terms and bounding them separately.

k( ) fllﬂ( lln h)
|fR(2) = flnn (D] < (W) = (p(z WO, W, — W)
< (5 WE) = oz WO, WE - WO | + [(p(z WO, W — W)
< FK*PHY3m=Y%\flogm + F |Wf — W |,
| S ———

Term(I)

We first bound the first term in (32), i.e.,

(33)

where the first inequality is due to the non-expansiveness of projection operation IIjg f7), the third inequality is by Lemma
C.1 that holds with probability at least 1 — m~2. Then, we need to bound Term(I) in the above inequality. Specifically, by
the first order optimality condition for the objectives in (27) and (29), we have

k—1

AWE = WO =3[k (sh0) = £ W) e(zh: WE) = (@F) T (vh — £),
T=1
k—1

AWE, = W) =3 "[VE L (s740) — (el WO, W, = WO o W)
T=1

= (&)i)—r ((I)k)T(I)k (W linh — W(O))a

where we define

(I);Cz = Sp(sllwa}lz; Wllzc)v T 790(8;2717(12715 Wf’f)}T7
k—1
T=1

f}’: = [f(zh’Wif) f(zi%?W}]:)v 7f(zilzil§WlI:)]T
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Thus, we have

Tem) =X~ 1)~ @)+ @OV - WO
= ATH(@F) (v — £8) — (@) Tyh + (@) TRE (W, , - W)
<A@ T = (@) Dyl + A 1\\(@5) (£ — 2R (W — WO

FAT(@)T — @) TR, — WO

>

According to Lemma C.1, we can bound the last three terms in the above inequality separately as follows

M@ T (@) yil < ATK max [lv (zh: Wit) = (s WO - [yhlo | < FATTETOHY =10\ flogm
Tk

and similarly,

ATH@N) TIEF — F (W, — WO < AT E2RSPHY S m Y0 flogm,
(@) = (@) RE (W, — W) < AT32F2KPBHY3m =18 /logm

Thus, we have

Term(I) < A\~Y(F K™% + 22 K53 HA3m=%, /logm < 3K*/*H*3m =1/ /log m.

where we set A = f 2(1 + 1/K), and use the fact that A > 1 as F > 1 aswell as £ 2/X\ € [1/2,1] and F /X € [1/2,1].
Combining the above upper bound of Term(I) with (33), we obtain

fR(2) = £ n(2)] < AF KPP HY3m =5 logm. (34)

Next, we bound the second term in (32), namely |f1:,(z; Wlkim h) — f(2)|. We further have

Zact W(O 2)z

1 Zm: (Uz(o))z t/(W(O)TZ)ZTa + 1 Z (vgo))2 t’(W(O)Tz)zTa
= — ac i T — ac
\V2m = V2 V2m ] V2
10”2 o T A (00, OT . T
= C act’/(W" "2)z oy + T —act/ (W Z' Qi—m
V2m ; \/i ( ! ) Vam Pt \@ ( )
1 & (") )T AT 1 & (0")? )T T
= — Z t——act'(W, )z o+ t——act'(W;” " 2)z oy
V2m Pl \/§ m, = \/§
1L 4o (0) ©
0 )T .\ _T 0
=—=)>) v, act/ (W7 "'2)z' (W; = W)
/Tm — % i
= (p(z W), W — W),

where we define

W(o) v . .
+\/§ai71f1SZ§m7

=l

W(O)Jr fal m, ifm+1<4i<2m.

Then, we can reformulate f(z) as follows

f(z) = o, m[{e(z; WO W — W),
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Since ||a;|| < RoH/V/d, then there is HW —~ WO < RoH/V/d. Equivalently, we further have

(p(z; WO W = WOy = (p(z; W), (AE) 1AW — w©))

= (p(z WO NAR) T = W) + (p(z W), (AF) H(@F) T f (W — W), .

since AF = AT + ()T ®%. Thus, by the above equivalent form of f(z) in (35), and further with the formulation of
fE o0 (2) according to (28) and (30), we have
() = F(2)]
< |<<)O(Zv W(O)) Wlln h — W>‘
< [z W) NAR) I W = W)+ [(p(z W), (A}) 7 (@F) [y — OR(W — W)

Term(II) Term(I1I)

The first term Term(II) can be bounded as
Term(IT) = | (p(2; W), \(AF) =1 (W — W ©)))|
< Mz WOl ey [W = WO -
< V(WO gy [W = WO
< VARQH/VA - |lp(z W )| 7k -1

where the first inequality is by ||IW — W(O)H(K;i)—l = \/(W — WO)T (AR =1(W = W) < 1/VX|W — WO, since
(Ak)=1 5 1/X - I and the last inequality is due to | — WO ||y < RoH/V/d.

Next, we prove the bound of Term(III) in the following way

Term(II) = |(p(2; W), (AL)"H(@}) [yk — SE(W — wO)))]

< [z W), (AL) 1 @) T [3h — ROV = WO + oz W), (AL) (@) T[vh — FhD)
< Nz W gey o - 1@F) T = ROV = WOl Gy + ooz WO ey - 1@ T [yk = I8 &ey
< 10C e R H/RogmRE il W) )+ + Iz WOz, 1@ Iy = 7850 ey
Term(IV)
where we define ¥ = [P, ViF, | (st 1), PaViF, 1 (s2,1), -+, PuViF  (si51)] . Here, the last inequality is by
(@) T35 — @5V = WO 5

7 — B — WO TBEN + (B)TBE]1(&h) T [7% — B(W — W)

=[5k — SEV — WO TBE @) T + BB T — B — wO)]

< \/Wﬁ — (W — WO)TIAL + OF(BF) T][N + Bk (BF) T [3k — DF(W — WO)]
= |y — &8 (W — WO)|| < 10C.c. RoH /K log(mKH)/m,

where the second equality is by Woodbury matrix identity, the first inequality is due to [\I + ®F(®5)T]~! = 0, and the
second inequality is by (31) such that

55 = @RV = WO < V= T|[y; = S (W = W)l
=VE=T swp [PaViiy(s7, a7) = F(57, ap)]

TEk—1]

< 10C.et RoH+/K log(mK H)/m
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In order to further bound Term(IV), we define a new Q function based on W Lin,ho which is
]fm n(2) = min{?"fin,h(z) + ffin,h(z) + u]fin,h(z)7 H}*,
where 715 5(s,a) = ul, ,(2)/H, and u¥, () = min{B| o (z; W(O))H(K,}i),1 , H}. This Q function can be equivalently
reformulated with a normalized feature representation ¢ = ¢/F as follows
QY1 (2) = min{Io m [(I(z W), 1 - (W, = WON] + (L + 1/H) - min{ B0 (z W) |2y}, HYF, (36)
where we have
EE=Nr2-I+(05Ter, ey =or/r.

Note that f ||V 1m L~ WO <rFH\K/\<HVK since \ = | (1 +1/K). Thus, we can see that this new Q function
lies in the space Q(0, Ry, By ) as in (10), with Rx = Hv/K and B = (1 + 1/H)3 with the kernel function defined as
ker,,(z, ') := (9(2), 9(2")).

Now we try to bound the difference between the Q function Q¥ () in the exploration algorithm and the one Q’fin’ n(2),
which is

Q5 (2) = QY1 (| < R (2) = flin ()] + (L + 1/ H)B [z Wil ag)-+ = oz WO gy

where the inequality is by the contraction of the operator min{-, /}*. The upper bound of the term |f}(2) — ffim 5 (2)| has
already been studied in (34). Then, we focus on bounding the last term. Thus, we have

oz Wl a1 = s WOl

< \/‘QD(Z; W}’:)T(Al}c)—lw(z; W;lf) - 4,0(2; W(O))T(Kﬁ)_lgp(z; W(O))‘

< V(e WE) — (e WO T (M) ol Wh)| + \/ [z WO T ()~ = (RE) ol W)
+ \/‘w(Z; WO)T (AF) =2 [ip(z; W) — (2 W(O))]‘-
Conditioned on the event that all the inequalities in Lemma C.1 hold, we can bound the last three terms above as follows

(25 W) = ol WO T ()~ )|
< ez W) = (s WO AR (s WO < A~ 2(H? fm) /o Vlog m,
oz WO T (RE) ol W) — ol WO < AL H? fm) /0 log m

ez WONT ()™ = (R )5 k)|
< lp(z WONIIAR) (AL = AR AR lllelz Wil
SATER|(@5) T — (9F) T P llno < AT 2([(Rh — @) T @f [l + [[(DF) T (P — ) l1v0)
< /\72F4K7/6H1/3m71/6\/@,

which thus lead to

< 3KT2 Y0 =1/12 6g1/4 1y 37)

oz W a1 — oz WO ey
and thus

Q5 (2) = QYo (2)| < 4F KPPHY3m =%\ flogm + 3(1 + 1/H)BK /"> H'/m ="/ log"/* m
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where we use the fact that A\ = F2(1 + 1/K) € [F2,2F?2]. This further implies that we have the same bound for
Vi (s) = Vi, n(s)], e,

Vi (s) = Viian(s)] < glgIQZ(&a) — Qi n(s,a)]

(38)
<AF KPHY3m=5 flogm + 3(1 + 1/H)BK /2 HYSm=/2 1og! /4 m

where we define V%, (s) = maxaea Q. (s, a).
Now, we are ready to give the upper bound of Term(IV). With probability at least 1 — §’, we have

k—1
D WV (shin) = PaVili (2D)le(e7: W)

T=1

Term(IV) =

(Af)~t

k—
Z lin,h+1 Sh+1) thlkin,h-i-l(zg)ko(zlc; W(O))

<

= (R

k—1

Z{[Viﬁl(szﬂ) - Vlkin,h+1(sz+l)] - Ph[vhl,c-&-l - Vlkin,h-s-l(S;-s-l)]}SD(ZZ; W(O))
T=1

< [AH?T(K, X kery,) + 10H? + 4H? log Nso (s*; Ric, Brc) + 4AH? log (K /8')]*/?
+ 8F K3 HY3m =0\ flogm + 128K/ 2 HY 0= 112 106 /4
Here we set ' = A\/f 2 = (14 1/K),<* = H/K, Rg = HVE, B = (14 1/H)f, and ker,, (2, 2') = (9(2),9(2)).

Here the second inequality is by (36), and also follows the similar proof of Lemma B.3. The last inequality is by (38) and
Lemma C.1, which lead to

+

) — Vlkin,h—s—l(s‘irL+1)] - IPJh[thH - Vlkin,h+1(s;+1)}}<p(zg; W(O))

(Afp)—1

o

—1
S

HM

[4FK5/3H4/3 /oVlogm +3(1+ 1/H)BK™/ 2 HOm ="/ 1og* m]||io(21; W) | ir) -+

< KF /\/»[SFK5/3H4/3 _1/6\/E+6 1/H)6K7/12H1/6m_1/12log1/4m]
<8 K8/3H4/‘3m71/6 /logm+125K19/12H1/6m71/1210g1/4

Now we let [3 satisfy

VARGH/Vd 4 10C..: RoH~/K log(mK H)/m + [AH?T(K, N ; ker,,) + 10H? + 4H? log Niso (¢*; R, Bic)
+ 4H?1og(K /6")]Y/? + 8F K3 HY3m=Y/5\flogm + 128K/ 2 H'/6m =112 1061 /4 m < 3.
To obtain the above relation, it suffices to set
m = Q(KYH"log® m)

such that m is sufficient large which results in

10C, e RoH\/K log(mKH)/m + 8F K¥*HY3m=Y%\flogm + 126 K**/12 HYSm=1210g"/* m < RoH + (/2.
Then, there is
VARQH/Vd + RoH + 3/2 + [AH?T(K, \; ker,,) + 10H? + 4H?log Noo (*; R, Bre) + 4H? log(K /6')]*/? < 3,

where I'( K, \; ker,,) = T'(K, N; lggrm) with ker,,, := (p(z; W), o(2’; W()). This inequality can be satisfied if we set
0 as

B% > 8RHH?(1+ \/A/d)* + 32H?T(K, A; ker,,) + 80H? + 32H? log N (¢*; Ric, Bic) + 32H? log(K/§').
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If the above conditions hold, we have

| nn(2) = F@ < Bllolz W) gy < wff + BEKT2HY  m= 2 1og!/* m),

where the inequality is due to (37). Since . ,(2) € [0, H] and f(z) € [0, H], thus we have | ff,  ,(2) — f(2)| < H,
which further gives

i n(2) = F(2)] < min{wf, H} + BEE T/ HYSm =12 1og!/* m) 39
:u]]i+B(3K7/12H1/6m_1/1210g1/4m)~ (39)

Now we combine (34) and (39) as well as (31) and obtain
PRViia(2) = f (2)]
< PViia(2) = FR+ 1R (2) = flian (@) + | finn(2) = F(2)]
< 10Cet RoH/log(mK H)/m + 4F K52 HY*m='/5/logm + uff + BBKT2HY5m=1/1210g!/4 m)
S u;cl + ﬁ(5K7/12H1/6m_1/12 10g1/4 m)’

with m are sufficiently. We also have ‘Hap(z, W}’f)H(Af),l — |le(z; W(O))II(M)_l

inequalities hold with probability at least 1 — 2/m? — § by union bound. This completes the proof. O

Lemma C.3. Conditioned on the event £ defined in Lemma C.2, with probability at least 1 — &', we have

K K
D Vit(s1,7%) <Y VF(s1) + BHKL,
k=1

k=1

K
S VE(s) <0 («/H3Klog(1/5’) + BVH?K T(K, N, kerm)> + BHEK.,
k=1

where v = 5K /12 1/6p—1/12 logl/4

Proof. We first show the first inequality in this lemma. We prove V;*(s,7%) < V}¥(s) + (H +1—h)cforall s € S, h € [H]
by induction. When h = H + 1, we know V};,,(s,7%) = 0 .and V}; | (s) = 0 such that V};_ (s,7%) <V (s1). Now
we assume that V", (s,7%) < V¥, (s) + (H — h)Be. Then, conditioned on the event £ defined in Lemma B.4, for all
s €8, (h, k) € [H] x [K], we further have

Qi (5 a,7%) — Qb (s,0)
= 1h(5, @) + PuVirya 5,0, 7) — min{[rf (s, 0) + £(5, @) + (5, @) H}
< min{ [Py Vi1 (s,a,7%) — f(s,a) — uf(s,a)],0} (40)
< min{[PyVE,, (5, @) + B(H — B — (s, 0) — ul(s,a)],0}
<B(H+1-h),
where the first inequality is due to 0 < rj(s,a) + P,V;* (s, a,r*) < H and min{z,y}" > min{z,y}, the second
inequality is by the assumption that V;*, , (s,7%) < V;F, | (s) + (H — h)p, the last inequality is by Lemma C.2 such that

IPLVE, 1 (s,a) — fF(s,a)] < uf(s,a)+ Buholds for any (s,a) € S x Aand (k,h) € [K] x [H]. The above inequality
(40) further leads to

Vi(s, %) = meath(s a,r*) < meaXQh(s a) =VF(s)+ B(H +1 - h)e.

Therefore, we obtain that conditioned on event £, we have

K
ZVl 5,7k SZ s)+ BHK..
k=1 k=1



On Reward-Free RL with Kernel and Neural Function Approximations

Next, we prove the second inequality in this lemma. Conditioned on £ defined in Lemma C.2, we have
Vi () = Qi (sh, ay) < max{0, fii (s}, ah) + 74 (s}, ap) + (s}, aj)}
< PV (shy ap) +uj (s, ah) + i (sh, ab) + ui(sh, ay)
< G+ Vita (shya) + 2+ 1/H)Blle(sh, ags Wi)ll a1,
where we define
G = PthH(Slfia ay) — Vh+1(3}}3+1)

Recursively applying the above inequality gives

H H
s1) <Y G+ Q+1/H)BY [lo(sh, af W)l ar)-1,

h=1 h=1

where we use the fact that VI’}’ +1(+) = 0. Taking summation on both sides of the above inequality, we have

K H K H
Zvl (s1) =D > Ch+@+H)BY Y lelsh, afs Wil as)—

k=1h=1 k=1h=1

By Azuma-Hoeffding inequality, with probability at least 1 — §’, the following inequalities hold

K H 1
YD <o (\/H3Klog 5/) .

k=1h=1

On the other hand, by Lemma F.2, we have

K H
S 6tk af) sy = B Volsk.als WE)T(AE) =16 (st afi; W)

k=1h=1 k=1h=1
K H —
<303 Vil aks WO)T(RE)p(sh, al WO) + HE
k=1h=1
H K _
< K'Y o(sh, ap; WO)T(AR) sk, af; W) + HEL
h=1 k=1

= 2H\/K -T(K, \;ker,,) + HK..

where the first inequality is due to Lemma C.2, the second inequality is by Jensen’s inequality. Thus, conditioned on event
£, we obtain that with probability at least 1 — ¢, there is

K
S Vis) <0 (\/H3Klog(1/6’) + BVHZK T(K, N, ker)) + BHK.,
k=1

which completes the proof. ]
Lemma C.4. We define the event € as that the following inequality holds ¥(s,a) € S x A,Vh € [H],

IPhVhia(s,a) = fu(s,a)] < un(s,a) + B,

[0z Wil = Iz W)l g,

where L = 5K7/12 {6 —1/12 logl/4 m and we define

K K
A= o Wi Wi T+ X1, A= o(z; W)z WO)T 4 X 1.

T=1
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Setting 5 = EK, ]A?;K = HVEK, ¢t = H/K,and A\ = F2(1 +1/K), <* = H/K, if we set
B2 > 8RHH*(1+ \/A/d)? + 32H?T(K, A; ker,,) + 80H? + 32H? log N (¢*; Ry, Bre) + 32H? log(K/d'),
and also
m = Q(KYH" log® m),
then we have that with probability at least 1 — 2/m? — &', the event £ happens, i.e.,

Pr(&) >1—2/m? -4

Proof. The proof of this lemma exactly follows our proof of Lemma C.2. There are several minor differences here. In
the proof of this lemma, we set B = 3 instead of (1 + 1/H ) due to the structure of the planning phase. Moreover, we
use N (6; Rx, Bx) to denote covering number of the Q function class Q(7, Ry, Br). Since the covering numbers of
@(rh, Ry, Bk) and @(0, Ry, By ) are the same where the former one only has an extra bias rj,, we use the same notation
Noo(€; Ri, Br) to denote their covering number. Then, the rest of this proof can be completed by using the same argument
as the proof of Lemma C.2. O

Lemma C.5. Conditioned on the event £ as defined in Lemma C.4, we have
Vii(s,m) < Vi(s) 4+ (H +1—h)Be,Vs € S,Vh € [H],
Vi(s) < ru(s,mr(8)) + PpVit1(s, mn(s)) + 2up(s, mh(s)) + B, Vs € S,Vh € [H],

where mp,(s) = argmax, ¢ 4 Qn(s,a).

Proof. We first prove the first inequality in this lemma by induction. For h = H + 1, we have V7, ,(s,7) = Vg41(s) =0

for any s € S. Then, we assume that V;* , (s,7) < Vi, 41(s) + (H — h)Be. Thus, conditioned on the event £ as defined in
Lemma C.4, we have

Qi (s,a,7) — Qn(s,a)
=ru(s,a) + PuVii (s, a,r) — min{[ry (s, a) + fa(s,a) + un(s,a)], H}"
< min{[PrVy'y (s, a,7) = fu(s, a) = un(s,a)], 0}
< min{[PpVh41(s,a) + (H — h)Be — fn(s,a) — un(s,a)],0}
< (H+1-h)B,
where the first inequality is due to 0 < r4(s,a) + PpVy" (s,a,7) < H and min{z,y}* > min{z,y}, the second
inequality is by the assumption that V}* | (s, a,7) < Vi11(s,a) + (H — h)Be, the last inequality is by Lemma C.4 such that

IPrViii(s,a) — fa(s,a)| < up(s,a) + Seholds for any (s,a) € S x Aand (k,h) € [K] x [H]. The above inequality
further leads to

Vii(s,r) = max Qi (s,a,7) < meajl{Qh(s, a)+ (H+1—=h)Be=Vi(s)+ (H+1—h)pe.
Therefore, we have

Vii(s,r) < Vi(s)+ (H+1—h)Be,Vh € [H],Vs € S.

We further prove the second inequality in this lemma. We have
Qn(s,a) = min{[rn(s,a) + frn(s,a) +un(s,a)], H} "
< min{[rn(s,a) + PpVii1(s,a) + 2up(s,a) + Be], H}
<rp(s,a) + PrViii(s,a) + 2up(s, a) + B,

where the first inequality is also by Lemma C.4 such that |PpV} 1 (s, a) — fr(s,a)| < up(s,a) + B, and the last inequality
is because of the non-negativity of 7, (s, a) + Py Vi41(s, a) + 2up(s, a) + Bi. Therefore, we have

Vi(s) = max Qn(s,a) = Qun(s,mh(s)) < rp(s,mh(S)) + PrVhs1(s, mh(s)) + 2un(s, m(s)) + Bt

This completes the proof. O



On Reward-Free RL with Kernel and Neural Function Approximations

Lemma C.6. With the exploration and planning phases, conditioned on the event £ and &, we have the following inequality

K
K- Vi*(s1,u/H) < Z Vi (s1,7F) + 2K B,
k=1

where v = 5K /12 /6 =1/12 logl/4 m

Proof. The bonus for the planning phase is ux(s,a) = Bl¢(s, a; Wh)||A;1. We also have H - rf(s,a) = uf(s,a) =
Blle(s, a; WE || (ak)-1- Conditioned on the event £ and &, according to Lemmas C.2 and C.4, we have

(s, @ Wi llagy - = ol @ W) gy | <0

)

<t

(s, a5 Wil = (s, as W)l 5,

such that

un(s,a) = Bu < Blle(s,as WO | &,y
Butuj(s,a) = Bt H-ri(s,a) 2 Blle(s, a; W) 51

Moreover, since

_ K -1
(s, a; W) 5,01 = 4| (5,6 WOYT | AL+ 3" o(sh, afs WO)g(sh, aps WOYT| (s, W),
L T=1 i
and also
r k—1 71t
lio(s, a; WO | gey 1 = o[ @, WO)TIN + " o(sF, s W) (sh, aps WO)T | (s, a5 W),
=1 i

Since k — 1 < K and 2" ¢(s], a})é(s],al) "o = [z ¢(s],a})]? > 0, Vx, then we know that

K k—1
A=A+ o(sh,ah: WO)p(sq, afs WONT = XL+~ o(sh,aq; W )g(sT, af; WO T = A
=1 =1

The above relation further implies that K;l < (7\’;)*1 such that
o(s,a; W(O))Tj\;lcp(s,a; WO < (s, a; WONT (AR o(s, a; WO).
Thus, we have
up(s,a) — B < H -ri(s,a) + fu,
such that
Vi (s1,u/H) < Vi (s1,7F) + 28,

and thus
K
K-V (s1,u/H) < Z (s1,7%) + 2K Bu.
k=1

This completes the proof. O
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C.2. Proof of Theorem 3.5

Proof. Conditioned on the event £ defined in Lemma C.2 and the event & defined in Lemma C.4, we have
Vi(s1,m) = Vi (s1,7) < Va(s1) = Vi (s1, ) + Hp, 41)

where the inequality is by Lemma C.5. Further by this lemma, we have

Vi(s) = Vi' (s, 1) < ril(s, ma(s)) + PaViya (s, mn(s)) + 2un(s, ma(s)) — QR (s, mr(s), ) + Bu
=rp (8, Th(8)) + PpVis1 (s, ma(s)) + 2un(s, ma(s)) — (s, mn(s)) — Pu Vil (s, mn(s), ) + Be
Pth+1(S, 7Th(8)) — Pthﬂ+1(S, 71'h(8), T) + 2’11/;1(87 7Th(8)) + BL.

Recursively applying the above inequality and making use of V7, (s,7) = Vg 11(s) = 0 gives

H

Vi(s1) = Vi"(s1,7) < Evne[): spyrnPiClsnma(sn)) [Z 2up(8h, Th(8h))
h=1

S1 +HﬁL

=2H - V{"(s1,u/H) + Hpu.
Combining with (41) gives

K
2H
Vi (s1,7) = V" (s1,7) <2H - V{"(s1,u/H) + 2HFL < 57d E Vf‘(sl,rk) +4HpS.
k=1

< %O (\/H3Klog(1/5/) + BVH?K -T(K, /\;kerm)> + H?Bu+AHB:

<0 ([\/H5 log(1/6") + B+/H* - T(K, \; ket )] /VE + H%) ,

where the second inequality is due to Lemma C.6 and the last inequality is by Lemma C.3.

By union bound, we have P(€ A £) > 1 — 25’ — 4/m? . Therefore, by setting &’ = 1/(4K2H?), we obtain that with
probability at least 1 — 1/(2K2H?) — 4/m?

Vi(s1,r) — Vi (s1,7) < O ([\/H5 log(1/8") + Bv/HT - T(K, A; kerm)| /VE + H%)

<0 (/3\/1{4 [T(E, \; keryy) + log(K H)]/VE + HQm) .

where the last inequality is due to § > H. Note that £ A £ happens when the following two conditions are satisfied, i.e.,
B% > 8RHH?(1+ \/A/d)* + 32H"T (K, A;ker,,) + 80H? + 32H? log Noo (s Ric, Bi) + 32H? log(K/§'),
32 > 8RLH?(1+ \/A/d)* + 32HT (K, \; ker,,,) + 80H? + 32H log Noo (s*; Ryc, Bxc) + 32H? log(K /'),

where 3 = §K7(1 +1/H)8=Bg,A=F(1+1/K), Ry = R = HVK, and ¢* = H/K. The above inequalities hold
if we further let 3 satisfy

B* > 8RLH?(1+ \/A/d)* + 32H"T(K, A; ker,,) + 80H? + 32H? log N (¢*; Ry, 28) + 96 H? log (2K H),
since 28 > (1+1/H)B > B such that N (¢*; Ri, 28) > Noo(s*; Ric, Bi) > Nio(s*; Ric, By ). This completes the
proof. O

D. Proofs for Markov Game Setting with Kernel Function Approximation
D.1. Lemmas

Lemma D.1. We define the event £ as that the following inequality holds V(s,a,b) € S x A x B,V(h,k) € [H] x [K],

|Pthk+1(87a7b) - fflf(&aab)l S ’U’Z(&avb)v
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where uf (s, a,b) = min{wf (s, a,b), H}* with wf(s,a,b) = LA™/ 2[ker(z, 2) —f (s, a,b) T (A +KF)~1F (s, a,b)]'/?
with z = (s, a,b), and

wlfi(z) = ¢Z¢(2) = [ker(za Z}la)a e ,ker(z, Z}Ii_l)]—ra

Oy = [6(0), 8(20), - oz )]

Ylﬁ = [th+1(3}b+1)v V}f+1(3}2;+1)a T 7th+1(siﬁ)]T7
ker(z},z}) ... ker(zt, 2t
K, = 25(25)" = : : :
ker(2) =t 28) ... ker(zp Tt 2t

Thus, setting 8 = By /(1 + 1/H), if Bg satisfies
16H?[R?) + 2T'(K, A;ker) + 5 + log Noo (" Ri, Brc) + 2log(K/¢')] < B, Vh € [H],
then we have that with probability at least 1 — ', the event € happens, i.e.,

Pr(&)>1-4".

Proof. According to the exploration algorithm for the game, we can see that by letting a = (a,b) be an action in the
space A x B, Algorithm 3 reduces to Algorithm 1 with the action space A x B and state space S. Now, we also have a
transition in the form of P, (s|a) and a product policy (7} ® vF)(s) such that a ~ (7F @ vF)(s) at state s € S for all
(h, k) € [H]x [K]. Similarly, we have Q% (s, a,b) = Q% (s, a) and V}¥(s,a,b) = V}¥(s, a) as well as u} (s, a,b) = uf (s, a)
and uf (s,a,b) = uf(s,a) and r¥ (s, a,b) = % (s, a). Thus, we can simply apply the proof of Lemma B.4 and obtain the
proof for this lemma. This completes the proof. O

Lemma D.2. Conditioned on the event £ defined in Lemma D.1, with probability at least 1 — &', we have

K K
S Vst <Y Vi (si) <0 (\/H3Klog(1/6’) + BVH?2K -T(K, A, ker)) .
k=1 k=1

Proof. By the reduction of Algorithm 3 to Algorithm 1, we can apply the same proof as the one for Lemma B.5, which

completes the proof. O

Lemma D.3. We define the event € as that the following inequality holds Y(s,a,b) € S x A x B,Vh € [H],
IPhV}H_l(S,a,b) _?h(sva‘ab)l S Uh(S,a/,b), (42)
PV i1(s,a,b) — ih(&a, b)| < up(s,a,b), (43)

where uy(s,a,b) = min{wy(s,a,b), H}t with z = (s,a,b), wi(s,a,b) = LAY ?[ker(z,2) — n(s,a,b) T (M +
Kn) " bn (s, a,b)]Y/2, Kp = ®p®), and oy, (s,a) = ®¢(s,a) with &), = [¢p(2}), ¢(22), -+, ()] .

Thus, setting 3 = By, ifEK satisfies
AH?[RY + 2T'(K, A ker) + 5 + log Noo (s*; Ryc, Bx) + 2log(2K/6")] < By, Vh € [H],

then we have that with probability at least 1 — §', the event € happens, i.e.,

Pr(&)>1-4¢".

Proof. According to the construction of uy, and f,, the proof for the the first inequality in this lemma is nearly the same as
the proof of Lemma B.6 but one difference for computing the covering number of the value function space. Specifically, we
have the function class for V';, which is

V(rn, Ric, Bg) = {V : V(-) = maxmin B ,»Q(-, a, b) with Q € O(ry, Rx, Bx)}.

a~m! brov!
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By Lemma F.1 with §’ /2, we have

2

K
Z o(sp,, ap, b;)[Vthl(S;—LJrl) - PthJrl(S;v ap, b;—z)]
T=1 (Ap)—1
K - B 2
< w366 ah BV (5hn) — PAV (ST aF B
VeV(rn,Rrx,Bk) ||r=1 (Ap)—1

< 2H*logdet(I + KC/X) + 2H?K (X — 1) + 4H? log(N ) (6; Ric, Bi)/8") + 8K2€2 /A
< 4H?T (K, \;ker) + 10H? 4+ 4H? log Noo (s*; Ric, Bc) + 4H? log(2/6"),

where the last inequality is by setting A = 1 + 1/K and € = ¢* = H/K. Here N(Est is the covering number of the function
space V w.r.t. the distance dist(V1, V) = sup, |V1(s) — Va(s)|, and N is the covering number for the function space Q
w.r.t. the infinity norm. In the last inequality, we also use

NY(s*; Ry, Bi) < Noo(s*; Ry, Br),
which is in particular due to
dist(V1, Va) = Sup [Vi(s) — Va(s)]|
= sup | max min Eq . pun [Q1(5, @, b)] — max nl},ipEaNﬂ//7bNV// [Q2(s,a,b)]|

ses v (44)

< sup sup sup |Q1(s, a,b) — Qa(s, a,d)|
seES ac A beB

= ||Q1(7 o) = Qa(, s .)”007

where we use the fact that maximin operator is the non-expansive. Thus, we have that with probability at least 1 — §’/2, the
following inequality holds for all k € [K]

K
> 8sh, ahs b)) [Vaea(sig1) = PaViasr (s7, a7, 07)]

T=1

-1
Ay

< [AH?T (K, \;ker) + 10H? + 4H?log N (¢*; Ric, Brc) + 4H? log(2K /6')]"/2.
Then, the rest of the proof for (42) follows the proof of Lemma B.6.

Next, we give the proof of (43). We define another function class for V;, as

V(r, R, Bi) = {V : V(-) = maxmin B,  Q(-, a,b) with Q € Q(ry,, R, B)}-

a~m’ by

Note that as we can show in the covering number for the function spaces Q and Q have the same covering number upper
bound. Therefore, we use the same notation N, for their upper bound. Thus, by the similar argument as (44), we have that
with probability at least 1 — ¢’/2, the following inequality holds for all & € [K]

K
> 0k an, bV (s741) = Buppa (57, a7, 0F)]

T=1

A
< [AH?T (K, \;ker) + 10H? + 4H?log N (¢*; Ric, Bc) + 4H? log(2K /6')]"/2,

where we use the fact that
N(%st(g*; §K7 EK) < Noo(§*7 EK, EK)

The rest of the proof are exactly the same as the proof of Lemma B.6.
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In this lemma, we let
[2AR%H? + 8HT (K, \; ker) + 20H? + 4H?log N (s*; Ric, Bi) + 8H? log(2K/8')]* < 8 = B,
which can be further guaranteed by
AH?[R} + 2T(K, \;ker) + 5 + log Noo (s Ry, B ) + 21log(2K/8')] < By
as (1+1/H) <2and A =1+ 1/K < 2. This completes the proof. O

Lemma D.4. Conditioned on the event 5~ as defined in Lemma D.3, we have

Vi (5,7) S Vi(8) < Eammy bmbr(m)n [PV st + 74 + 2up) (s, a,b)], Vs € S,Vh € [H], (45)
V3 (8) > Eqmbr(wyn orwn [PV o1 — 71— 2un)(s,a,b)],Vs € S,Vh € [H]. (46)

Proof. For the first inequality of (45), we can prove it by induction. We first prove the first inequality in this lemma. We
prove it by induction. For h = H + 1, by the planning algorithm, we have VIJ{{_H(S, r) = Vigi1(s) = 0 forany s € S.

Then, we assume that VJ 41 (s,7) < V311(s). Thus, conditioned on the event £ as defined in Lemma D.3, we have

Qz(s, a,b,r) — Qy(s,a,b)
=rp(s,a,b) + IP’hV}L_l(s, a,b,r) —min{[ry(s,a,b) + f,(s,a,b) +up(s,a,b)], H}*
< min{[E”thT_s_l(s, a,b,r) — fu(s,a,b) —up(s,a,b)],0}
< min{[P,V511(s,a,b) — f,(s,a,b) — un(s,a,b)],0}
<0,

where the first inequality is due to 0 < 7,(s,a,b) + ]P’thTH(s, a,b,r) < H and min{x,y}" > min{z,y}, the second
inequality is by the assumption that VJ 41(s,a,0,7) < Viga(s,a,b), the last inequality is by Lemma D.3 such that

IPrV hi1(s,a,b) — f1,(s,a,b)| < up(s,a,b) holds for any (s,a,b) € S x A x Band (k,h) € [K] x [H]. Thus, the above
inequality leads to

‘/}j(sv 7”) = max Hul}n }anrr;l,bwu,’I [QIL(Sa a, b, T')} < max Hll}ll ]an‘rr;,bwl/;b [@h(sa a, b)} = Vh(s)v
Th h Th h

which eventually gives

Vii(s,r) < Vi(s),Yh € [H],Vs € S.

To prove the second inequality of (45), we have
Vh(S) = mi,n EaNW}ubNV'@h(S7 a, b)

< Eamrmy bobr(m), Qn (s, a,b)

= Eammy bbr(r), 0n{ (ff, + 75 +up)(s, a,b), H}*

< Eqrormp probr(m)y, T{(Ph Vg1 + 7n + 2up) (s, a,b), H} T

< Egrormp bobr(m)n [PV et + 7h + 2ur) (s, a, b)),
where the first and the second equality is by the iterations in Algorithm 4, the second inequality is by Lemma D.3, and the
last inequality is due to the non-negativity of (Pp V1 + rn + 2up)(s, a,b).

For the inequalities in (46), one can similarly adopt the argument above to give the proof. In fact, from the perspective of
Player 2, this player is trying to find a policy to maximize the cumulative rewards w.r.t. a reward function {—rp(s, a, ) }rhe(m)»
while the opponent (Player 1) is trying to minimize the cumulative reward w.r.t. {—ry(s, a, ) }pc;m). Thus, the proof of
(46) exactly follows the proof of (45). This completes the proof. O
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Lemma D.5. With the exploration and planning phases, we have the following inequalities

K
K-V sy, u/H) < 3V (s1,0), KV (s1,u/H) < Zvl s1,7
k=1

Proof. First, we have K - V""" (s, u/H) < K - Vi*(s1,u/H), as well as K - V""" (s1,u/H) < K - V;*(sy,u/H)
due to the definition of V;*(-,u/H). Thus, to prove this lemma, we only need to show

K
K- Vi (si,u/H) <Y Vif(s1,r").
k=1

Since the constructions of u;, and r,’i are the same as the ones for the single-agent case, similar to the proof of Lemma B.8,
we have

up(s,a)/H < rﬁ(s,a),
such that
Vi"(s1,u/H) < Vl*(Sl,Tk),

and thus
K
K -Vi(s1,u/H) < Z (s1,7
k=1

Therefore, we eventually obtain

K
K VI sy, u/H) < K-V (s1,u/H) < 30V (s1,7),
k=1
K
K-V (s, u/H) < K- Vi (si,u/H) < Vi (s1,7%).
k=1
This completes the proof. O

D.2. Proof of Theorem 4.1

Proof. Conditioned on the event £ defined in Lemma D.1 and the event & defined in Lemma D.3, we have
Vi (s1,m) = W (s1,m) < Va(sn) = W7 (1), 47
where the inequality is by Lemma D.4. Further by this lemma, we have

Vh(sh) — Vhﬂ’br(ﬂ) (Sh, T)

< gy onmobr(m)n [(PaV a1 + 74 + 2un) (sh, an, by)] — V[’br(”)(sh, T)
=Eapmmp bp~br(mn [(Th + PaVii1 + 2un)(sh, an, br) — ra(sn, an, bn) — Vhﬂﬁ (W)(Sha ap, by, )]
= Eapmmn op~br(m)n PRV ht1(Shy an, bp) — Vhﬂﬁr(ﬁ) (Sh, @y br, ) + 2up(Sh, an, br))

— b
= Eap o b ~br(m)n,sns1~PnClsnan.bn) [V a1 (She1) — Vhllr(ﬂ)(shﬂa ) + 2up(Sh, an, bp)).

Recursively applying the above inequality and making use of V 4 1(s) = ng{ (Tr)( s,7) = 0yield

H

7 7, br(mw
Vl(Sl) — Vl ( )(81,7") S IEVhG[H]: ap~Th, by ~br () n,Sh41~Pr (4| Sh,an ,br) [Z 2uh(5h; ap, bh)
h=1

4

= 2H - V") (51, u/H).
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Combining this inequality with (47) gives

K
7, br(m 7,br(m 2H *
Vi (sp,m) = V7P (s, r) < 2H - VP (51, u/H) < 72‘4 (s1,7)
k=1

< %0 <\/H3Klog(1/5’) + BVH?K -T(K, )\ ker))

< O ([VH 10g(1/3") + B/ HT-T(K, Xiker) VK ),

where the second inequality is due to Lemma D.5 and the last inequality is by Lemma D.2.

Next, we prove the upper bound of the term Vlbr(y)"/(sl, ) — Vi (s1,7). Conditioned on the event £ defined in Lemma D.1
and the event £ defined in Lemma D.3, we have

VI (s1,m) = Vi (s1,m) < VM (s1,m) = V(1) (48)
where the inequality is by Lemma D.4. Further by Lemma D.4, we have
Vi (sny ) = Vo (sn)
< Vbr(u)’ (51, 7) = Eqmbr()n,bmovn [(PuY 1 — 11— 2un) (Sh, an, bp)]
= Ea, ~br(v)n,bnrvn [PhVﬂ(f) (8h, an, bp,7) = PRY ;1 (ks an, br) + 2un(Sh, an, by)]
br(v),v

= Eah,wbr(u)h,,b;quh,sh,+1~]P’h(-\sh,,ah,bh,)[Vh+(1 ) (Sh+1a T) - ]P)hKh+1(sh+1) + 2'U/h(sh; Qp, bh)}

Recursively applying the above inequality yields
VIO (s1,7) = Vi (snyr) < 2H - VO (51, u/H).

Combining this inequality with (48) gives

VIO (s ) = Vi (s1,7) < 2H - VO (s, u/H) <7Zv1 S1,7

< %O (\/H3Klog(1/5/) + BVH?2K -T(K, \; ker))

<0 ([\/H5 log(1/0") + B/H* - T(K, A;ker)}/\/f?) :
where the second inequality is due to Lemma D.5 and the third inequality is by Lemma D.2.

Since Pr(£ A €) > 1 — 26’ by union bound, by setting &' = 1/(4H2K?), we obtain that with probability at least
1—-1/(2H?*K?)

Vi (s1,7) — VP (s ) < O (\/2H5 log(2HK) + B+/H* - T(K, \; ker)] )
VIO (51 0) = Vi (1,7 ( [V/2H5log(2HK) + B+/H - T(K, \; ker)] )

such that

VPO (s, m) = VP (s1,0) < O (\/2H5 log(2HK) + v/ H* - T (K, ker)]/\/»>

<0 (5\/H4[F(K, X; ker) + 1og(HK)]/\/E) ,
where the last inequality is due to 5 > H. The event £ A g happens if we further let 5 satisfy
16H? [R} + 2T (K, A; ker) + 5 + log Noo (¢*; Ric, 26) + 6log(2HK)] < 5%, Vh € [H],

where A\ =1+ 1/K, Rx = Ry = 2H+\/T(K, A; ker), and ¢* = H/K. This completes the proof. O
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E. Proofs for Markov Game Setting with Neural Function Approximation
E.1. Lemmas

Lemma E.1 (Lemma C.7 of Yang et al. (2020)). With TH? = O(m log~® m), then there exists an constant | such that the
following inequalities hold with probability at least 1 — 1/m? for any z € S x A x Band any W € {W : [|[W — WO || <

iR,
(W) = (2 WOYT (W = WO < p K*PHY3m =10 /logm,
lo(z W) = (W) < F(KH? /m)Ylogm,  |lp(= W)l < F,

with F > 1.

Lemma E.2. We define the event £ as that the following inequality holdsVz = (s,a,b) € S x A x B,V(h, k) € [H] x [K],

PRV (s,a,b) — fR(s,a,b)| < uf(s,a,b) + B,

oWl a1 = ez W) gy | < v
where . = 5K /216 —1/12 logl/4 m and we define
k—1 _ k—1
A= oG W W T+ X1, A= o W) (2] WO T 4 A 1.
T7=1 =1

Setting (1+1/H)B = Bi, Rx = HVK, * = H/K, and A = F >(1 + 1/K), ¢* = H/K, if we set
8% > 8RHH?(1+ \/A/d)? + 32HT (K, A;kery,) + 80H? + 32H? log Noo (s*; Ric, Bic) + 32H? log(K /8'),
and also
m = Q(K¥YH"log®m),
then we have that with probability at least 1 — 2/m? — &', the event £ happens, i.e.,
Pr(&) >1-2/m? -4

Proof. By letting a = (a, b) be an action in the space .A x 3, Algorithm 3 reduces to Algorithm 1 with the action space A x B

and state space S. We have Q% (s,a,b) = Q¥ (s,a), Vi¥(s,a,b) = VF(s,a), uf (s,a,b) = ul (s, a), uf(s,a,b) = uf(s,a)

and 77 (s, a,b) = 5 (s, a). Simply applying the proof of Lemma C.2 yields the proof for this lemma. O

Lemma E.3. Conditioned on the event £ defined in Lemma E.2, with probability at least 1 — ', we have

K K
ZVI*(shrk) < va(sﬂ + BHK.,
k=1 k=1

K
S VE(s) <0 (\/H?’Klog(l/d’) + BVE?K T(K, A kerm)> + BHKL,
k=1

where L = 5K/ 12 /6 =1/1210g/4 .
Proof. By the reduction of Algorithm 3 to Algorithm 1, we can apply the same proof for Lemma C.3, which completes the
proof. O
Lemma E.4. We define the event € as that the following inequality holds ¥/(s, a,b) € S x A x B,Vh € [H],

‘P}LV}H-l(Sa a, b) - ?h(& a, b)| < H}L(S, (1) + BL7

‘thh+1(87 a, b) - ih(s7 a, b)| S ﬂh(87 Cl) + ﬁl'7

[0 Wl g, = el WOl 5,

[0z W)+ = el WOl 7,

<,

<.
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where 1 = 5K7/12HY/6m=112 106 % 1 and we define T, (z) = o, 11 [f (2; Wh)] and £, (2) = Uy, m[f (2 W,,)] as
well as

K K
Ko=) 0GR Whe(e Wa) T+ X1, Ay = 027 Wy )e(2h; W) T+ A1,

T=1 T=1

K
A=z W)z WO + X 1.

Setting 3 = By, Rx = HVK, ¢* = H/K, and A = F2(1 + 1/K), ¢* = H/K, if we set
B2 > 8RHH*(1 + \/A/d)? + 32HT(K, \; ker,,) + 80H? + 32H? log N (¢*; Ry, Bie) + 32H? log(2K/5'),
and also
m = Q(K¥YH"log®m),
then we have that with probability at least 1 — 2/m? — &', the event g happens, i.e.,

Pr(&) >1—2/m? -4

Proof. The proof of this lemma follows our proof of Lemmas C.2 and C.4 and apply some similar ideas from the proof of
Lemma D.3. Particularly, to deal with the upper bounds of the estimation errors of ]P’thH and P,V , 1, we define the two
value function space V and V and show their covering numbers similar to the proof of Lemma D.3. Then, we further use the
proof of Lemma C.4, which ~is derived from the proof of Lemma C.2, to show the eventual results in this lemma. In the
proof of this lemma, we set B = f3 instead of (1 + 1/H )3 due to the structure of the planning phase. This completes the
proof. O

Lemma E.5. Conditioned on the event € as defined in Lemma E.4, we have

Vi(s,7) < Vi(s) + (H +1—h)B, Vs € S,Vh € [H], )
Vi(s) < Eqrmp brbr(m)n [(PhV hi1 + 7h + 2up) (s, a,b)] + Bi,Vs € S,Vh € [H],
Vi(s,r) >V, (s) — (H+1—h)B,Vs € S,Vh € [H], 50)

V5 (8) > Eqmbr)n b [(PuY 1 — o — 2uy,)(s,a,b)] — B1,Vs € S,Vh € [H].

Proof. We prove the first inequality in (49) by induction. For h = H + 1, we have V;I +1(8,7) = Vga(s) = 0 for any

s € S. Then, we assume that VhT_s_l(s7 ) < Vhsi(s) + (H — h)pe. Thus, conditioned on the event & as defined in Lemma
E.4, we have

Q;rl(s,a,b, r) —Qy(s,a,b)
=rp(s,a,b) + IP’thTH(s, a,b,7) —min{[ry(s,a,b) + f,(s,a,b) +up(s,a,b)], H}*
< min{[P;LVJﬂ(s, a,b,7) — fu(s,a,b) — (s, a,b)],0}
< min{[PyVi11(s,a,b) + (H — h)Be — fi(s,a,b) —up(s,a,b)],0}
< (H+1-h)se,

where the first inequality is due to 0 < rp,(s,a,b) + ]P’thTH(s, a,b,7) < H and min{x,y}* > min{z,y}, the second
inequality is by the assumption that V,Ll(s, a,b,r) < Vyy1(s,a,b) + (H — h)pL, the last inequality is by Lemma E.4

such that |P,Vj41(s,a,b) — f1,(s,a,b)| < (s, a,b) + B holds for any (s,a,b) € S x A x Band (k,h) € [K] x [H].
The above inequality further leads to
VJ(S, r) = maxminEqrs by [QL(S, a,b,r)] < maxminEgrr pows [Q),(s5,a,b)] + (H+1—h)B

!
Th h Th  Vh

= Vi(s) + (H + 1~ h)B.
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Therefore, we have
Vi(s,7) < Vi(s) + (H+1—h)B,Yh € [H],Vs € S.
We further prove the second inequality in (49). We have

@h(sv a, b) = min{[rh(’S? a, b) + ?h(sv a, b) + ﬂh(sa a, b)L H}Jr
< min{[ry(s,a,b) +PpV5i1(s,a,b) + 2un(s,a,b) + i), H}+
<ru(s,a,b) + PyViy1(s,a,b) + 2un(s,a,b) + B,

where the first inequality is also by Lemma E.4 such that [P,V 41 (s, a,b) — f1,(s,a,b)| < x(s,a,b) + B, and the last
inequality is because of the non-negativity of 7, (s, a, b) + P Vi11(s, a,b) 4+ 2un(s, a,b) + Bt. Therefore, we have

Vi(s) = minEqr,, buw @y (5, a, )

S Ear\aﬂ'h,bNbr(w)h,ah(sv a, b)
yulrn(s,a,b) + P,V ii1(s,a,b) + 2un(s, a,b)] + Be.

For the inequalities in (50), we can prove them in the same way to proving (49). In fact, Player 2 is trying to find a policy to
maximize the cumulative rewards w.r.t. a reward function {—74(s, a, b) } ne[#], While the opponent (Player 1) is trying to
minimize the cumulative reward w.r.t. {—rp(s,a,b)} ne[H]- Thus, one can also convert the results in (49) into (50) by this
trick. This completes the proof. O

S E(l'\/ﬂ'h ,bNbr(ﬂ' h

Lemma E.6. With the exploration and planning phases, conditioned on the event £ defined in Lemma E.2 and the event g
defined in Lemma E.4, we have the following inequalities

K K
K-V sy a/HY < 3TV (s1rb) + 2B, KV (s1,u/H) <30V (s1 ) + 2K B
k=1 k=1

Proof. First, we have K - V""" (s, w/H) < K - Vi (s1,u/H) as well as K - V") (s, u/H) < K - Vi*(s1,u/H)
according to the definition of V;*. Thus, to prove this lemma, we only need to show

Mx

K
K -V (s1,u/H) < Z (s1,7%) + 2K B1, K -Vi*(s1,u/H) <
k=1 k=1

“(s1,7") + 2K Be.
Because the constructions of 1y, and r} are the same as the ones for the single-agent case, similar to the proof of Lemma
C.6, and according to Lemmas E.2 and E.4, we have
Un(s,a,b) — Bu < H -r¥(s,a,b) + Bt, (s, a,b) — fu < H-r5(s,a,b) + fu
such that
Vi (s1,a/H) < Vi (s1,7%) + 280, Vit (s1,u/H) < Vi(s1,7%) + 284,

Therefore, we eventually obtain

Mx

K VP sy, 1/ H) < K Vi (s1,0/H) < 30V (s1.7%) + 260,

=
Il

1

Vi (s1,7%) + 2.

Wk

K.Vvlbr(ll)vl/(shy/H)SK.V;(S]-)E/H)S

=
Il
—

This completes the proof. O
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E.2. Proof of Theorem 4.2
Proof. Conditioned on the event £ defined in Lemma E.2 and the event £ defined in Lemma E.4, we have
Vi (s1,7) = Vi P (s1,m) < Vi(s1) — V" (s, r) + HB, (51)
where the inequality is by Lemma E.5. Further by this lemma, we have
Vi(sn) = Vi (sh,7)
< Eopy oy onmobr(m)n [(PaV b1 + 7h + 2Tn) (sn, an, by)] — thbr(ﬂ)(sh, )+ B
= Eapmmp bumbr(m)n (70 + PrV g1 + 2U5) (Sh, an, br) — mh(sh, an, by) — th};ﬁr(ﬂ)(sha an,bn, 7)) + Bt

= Eq,, oy bnmbr(m)n [PaV g1 (ks an, br) — PhV;Z::ir(ﬂ)(Sh, @py by 1) + 20 (Sh, an, bp)] + Be
T7 7,br(mw _
= Eah’vmubhfvbr(”)h,S;L+1~Ph('|S;“ambh)[Vh+1($h+1) - Vh+1 ( )(5h+17 T) + 2uh(shv Qh, bh)] + Bu.
Recursively applying the above inequality and making use of V g4 1(s,7) = Hﬂfi(ﬂ) (s) = 0 gives

H

7 7,br(m) z :

Vl(sl) - Vl (817 T) S ]EVhE[H]: a;LNTr;L,b}LNbT(Tr);L,S;L+1NP}L(~‘S;L,(L;L,bh [ 2Uh Sh) aha bh)
h=1

1

=2H - V[ ") (s, u/H) + HpL.

Combining with (51) gives

K
T, br(m TT,br(m —_ 2H * .
Vi (s1,7) =V, obr( )(sl,r) <2H -V obr( )(51,u/H)+2H,6’L§ ¥d E Vi*(s1,7%) 4+ 4H B
k=1

< g(9 (\/H3Klog(l/5’) + BV H?K -T(K, )\ kerm)> + H?Bu+4HBu

( [VH5 1og(1/8") + Bv/H* - T(K, X; kerm)]/VE + H%)
where the second inequality is due to Lemma E.6 and the last inequality is by Lemma E.3.

Next, we give the upper bound of Vlbr(”)’” (s1,7) — VlT (s1,7). Conditioned on the event £ defined in Lemma E.2 and the
event £ defined in Lemma E.4, we have

Vlbr(u)’y(shr) — Vi (s1,7) < Vlbr(”)’u(shr) —Vi(s1) + Hpe, (52)
where the inequality is by Lemma E.5. Further by this lemma, we have
Vi () = Vo)
< V:r(y)’y(sm ) = Eqmbr()n b [(PrY i1 — 11— 2u,) (8hy an, bp)] + Be
= Ea, ~br(v)n,bn~vn [PhV:fr(l”)’V(Sh, ap, b, ) =PV 1 (sh,an, bp) + 2wy, (sh, an, by)] + Be
br(v),v

= Eah,Nbr(u)h,,bhwuh,sh+1~Ph,(~|sh,ah,bh,) [Vh+(1 ) (Sthla ’I") - PhKthl(Sthl) + QQh(Sha ap, bh)] + Bl“

Recursively applying the above inequality gives
Vlbr(u)’u(sl, r)—V,(s1) <2H - Vlbr(l')’u(sl,g/H) + Hp.

Combining with (52) gives

K
r\v),rv 2H *
W (s1,m) = Vil (s1,m) < 2H VT (s1,0/ H) 4+ 2HBe < 72 3 Vi (s, 7%) + AH B
k=1

<0 ( [VH5 log(1/0) + B/HE - T(K, \; kerm)]/WJrH?m)
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where the second inequality is due to Lemma E.6 and the last inequality is by Lemma E.3. Thus, we eventually have

Vlbr(u),u(shr) _ Vlw,br(W)(Shr) <0 ([\/H5 log 1/5/ + ﬁ\/H4 K A kerm)]/\/>+ HQﬁL)

Moreover, we also have P(E A ) ) >1— 28 — 4/m? by union bound. Therefore, since 3 > H as shown in Lemmas E.2
and E.4, setting &' = 1/(4K2H?), we obtain that with probability at least 1 — 1/(2K2H?) — 4/m?,

Vi (s1,7) = V" (s1,7) <O (B\/H4[I‘(K,)\;kcrm) +log(KH)]/VK + HQBL) )
The event E A E happens if we further let g satisfy

B% > 8RHH?(1+ \/A/d)? + 32H?T(K, \; kery,) + 80H? + 32H? log Noo (¢*; R, 28) + 96 H? log(2K H).

where guarantees the conditions in Lemmas E.2 and E.4 hold. This completes the proof. O

F. Other Supporting LLemmas

Lemma F.1 (Lemma E.2 of Yang et al. (2020)). Let {s,}22 and {¢;}5° ; be S-valued and H-valued stochastic processes
adapted to filtration {F,}32, respectively, where we assume that ||¢.|| < 1 for all T > 1. Moreover; for any t > 1, we let
K € R¥? be the Gram matrix of {¢+}repy) and define an operator Ay : H — H as Ay = M + 23:1 brd with X > 1.
LetV C{V : S — [0, H]} be a class of bounded functions on S. Then for any ¢ € (0, 1), with probability at least 1 — 0,
we have simultaneously for all t > 1 that

2

sup

Z ¢T{V(8'r) - E[V(ST)U:Tfl]}

A7t
< 2H?logdet(I 4 K;/A) + 2H?*t(\ — 1) + 4H?log(N./5) + 8t%€? )\,

where N is the e-covering number of V with respect to the distance dist(-,-) := supg [V1(s) — Va(s)].

Lemma F.2 (Lemma E.3 of Yang et al. (2020)). Let {¢:}+>1 be a sequence in the RKHS H. Let Ao : H +— H be defined as
A where A > 1 and I is the identity mapping on ‘H. For any t > 1, we define a self-adjoint and positive-definite operator
Ay by letting Ay = Ag + 25:1 ¢j¢;—. Then, for any t > 1, we have

t
> min{1,¢;A;1 6]} < 2logdet(] + Kt /N),

j=1

where Ky € R'" is the Gram matrix obtained from {¢;} je(4), i.e., for any j, 5" € [t], the (j, j")-th entry of Ky is (¢, ;).
Moreover, if we further have sup,>o{||¢¢ |2} < 1, then it holds that

t

log det(I + K¢ /)) < Z o] A1 65 < 2logdet(I + Ky /).



