On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game

Shuang Qiu' Jieping Ye' Zhaoran Wang? Zhuoran Yang >

Abstract

To achieve sample efficiency in reinforcement
learning (RL), it necessitates to efficiently explore
the underlying environment. Under the offline set-
ting, addressing the exploration challenge lies in
collecting an offline dataset with sufficient cov-
erage. Motivated by such a challenge, we study
the reward-free RL problem, where an agent aims
to thoroughly explore the environment without
any pre-specified reward function. Then, given
any extrinsic reward, the agent computes the op-
timal policy via offline RL with data collected in
the exploration stage. Moreover, we tackle this
problem under the context of function approxima-
tion, leveraging powerful function approximators.
Specifically, we propose to explore via an opti-
mistic variant of the value-iteration algorithm in-
corporating kernel and neural function approxima-
tions, where we adopt the associated exploration
bonus as the exploration reward. Moreover, we de-
sign exploration and planning algorithms for both
single-agent MDPs and zero-sum Markov games
and prove that our methods can achieve O(1/g?)
sample complexity for generating a e-suboptimal
policy or e-approximate Nash equilibrium when
given an arbitrary extrinsic reward. To the best of
our knowledge, we establish the first provably ef-
ficient reward-free RL algorithm with kernel and
neural function approximators.

1. Introduction

While reinforcement learning (RL) with function approxi-
mations has achieved great empirical success (Mnih et al.,
2015; Silver et al., 2016; 2017; Vinyals et al., 2019), its
application is mostly enabled by massive interactions with
the unknown environment, especially when the state space

"University of Michigan *Northwestern University *Princeton
University. Correspondence to: Shuang Qiu <qiush@umich.edu>,
Jieping Ye <jpye@umich.edu>, Zhaoran Wang <zhaoran-
wang @ gmail.com>>, Zhuoran Yang <zy6@princeton.edu>>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

is large and function approximators such as neural networks
are employed. To achieve sample efficiency, any RL algo-
rithm needs to accurately learn the transition model either
explicitly or implicitly, which brings the need of efficient
exploration.

Under the setting of offline RL, the agent aims to learn the
optimal policy only from an offline dataset collected a priori,
without any interactions with the environment. Thus, the
collected offline dataset should have sufficient coverage of
the trajectory generated by the optimal policy. However,
in real-world RL applications, the reward function is often
designed by the learner based on the domain knowledge.
The learner might have a set of reward functions to choose
from or use an adaptive algorithm for reward design (Laud,
2004; Grzes, 2017). In such a scenario, it is often desirable
to collect an offline dataset that covers all the possible op-
timal trajectories associated with a reward function. With
such a benign offline dataset, for any arbitrary reward func-
tion, the RL agent has sufficient information to estimate the
corresponding policy.

To study such a problem in a principled manner, we focus
on the framework of reward-free RL, which consists of an
exploration phase and a planning phase. Specifically, in the
exploration phase, the agent interacts with the environment
without accessing any pre-specified reward and collects
empirical trajectories for the subsequent planning stage.
During the planning phase, using the offline data collected
in the exploration phase, the agent computes the optimal
policy given an extrinsic reward function, without further
interactions with the environment.

Recently, many works focus on designing provably sample-
efficient reward-free RL algorithms. For the single-
agent tabular case, Jin et al. (2020a); Kaufmann et al.
(2020); Ménard et al. (2020); Zhang et al. (2020) achieve
O(poly(H,|S|,|.A|)/e?) sample complexity for obtaining
e-suboptimal policy, where |S]|, | A| are the sizes of state and
action space, respectively. In view of the large action and
state spaces, the works Zanette et al. (2020b); Wang et al.
(2020a) attempt to theoretically analyze reward-free RL by
applying the linear function approximation for the single-
agent Markov decision process (MDP), which achieve
O(H®d?/£?) sample complexity (Wang et al., 2020a) with

On Reward-Free RL with Kernel and Neural Function Approximations

0 denoting the dimension of the feature space. However, RL
algorithms combined with nonlinear function approxima-
tors such as kernel and neural function approximators have
shown great empirical successes in a variety of application
problems (e.g., Duan et al. (2016); Silver et al. (2016; 2017);
Wang et al. (2018); Vinyals et al. (2019)), thanks to their
expressive power. On the other hand, although reward-free
RL algorithms for the multi-player Markov games in the
tabular case has been studied in Bai & Jin (2020); Liu et al.
(2020), there still lack works theoretically studying multi-
agent scenarios with the function approximation. Thus, the
following question remains open:

Can we design provably efficient RL algorithms with kernel
and neural function approximations for both single-agent
MDPs and Markov games?

The main challenges of answering the above question lie in
how to appropriately integrate nonlinear approximators into
the framework of reward-free RL and how to incentivize the
exploration by designing exploration rewards that fit such
approximation. In this paper, we provide an affirmative
answer to the above question by tackling these challenges,
and our contributions are summarized as follows:

Contributions. In this paper, we first propose a provable
sample and computationally efficient reward-free RL algo-
rithm with nonlinear kernel and neural function approxi-
mations for the single-agent MDP setting. Our exploration
algorithm is an optimistic variant of the least-squares value
iteration algorithm, incorporating kernel and neural func-
tion approximators, which adopts the associated exploration
bonus as the intrinsic reward. The proposed algorithm
is shown to achieve O(1/£?) sample complexity for gen-
erating an e-suboptimal policy, given arbitrary extrinsic
reward functions. Furthermore, we extend the proposed
method for the single-agent setting to the zero-sum Markov
game setting such that the algorithm can achieve O(1/?)
sample complexity to generate a policy pair which is an
e-approximate Nash equilibrium. In the planning phase
for Markov games, our proposed algorithm only involves
finding the Nash equilibrium of matrix games formed by Q
function, that can be solved efficiently, to generate policies,
which is of an independent interest. The sample complexi-
ties of our methods match the O(1/£?) results in existing
works for tabular or linear function approximation settings.
To the best of our knowledge, we establish the first prov-
ably efficient reward-free RL algorithm with kernel and
neural function approximators for both single-agent and
multi-agent scenarios.

Related Work. There have been a lot of works focus-
ing on designing provably efficient reward-free RL algo-
rithms for both single-agent and multi-agent RL problems.
For the single-agent scenario, Jin et al. (2020a) formal-
ize the reward-free RL for the tabular setting and provide

theoretical analysis for the proposed algorithm with an
O(poly(H, |S|,|A])/e?) sample complexity for achieving
e-suboptimal policy. The sample complexity for the tabular
setting is further improved in several recent works (Kauf-
mann et al., 2020; Ménard et al., 2020; Zhang et al., 2020).
Recently, Zanette et al. (2020b); Wang et al. (2020a) study
the reward-free RL from the perspective of the linear func-
tion approximation. For the multi-agent setting, Bai & Jin
(2020) studies the reward-free exploration for the zero-sum
Markov game for the tabular case. Liu et al. (2020) fur-
ther proposes provable reward-free RL algorithms for multi-
player general-sum games.

Our work is also closely related to a line of works that study
RL algorithms with function approximations. There are
many works (Yang & Wang, 2019; 2020; Cai et al., 2019;
Zanette et al., 2020a; Jin et al., 2020b; Wang et al., 2019;
Ayoub et al., 2020; Zhou et al., 2020; Kakade et al., 2020)
studying different RL problems with the (generalized) linear
function approximation. Furthermore, Wang et al. (2020b)
studies a optimistic LSVI algorithm for general function
approximation. Our work is most closely related to the
recent work (Yang et al., 2020), which studies optimistic
LSVI algorithms with kernel and neural function approxima-
tion. However, this paper studies an online single-agent RL
problem where the exploration is executed with reward feed-
backs, which cannot be directly applied to the reward-free
RL problem. Inspired by Yang et al. (2020), our work ex-
tends the idea of kernel and neural function approximations
to the reward-free RL setting and the Markov games.

2. Preliminaries

In this section, we introduce the basic notations and problem
backgrounds for this paper.

2.1. Markov Decision Process

Consider an episodic single-agent MDP defined by the tuple
(S, A, H,P,r), where S denotes the state space, A is the
action space of the agent, H is the length of each episode,
P = {P,}/L_, is the transition model with P}, (s'|s,a) de-
noting the transition probability at the A-th step from the
state s € S to the state s’ € S when the agent takes action
a € A andry : S x A |0, 1] denotes the reward function
at the h-step. Specifically, we assume that the true transi-
tion model PP is unknown to the agent which necessitates
the reward-free exploration. The policy of an agent is a
collection of probability distributions 7 = {m; }/L_, where
mh + S — Ay with A4 denoting a probability simplex
defined on the space A.

For a specific policy {mj}neim) and reward function
{"n}he[m> under the transition model {P4 }1,c (), We de-
fine the associated value function V;"(s,7) : S — R at
the h-th step as V)" (s, r) := E[Zg:h The(Shr,an) | S =
s,m P]. The corresponding action-value function (Q-

On Reward-Free RL with Kernel and Neural Function Approximations

function) Q7 : S x A — R is then defined. We have
QZ(S, a7r) = E[Zﬁ:h rh’(sh'7 ah’) ‘ Sh = $,ap =
a,m,P]. Therefore, we have the Bellman equation as
Vhﬂ(sv T) = <Q2(57 K T)’ ﬂ-h('|8)>.»4 and QZ(& a, T) =
ru(s,a) + (Pu(-[s,a), Vi 1 (-, 7))s, where we let (-, -)s,
(-,) 4 denote the inner product over the spaces S, A. The
above Bellman equation holds for all A € [H] with setting
Vil1(s) = 0,Vs € S. In the rest of this paper, for simplic-
ity of the notation, we rewrite (Py,(-|s,a), Vh41(-,7))s =
P Vi11(8, a,r) for any transition probability P, and value
function V' (-,). Moreover, we denote 7 as the optimal
policy w.r.t. 7, such that 7} maximize V;"(sq,7)!. Then,

we have Q; (s, a,7) = Q" (s,a,r) as well as V;*(s, 1) =

Vhw: (s, 7). We say T is e-suboptimal policy if it satisfies
Vi(s1,m) — Vi (s1,7) < e.

2.2. Zero-Sum Markov Game

In this paper, we also consider an episodic zero-sum Markov
game characterized by the tuple (S, A, B, H,IP,), where S
denotes the state space, .4 and B are the action spaces for the
two players, H is the length of each episode, P = {P),}/_,
is the transition model with P, (s'|s, a, b) denoting the tran-
sition probability at the A-th step from the state s to the state
s" when Player 1 takes action a € A and Player 2 takes
actionb € B, r, : S x A x B+ [0, 1] denotes the reward
function at the h-step. Similarly, we assume the transition
model P = {P;,}/_, unknown to both players. The pol-
icy of Player 1 is a collection of probability distributions
7w = {m}tL, with 7 : S — A 4. Analogously, the pol-
icy of Player 2 is a collection of probability distributions
v={vy}_, withv : S — Ap. Here A4 and Ap are
probability simplex defined on the spaces A and B.

For a specific policy m and v and reward function
{"n}ne[m)> under the transition model {P4 }1,¢ (), We de-
fine the value function V,"""(s,r) : S — R at the h-th
step as V;"(s,r) 1= B[S0y r (sn,ans, bwr) [sn =
s,mv,Pl. We further define the corresponding Q-
function Q)" S x Ax B — R, where we
have Q;"(s,a,b,7) = E[Zgzh The(Shryaps b)) | sp =
s,ap = a,by, = b,m,P]. Therefore, we have the Bell-
man equation as V;""" (s,7) = Eqon,, b (@ (5, a,b,7)]
and QZ’V(Sv a, b» T) = Thn (87 a, b) + th}::-l; (87 a, b» T)’
where, for simplicity, we also let PV, " (s,a,b,7) =
(B(.0.0). V1 ().

We define the Nash Equilibrium (NE) (7', v1) as a solution

ot
to max, min, V""" (s1), where we have V{" ¥ (s1,r) =
max, min, V{""(s;) = min, max, V{""(s1). For

"Without loss of generality, in this paper, we assume the agent
starts from a fixed state s; at h = 1. We also assume this for the
Markov game setting.

simplicity, we let V,j(s7 r) = V,:TT’”T (s,r) and also
QL(s,a,b, r) = QZT’VT(s,a,b,r) denote the value func-
tion and Q function under the NE 7', v at h-th step. We
further define the best response for Player 1 with policy 7
as br(m) := argmin,, ;""" (s1,r) and the best response for
Player 2 with policy v as br(v) := argmax, V""" (s1,7).
Thus, we say (7, V) is e-approximate NE if it satisfies

Vvlbr(ﬁ),ﬁ(s17 ?") . Vvl%,br(%)(s17 7") <e,

where V"7 (s1) > Vi) > v (s)) al-
ways holds. On the other hand, we let Vi*(s,r) =
max, , V""" (s,r), namely the maximal value function
when h = 1. Then, we have the associated value function
and Q function for the h-th step V;* (s, r) and Q5 (s, a, b, 7).

2.3. Reproducing Kernel Hilbert Space

In our paper, we use reproducing kernel Hilbert space
(RKHS) as the function space for approximation. Here, we
abuse the notion a little by letting Z = S x A for the single-
agent MDP setting and Z = S x A x B for the zero-sum
game setting, such that z = (s,a) € Zorz = (s,a,b) € Z
for different cases. We assume that the space Z is the input
space of the function approximation, where Z is a compact
space on RZ. This can also be achieved if there is an prepro-
cessing method to embed (s, a) or (s, a,b) into the space
R?. We denote H as RKHS defined on the space Z with
the kernel function ker : Z x Z — R. We define the inner
product on the RKHS H as (-,)y : H X H +— R and the
norm || - || : H — R. We have a feature map ¢ : Z +— H on
the RKHS # and define the function f(z) := (f, ¢(2))n
for f € H. Then the kernel is defined as

ker(z,2') := (¢(2), d(2'))3, V2, 2" € Z.

We assume that sup, ¢ z ker(z, z) < 1such that ||¢(2)]|y <
1forany z € Z.

2.4. Overparameterized Neural Network

This paper further considers the function approximator using
the overparameterized neural network. Overparameterized
neural network has drawn a lot of attention recently in both
theory and practice (Neyshabur et al., 2018; Allen-Zhu et al.,
2018; Arora et al., 2019; Gao et al., 2019; Bai & Lee, 2019).
Specifically, in this work, we have a two-layer neural net-
work f(-;b,W) : Z — R with 2m neurons and weights
(v, W), which can be represented as

fzo, W) = . act(Wi—'—z)7 (D

1 2m
A=
2m |

where act 1is the activation function, and v =
[v1, ,vom] | and W = [Wy, Wy, -+, Wa,,]. Here, we
assume that z = (s, a) or z = (s, a,b) with z € Z satisfies

On Reward-Free RL with Kernel and Neural Function Approximations

||z]l2 = 1, i.e., z is normalized on a unit hypersphere in
R<. Let W be the initial value of W and v(%) be the ini-
tialization of v. The initialization step for the above model
is performed as follows: we let v; ~ Unif({—1,1}) and
WZ-(O) ~ N(0,1;/d) for all i € [m], where I is an identity
matrix in R, and v{” = 0 w® =W for all
i € {m+1,2m}. Here we let N(0, I4/d) denote Gaussian
distribution In this paper, we let v be fixed as v(*) and we
only learn W for the ease of theoretical analysis. Thus, we
represent f(z;,v, W) by f(z; W) to simplify the notation.
This neural network model is widely studied in recent paper
on the analysis of neural networks, e.g., Gao et al. (2019);
Bai & Lee (2019). When the model is overparameterized,
i.e., m is sufficiently large, we can characterized the dynam-
ics of the training such neural network by neural tangent
kernel (NTK) (Jacot et al., 2018). We define

410(2’ W) = [VWLf(Zv W)T7 e ,VWsz(Z; W)T]T7 (2)

where we let Vyy, f(z; W) be a column vector such that
¢(z; W) € R?4, Thus, when conditioned on the random-
ness in the initialization of W by W (%), we define the kernel

ker,, (z,2') = (p(z; W), (/s W), ¥z, 2 € Z.

In addition, we consider a linearization of the model
f(z,W) at the initial value W(®), such that we have
frin(zW) = f(zWO) + (p(z W), W — wO)
and furthermore the following holds fii,(z; W) =
(p(z; WO W — WO, since f(z; W) = 0 by the
initialization scheme. As we can see, the linearized func-
tion f1i,(2z; W) is a function on RKHS with the kernel
ker,,(z,z’). When the model is overparamterized with
m — 00, the kernel ker,, (z, z") converges to a NTK kernel,
which is defined as kerncx = Eoon(o,1,/a)lact’ (w'2) -
act/(w'2')- 2" 2], where act’ is the derivative of act.

3. Single-Agent MDP Setting

In this section, we introduce the algorithms under the single-
agent MDP setting with kernel and neural function approxi-
mation. Then, we present their theoretical results.

3.1. Kernel Function Approximation

Our proposed method includes the reward-free exploration
phase and planning phase with the given true reward func-
tion. The exploration phase and planning phase are summa-
rized in Algorithm 1 and Algorithm 2.

Specifically, the exploration algorithm is an optimistic vari-
ant of the value-iteration algorithm with the function approx-
imation. In Algorithm 1, we use Q¥ and V}* to denote the
optimistic Q-function and value function for the exploration
rewards. During the exploration phase, the agent does not
access the true reward function and explore the environ-
ment for K episodes based on the policy {wﬁ}(h_’k)e[m X [K]

Algorithm 1 Exploration Phase for Single-Agent MDP
1: Initialize: 6 > 0 and ¢ > 0.
2: forepisode k =1,..., K do
Let V. () =0and Q. ,(-,-) =0
forsteph=H,H—1,...,1do
Construct bonus term uf (-, -)

4
5:

6: Compute exploration reward r (-, -) = uf (-,-)/H
7: 3

8

Compute approximation function f7 (-,

: Q5 () = Mo m[(ff +rf; + uf) ()]
9: V() = maxgae s QF (-, a)
10: 7 (-) = argmax,c 4 Q% (-, a)
11: end for
12: Take actions following af ~ 7¥(sF), Vh € [H].
13: end for
14: Return: {(8£7a§,)}(h,k)€[H]><[K]'

determined by the value function V,f , and collect the tra-
jectories {sf, ay’} (n,kye[m]x (k] for the subsequent planning
phase. Thus, instead of approximating the Q-function di-
rectly, we seek to approximate P, V,f .1 by aclipped kernel
function f (s, a) for any (s,a) € S x A, where fF(-,-) is
estimated by solving a regularized kernel regression prob-
lem as below. Based on this kernel approximation, we
construct an associated UCB bonus term u} to facilitate
exploration, whose form is specified by the kernel function
approximator. Moreover, although the true reward is not
available to the agent, to guide the exploration, we construct
the exploration reward by scaling the bonus uﬁ, guiding
the agent to explore state-action pairs with high uncertain-
ties characterized by uf. Then, the Q function QF is a
combination of 7 (s, a), f¥(s,a), and u} (s, a) as shown in
Line 8 of Algorithm 1. In this paper, we define a clipping
operator Ijo g)[z] := min{max{x,0}, H}. Note that the
exploration phase in Algorithm 1 is a general framework
that is not restricted to kernel cases and can be combined
with other approximators.

At the k-th episode, given the visited trajectories
{s},a}, ﬁ;% we construct the approximation for each
h € [H] by solving the following regularized nonlinear

kernel regression problem

k—1
T =min > Vit (shgn) = SO + M,
T=1

where f(z]) = (f,é(zf))n with zf = (s],a]), and
A is a hyperparameter to be determined later. As we
will discuss in Lemma B.1 in the supplementary mate-
rial, the closed form solution to the above problem is

IKE) = (hom = of) (- T+ Kh) g,

where we define 1F (2) = [ker(z, 2}), -+, ker(z, 2, 1)] T,
YZ = [th+1(sl17.+1)? s 7th-s-1(32jrb]—r’ and also Kﬁ =
[(zh), -+ bk (2871 (recalling that z = (s, a)).

On Reward-Free RL with Kernel and Neural Function Approximations

Algorithm 2 Planning Phase for Single-Agent MDP
1: Initialize: Reward function {7 },¢c|z) and exploration
data {(s, af;)} (ke elx(K]
2: forsteph = H, H — 1do
3: Compute bonus term uh()
4: Compute appr0x1mat10n function fj,(-
5
6
7

,0)
Qn(-+) = o, m[(fn + 7 +un) ()]
Vh() = maXae_A Qh('va)
mh(") = argmax,ec 4 Qn (-, a)

8: end for

9: Return: {7y }re(m)

We let fF(z) = I
guarantee f¥(z) € [0,
W) =T mwh(z) " A - T+ KDy, ()

In addition, the associated bonus term is defined as
uy,(2) = min{3 - w(2), H} @)

where (3 is a hyperparameter to be determined and we set

wh(z) = A~ — R (2) TN+ K Il (2)]2.

)[fF(2)] by clipping operation to
H] such that in Algorithm 1, we let

3 [ker(z, z)

The planning phase can be viewed as a single-episode ver-
sion of optimistic value iteration algorithm. Using all the
collected trajectories {s5, aﬁ}(h)k)e[H]X[K], we can simi-
larly construct the approximation of PV}, 11 by solving

= arfger?{mz Vi1 (shar) = FEDIZ + A3)

T=1

Thus, the kernel approximation function can be estimated as

fn(2) = o, m [fn(2)]

and the bonus term is
up(z) == min{p - wy(2), H}
with setting

wp(z) = A~ — () T+) "L (2)]7,

[ker(z,z1),- -+, ker(z, 25T,
Yo = Vag1(shi1)s s Var1(siyq)] ", and also Kp, :=
[Yn(z1), -+ ,¥n(2E)]. Given all the true reward function
71, with the kernel approximation f; and the bonus uy,, one
can compute the optimistic Q-function (), and the associ-
ated value function V},. The learned policy 7, is obtained
by value iteration based on the optimistic Q-function. Al-
gorithm 2 is also a general planning scheme that can be
generalized to any other function approximator, for exam-
ple, the neural function approximator.

%[kcr(z, 2)

where we define ¢y, (2) =

Remark 3.1. Note that in the kernel function approxima-
tion setting, we directly define the kernel ker(z, 2') for the
algorithms instead of the feature map ¢(z) which potential
lies in an infinite dimensional space.

= Mo, [von(2) T (A T+ Kn) " ynl,

3.2. Neural Function Approximation

For the neural function approximation setting, the agent
also runs Algorithm 1 for exploration and Algorithm 2 for
planning. Different from the kernel function approxima-
tion, in the exploration phase at the k-th episode, given the
visitation history {s7,, ah}T 1» we construct the approxima-
tion for each h € [H] by solving the following regularized
regression problem, i.e., W}f is the global minimizer of

k—1

[Vikey — W)+ AW — W3,
1

. -
w i 2 ucs
where we assume that there exists an optimization oracle
that can return the global optimizer of the above prob-
lem. The initialization of () and v(®) for the function
f(z; W) follows the schemes as we discussed in Section
2.4. As shown in many recent works (Du et al., 2019;
2018; Arora et al., 2019), when m is sufficiently large, with
random initialization, some common optimizers, e.g., gra-
dient descent, can find the global minimizer of the empir-
ical loss efficiently at a linear convergence rate. Once we
obtain Wff , the approximation function is constructed as
fE(z) = o, m[f (z; W/)]. The related exploration bonus
uf is of the form uf (z) := min{B - wf(z), H} where

wh(2) = [p(z; WET(AD) oz WhHE, ()

where we define the invertible matrix Aﬁ = Mopma +
SNy (o WY (27 W) Twith o (2] W) as (2).

In the planning stage, given the collection of trajectories
in K episodes of exploration phase, we construct the neu-
ral approximation of P, V},11(2) as solving a least square
problem, i.e., W}, is the global optimizer of

K

Via1 — F(hs W)+ AW = WO 3,

min
WGRZ'HLd
T=1

such that fy(z) = Tl m)[f(2; Wr)]. Analogously, the
bonus term for the planning phase is of the form wuy(z) :=
min{f - wy(z), H} where

wi(2) = [p(z; W) T (An) ™"
wh}eére we define the invertible matrix Ay
Sy Pz W) (27 Wa) T
3.3. Theoretical Results for Single-Agent MDP

Kernel Function Setting. In this subsection, we first
present the result for the kernel function approximation
setting. We make the following assumptions.

ez WhlE,)

=)\I2md +

Assumption 3.2. We assume that for any value function
VS — R, we have P,V (z) is in a form of (¢(2), Wn)n
for some wy, € H. In addition, we assume there exists a
fixed constant Rg such that |wp ||y < RoH.

On Reward-Free RL with Kernel and Neural Function Approximations

One example for this assumption is that the transition model
is in a form of Py (s'|z) = (¢(z), w},(s'))» such that
PrV(2) = [Vie1(s')(d(2), w},(s"))»ds” where we can
write Wy, = [Viiy1(s")w),(s)ds’. This example can be
viewed as an generalization of the linear transition model
(Jin et al., 2020b) to the RKHS.

In our work, we use maximal information gain (Srinivas
et al., 2009) to measure the function space complexity, i.e.,

(€, 0;ker) = sup 1/2-logdet(I + Kp/o),
DCZ

where the supremum is taken over all D C Z with |D| < €,
and Cp is the Gram matrix induced by D based on some
kernel ker of RKHS. The value of T'(€, o; ker) reflects how
fast the the eigenvalues of H decay to zero and can be
viewed as a proxy of the dimension of H when H is infinite-
dimensional. To characterize the results in our paper, we
define a specific Q-function class O of the form

Q(c, R, B) = {Q : Q satisfies the form of Q*}. (10)
where we define Q¥ in the following form Q%(z) =
min{c(z) + o m[(w,¢(2))] + g(z), H}T with some
w satisfying ||w|x < R and also g(z) = B -
min{||¢(z)||A51,H/,B}+. Here Ap is an adjoint opera-
tor with the form Ap = Ay + Y, cp 0(2')¢(2') T with
I3, denoting identity mapping on ‘H and D C Z with
|D| < K. Here we define the ¢-covering number of the
class Q w.r.t. the £o-norm as N, (s; R, B) with a upper
bound N (s; R, B). As formally discussed in Section A
of the supplementary material, we compute the covering
number upper bound NV (s; R, B). As we can see in Algo-
rithms 1 and 2, we have QF € Q(0, R, (1 + 1/H)p) and
Qn € Q(ry, R, B) for some R and R'. Based on the above
assumptions and definitions, we have the following result.

Theorem 3.3. Suppose that 3 satisfies the condition
that 16H? [R), + log Noo (¢*; R, 28) + 2T (K, A; ker) +
6log(2KH) + 5] < % Under the kernel func-
tion approximation setting with a kernel ker, letting
A =1+41/K, Rk = 2H/T(K,)\ ker), and ¢* =
H/K, with probability at least 1 — (2K?H?)™!, the
policy generated via Algorithm 2 satisfies Vi*(s1,7) —
Vit(s1,7) < O(By/HIT(K, A;ker) + log(K H)]/VK),
after K episodes of exploration with Algorithm 1.

The covering number N (¢*; Rk, 23) and the information
gain I'(K, \; ker) reflect the function class complexity. To
understand the result in Theorem 3.3, we consider kernels
ker with two different types of eigenvalue decay conditions:
(i) v-finite spectrum and (ii) y-exponential spectral decay.

For the case of ~-finite spectrum with v € Z,, we

have 8 = O(yH/log(vKH)), log N (s*; Ric,26) =
O(y?log(yKH)), and T'(K, \; ker) = O(~log K), which

further implies that to achieve V{*(s1,7r) — V" (s1,7) < ¢,
it requires O(H®%~3/?) rounds of exploration, where O
hides the logarithmic dependence on «y and 1/e.

Therefore, when the problem reduces to the setting of
linear function approximation, the above result becomes
O(H%03 /%) by letting v = 0, where ? is the feature di-
mension. This is consistent with the result in Wang et al.
(2020a), which studies the linear approximation setting for
reward-free RL. Furthermore, the sample complexity be-
comes O(HS|S|3|AJ3/e?) by setting v = |S||.A|, when the
problem reduces to the tabular setting.

For the case of ~y-exponential spectral decay with v >
0, we have log Voo (¢*; R, 28) = O((log K)'*2/7 +
(loglog H)'+2/7), 8 = O(H\/log(K H)(log K)'/7), and
also T'(K, \;ker) = O((log K)'*1/7). Therefore, to
obtain an e-suboptimal policy, it requires O(H®C, -
logt6/7 (1) /e2) = (5(H6C’7/£2) rounds of exploration,
where C, is some constant depending on 1/+. Please see
Section A for detailed definitions and discussions.

Neural Function Setting Next, we present the result for the
neural function approximation setting.

Assumption 3.4. We assume that for any value function
V, we have P,V (2) can be represented by P,V (z) =
Jga act'(w'2) - 2T ap(w)dpo(w) for some au(w) with
a : R%— RY and sup,, |a(w)|| < RoH/V/d. Here py is
the density of Gaussian distribution N (0,14/d).

As discussed in Gao et al. (2019); Yang et al. (2020), the
function class characterized by f(z) = [paact/(w'2) -
2T o, (w)dpo(w) is an expressive subset of RKHS 7. One
example is that the transition model can be written as
Pi(s'|z) = [paact/(w'2)-2" o) (w; s")dpo(w) such that
we have o (w) = [@), (w;s")Vi41(s")ds’. This example
generalizes the linear transition model (Jin et al., 2020b) to
the overparameterized neural network setting. For analysis,
we define a special Q function based on fi;,(z; W), and
thus we also use the notations Q and Ny, w.rt. ¢(z, W)
and ker,,, (z) (See Lemma C.2 for details).

Theorem 3.5. Suppose that 3 satisfies the condition
that 8H2[RZ?(1 + /A/d)? + AT(K, \;ker,,) + 10 +
4log Noo(6*; Ry¢, 2B) + 12log(2K H)] < B2 with m =
QK H"log® m). Under the overparameterized neural
function approximation setting, letting A\ = C(14+1/K) for
some constant C > 1, Ry = HVEK, and ¢* = H/K, with
probability at least 1 — (2K2H?)™1 — 4m™2, the policy
generated via Algorithm 2 satisfies Vi*(s1,17) =V (s1,7) <
O(B\/HA (K, \;ker,) + log(K H)| /K +H?Bu) with
L =B5KT2[/6m=1/12 160 % 1 after K episodes of ex-
ploration with Algorithm 1.

In Theorem 3.5, there is an error term H?2/3; that depends
on m~ /12 In the regime of overparameterization, when m

On Reward-Free RL with Kernel and Neural Function Approximations

is sufficiently large, this term can be extremely small and
t — 0,ker,, — ker,cyx if m — oco. Here I'(K, A; ker,,)
and N (s*; Ry, 23) characterize the intrinsic complexity
of the function class. In particular, when m is large, the
overparamterized neural function setting can be viewed as
a special case of RKHS with a misspecification error. If
the eigenvalues of the kernel ker,,, satisfy finite spectrum or
exponential spectral decay, we know that 3, I'(K, A; ker,,),
and log N (s*; R, 23) are of the same orders to the ones
in the discussion after Theorem 3.3. Moreover, if m is
sufficiently large such that H 283, < ¢, we similarly have an
O(1/£?) sample complexity to achieve an O()-suboptimal
policy.

Overall, the above results show that with the kernel func-
tion approximation and overparameterized neural function
approximation, Algorithms 3 and 4 guarantee O(1/£2) sam-
ple complexity for achieving e-suboptimal policy, which
matches existing O(1/2) results for the single-agent MDP
for the tabular case or with linear function approximation.

4. Zero-Sum Game Setting

In this section, we introduce the algorithms under the
Markov game setting with kernel and neural function ap-
proximation. We further present their theoretical results on
the sample complexity.

4.1. Kernel Function Approximation

The exploration phase and planning phase for the zero-sum
game are summarized in Algorithm 3 and Algorithm 4.

Specifically, in the exploration phase, the exploration pol-
icy for both players is obtained by taking maximum on
Q-function over both action space. Thus, Algorithm 3 in
essence is an extension of Algorithm 1 and performs the
same exploration steps, if we view the pair (a, b) as a single
action a = (a, b) on the action space A x B and regard the
exploration policy pair (7 (s), v} (s)) as a product policy
(7 @ vF)(s). Thus, the approximator f¥(z) and the bonus
term u’fb (z) share the same forms as (3) and (4) if we slightly
abuse the notation by letting z = (s, a, b).

In the planning phase, the algorithm generates the poli-
cies for two players in a separate manner. While main-
taining two Q-functions, their policies are generated by
solving NE of two games with payoff matrices Q and
Q respectively, namely (71,(s), Do(s)) is the solution to

max, min, Eq < b [Q1 (8, a,0)] and (Dg(s), v (s))
is the solution to max, min, Eq o peyr [Qh(& a,b)],
which can be solved efficiently in computation by many
existing algorithms (e.g., Koller et al. (1994)).

Moreover, we construct the approximation function for
Player 1 and Player 2 similarly via (5) by letting z = (s, a, b)
and placing the value function with V" and V_ separately such

Algorithm 3 Exploration Phase for Zero-Sum Game

1: Initialize: § > 0 and ¢ > 0.
2: forepisode k =1,..., K do

3 LetVfi,,()=0and Q% (-,-,-) =0

4 forsteph=H,H—1,...,1do

5: Construct bonus term uf (-, -, -)

6: Exploration reward rf (-, -,) = uf (-,)/ H
7.

8

9

Compute approximation function fF (-, -,)
QZ(’ ") = mln{(f}]f + T;CL + uﬁ)(>) H}+
. V}ZC() = MaXgec A,beB QI}CL(7 a, b)
10: (W’Z(),V}f()) = argimax,c 4 »eB QZ('an))
11: end for
12: Take actions following af ~ 7¥(s¥) and also u¥ ~

vi(sk),vh € [H]
13: end for
14: Return: {(sy,, af, uf) }(h,k)e[H)x [K]

that we have

Frs,a) = [Wn(s,a) T (A T+ Kp)~'9,) 7,
ih(sva) = [wh(saa)T(/\ I+ Kh)ilzh]dh

where ¥, := [Viag1(shy1), -, Viei(sip,)] " and y, =
Vii1(shir)s Vg (st)] T. Then, for the bonus
term, Players 1 and 2 share the one of the same form, i.e.,
up(z) = up,(2) = min{B - wp(2), H} with

wp(2) = A3 [ker(z, 2) — n(2) T (AL + Kn) " (2)]2.

4.2. Neural Function Approximation

The exploration and planning stages are performed by Al-
gorithm 3 and 4. In the exploration stage, following the
same discussion for the exploration algorithm with kernel
function approximation, Algorithm 3 with the neural ap-
proximator is intrinsically the same as Algorithm 1. Thus,
one can follow the same approaches to construct the neural
function approximator fF(z) = I g1 [f(2; W})] and the
bonus uﬁ(z) as in (6) and (7) with only letting z = (s, a, b).

For the planning phase, by letting z = (s, a, b), we construct
approximation functions separately for Player 1 and Player
2 via solving two regression problems, i.e., W, and W, are
respectively the global optimizers of

K

. v B Ty 2 0w — w02 ,
. 7:1[he1 — [z W)IZ + Al iy
K
. v . T W 2 MW — W(O) 2
S, YW — ST+ I3

such that we let f;,(z) = o, i [f(z;W})] and L}(z) =
o, [f (2; W},)]. The bonus terms), and u,, for Players
1 and 2 are wy,(2) := min{f - Wy(z), H} and u;(z) =

On Reward-Free RL with Kernel and Neural Function Approximations

Algorithm 4 Planning Phase for Zero-Sum Game

1: Initialize: Reward function {7 },¢c|z) and exploration

data{(shaaga“h)}(h k)e[H]x[K]
forsteph=H,H—1,...,1do
Compute bonus term up (-, -,) and uy (-, -,).

2:

3:

4: Compute approximations f (-, -,-) and f, (~, o)
5: Qh('?))
6.

7

8

9

mln{(fh +Th +uh)(» 5) H}+
Qh(.’.’.) _mln{(f + T = uh)(a a')aH}+
Let (74(s), Do(s)) be NE for Q,(s,,-), Vs € S
Let (Dy(s),vn(s)) be NE for @, (s,",), Vs € S

V() = anﬂ'h(s) b~Do (s)[Qh(,a,0),Vs €S
(

100 V(1) = Equpy(s) b ()@,
11: end for

12: Retarn: {7 }pemy, {Vnfhepm

min{f - w,(z), H} with

AI21’nd +
>\12md +

wh}eére we define the invertible matrices Ay, :=
S R W)z Wi) T and A, =

25:1 @(Zg;wh)@(zg5wh)T'

4.3. Theoretical Results for Zero-Sum Game

In this section, we present the results for zero-sum Markov
game. Particularly, in the subsection, we make the same
assumptions as in Section 3.3 with only letting z = (s, a, b).
Moreover, we also use the same Q-function class Q as
(10), such that we can see in Algorithms 3 and 4, Q’g S
9Q(0, R, (1+ 1/H)p) for some R, and Q;, € Q(ry, k', 3)
for some R'. To characterize the space of @ e We define a
specific Q-function class Q of the form

Q(c, R, B) = {Q : Q satisfies the form of Q°}, (11)

where Q°(2) = min{c(2) +1jo, m [(w, $(2))] — g(2), H}*
for some w satisfying |w|l% < R and also g(z) =
B - max{||¢(z)||A51,H/B}+. Thus, we have @, €
Q(rp, R, 3). As we show in Section A of the supplemen-
tary material, Q(c, R, B) and Q(c, R, B) have the same
covering number upper bound w.r.t || - | .. Then, we can use
the same notation N, to denote such upper bound. Thus,
we have the following result for kernel setting.
Theorem 4.1. Suppose that 3 satisfies the condition
that 16H? [R, + log Noo (s*; Ric, 28) + 2I'(K, \; ker) +
6log(4KH) + 5| < 2. Under the kernel function approx-
imation setting with a kernel ker, letting A\ = 1 + 1/K,
Ry =2H\/T(K, \;ker), and ¢* = H/K, with probabil-
ity at least 1 — (2K2?H?) ™1, the policy pair generated via
Algorithm 4 satisfies Vbr(u)’ (s1,7) — Vlﬂ’br(ﬁ)(sl,r) <
O(B/HAT(K, \;ker) + log(KH)|/VK), after K
episodes of exploration with Algorithm 3.

We further obtain the result for reward-free Markov game
with the neural function approximation.

Theorem 4.2. Suppose that [satisfies the condition
that 8H?[10 + 12log(4K/d) + RLH(1 + /A/d)* +
4log Noo(s*; Ry, 28) + 4AT(K, \jker,,)] < B2 with
m = Q(KYHYlog®>m). Under the overparameter-
ized neural function approximation setting, letting A =
C(1 + 1/K) for some constant C > 1, Rxg =
HVK, and <* = H/K, with probability at least 1 —
(2K2H?)=t — 4m™2, the policy pair generated via Al-
gorithm 4 satisfies Vlbr(y)’y(sl,r) 2 br(ﬂ)(s ,7) <
O(B\/H*I (K, \;ker,,) + log(KH)] /\F + H?B1) with
L =5K7/12H1/6py—1/12 logl/4 m, after K episodes of ex-
ploration with Algorithm 3.

Following the same discussion as in Section 3.3, the above
results show that with the kernel function approximation
and overparameterized neural function approximation, Al-
gorithms 3 and 4 guarantee an O(1/£2) sample complexity
to achieve an e-approximate NE. In particular, when our
problem reduces to the Markov game with linear function
approximation, the algorithm requires O(H%03/c?) sam-
ple complexity to achieve an e-approximate NE, where 0
is the feature dirgension. For the tabular case, Bai & Jin
(2020) gives an O(H"|S|*|A||B|) sample complexity and
Liu et al. (2020) gives an O(H*|S||.A||B|) sample complex-
ity. Our analysis gives an O(H5|S|3|.A|3|B|3/c) sample
complexity by simply letting @ = |S||.A||B|, which matches
the existing results in terms of €. Though the dependence
on H, S|, |Al, |B] is not tight as existing results, our work
present a more general analysis for the function approxima-
tion settings which is not fully studied in previous works.

5. Theoretical Analysis
5.1. Proof Sketches of Theorem 3.3 and Theorem 3.5

We first show the proof sketches for Theorem 3.3. Our goal
is to bound the term V;*(s1,7) — V" (s1,). By optimistic
updating rule in the planning phase, according to Lemma
B.7, we have V{*(s1,7) < Vi(s1) such that Vi*(s1,7) —
V™ (s1,7) < Vi(s1) — V{"(s1,7). Then we only need to
consider to upper bound V;(s1) — V{"(s1,7). Further by
this lemma, for any h € [H], we have

Vi(s) = Vi (s,7)
< rp(s,mh(8)) + PrVis1(s, mh(s))
+ 2up (s, mr(s)) — Qr(s, ma(s),7) (12)
= PpViy1(s,mn(s)) = PaViia (s, ma(s),7)
+ 2up (s, mh(s)).

where we use the fact that Q7 (s, mh(s),) = ra(s, mn(s)) +
PLViT, (s, 7n(s),). Recursively applying the above in-

On Reward-Free RL with Kernel and Neural Function Approximations

equality and also using V7 1 (s,7) = Vi 11(s) = 0 give
Vi(s1) = Vi"(s1,7)
< Be[3250 2un(sn, mh(sn))|s1] = 2H - Vi (s1, u/H).

Moreover, by Lemma B.8, we build a connection between
the exploration and planing phase, whichis V" (s1,u/H) <
K1 Zszl Vi¥(s1,7%). Therefore, combining the above
results together, we eventually obtain
Vi (s1,7) = ViT(s1,7) < 2H/K - 330, Vi (s1,7%)
< O(BVHYT(K, X ker) + log(KH)|/VEK),

where the last inequality is by Lemma B.5 and the fact that
£ > H. This completes the proof of Theorem 3.3. Please
see detailed proof in Section B.2.

Next, we show the proof sketches of Theorem 3.5. By
Lemma C.5, we have Vi*(s1,7) < Vi(s1) + HBe by
optimism, such that V}*(s1,7r) — V{7 (s1,7) < Vi(s1) —
V" (s1,7) + HpBe. Note that different from the proof of
Theorem 3.3, there is an extra bias term H ¢ introduced by
the neural function approximation. Further by Lemma C.5,
and using the same argument as (12), we have

Vi(s) = Vi (s,7) < 2up(s, mn(s)) + Be
+ P Vhi1(s, ma(s)) — PV (s, mn(s), 1),

which introducing another bias 5¢. Recursively applying the
above inequality with V7, (s,7) = Vi 41(s) = 0 gives

V1(81) — Vfr(Sl,T) =2H - Vfr(sl,u/H) + Hﬁl,.

Thus, with Lemma C.6 connecting the exploration and plan-

ning such that V;(sy,u/H) < K~'S 0 Vi(s1,7%) +

231, combining all the above results eventually yields

Vi (s1,m) — Vi (s1,7) < 2H/K - S Vi (s1,7%) + 4H e
< O(Bv/HAT(K, A;kery,) +log(KH)]/VK + Hu),

where the second inequality and the last inequality is by
Lemma C.3 and the fact that 8§ > H. This completes the
proof. Please see detailed proof in Section C.2.

5.2. Proof Sketches of Theorem 4.1 and Theorems 4.2

For the proof sketch of Theorem 4.1, we decompose the
VPO (51, r) =V (51, 1) into two terms V; (s1, 7)—
V7P (1, r) and Vi (s1,) — Vil (s1,7) and bound
them separately. We first bound the first term. By Lemma
D.4, we have V; (s1,7) — V{""" ™ (s1,r) < Vi(s1) —
V""" (51, 7). Note that by the updating rule for ¥}, in
Algorithm 4, we have

Vi (5) = Hil,n Eonrmy, b [@h(s, a, b)]

S an'n'h,bwbr(ﬂ')h [@h(& a, b)]a

such that further by Lemma D.4, there is
Vh (Sh) — Vhﬂ’br(w) (Sh, 7")
< E[(ththl +7rp + 2uh)(sh, ap, bh)] - V}Zr,br(w) (Sh, T)

= E[Vhs(sna1) = Vv ™ (sn1,7) + 2un(sn, an, by)).
where E in the inequality is taken over aj, ~ mp,b; ~
br(7)y, and E in the equality is taken over a, ~ mp,, by, ~
br(m)n, Sh+1 ~ Pn(-|Sh, an,bpn). The equality above also
uses V:’br(ﬂ)(sm 7) = By~ bp~br(m)n [Th(Shs Gy br) +
Pthﬂﬁr(”) (Sh,an, by,)]. Recursively applying the above
inequality yields
Vi(s1) = V" (s, 1)
< Eﬂ,br(ﬂ'),ﬂ”[ZhH:12uh(Sh7 ap,bp)|s1]
=2H - V""" (51, u/H).

Combining the above results eventually gives

VlT(Sh T) - Vlﬂl’br(ﬂ’) (817 T)

2H
<2H - ‘Gﬂ,br(w)(sl’u/H) < ?;‘/1*(51,7']6)

< O(By/H*[T(K, X ker) + log(KH)]/VEK),

where the second inequality is due to Lemma D.5
and the last inequality is by Lemma D.2. The upper
bound of the term V; (sy,7) — V""" ™ (sy,r) is also
O(B/H*I (K, \;ker) + log(K H)]/V'K) with the simi-
lar proof idea. This completes the proof of Theorem 4.1.
Please see Section D.2 for details.

The proof of Theorem 4.2 follows the same argument as
above. The only difference is that the neural function ap-
proximation brings bias terms depending on ¢ as we dis-
cussed in the proof sketch of Theorem 3.5. Thus, the fi-
nal bound is O(3+/H*[T (K, \; ker,,,) + log(K H)|/VEK +
H?ju). Please see Section E.2 for the detailed proof.

6. Conclusion

In this paper, we study the reward-free RL algorithms with
kernel and neural function approximators for both single-
agent MDPs and zero-sum Markov games. We prove that
our methods can achieve O(1/£?) sample complexity for
generating an e-suboptimal policy or e-approximate NE.

Acknowledgements

Zhaoran Wang acknowledges National Science Foundation
(Awards 2048075, 2008827, 2015568, 1934931), Simons
Institute (Theory of Reinforcement Learning), Amazon, J.P.
Morgan, and Two Sigma for their supports. Zhuoran Yang
acknowledges Simons Institute (Theory of Reinforcement
Learning).

On Reward-Free RL with Kernel and Neural Function Approximations

References

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and generaliza-
tion in overparameterized neural networks, going beyond
two layers. arXiv preprint arXiv:1811.04918, 2018.

Arora, S., Du, S., Hu, W,, Li, Z., and Wang, R. Fine-grained
analysis of optimization and generalization for overpa-
rameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322-332. PMLR,
2019.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M., and Yang, L.
Model-based reinforcement learning with value-targeted
regression. In International Conference on Machine
Learning, pp. 463—474. PMLR, 2020.

Bai, Y. and Jin, C. Provable self-play algorithms for compet-
itive reinforcement learning. In International Conference
on Machine Learning, pp. 551-560. PMLR, 2020.

Bai, Y. and Lee, J. D. Beyond linearization: On quadratic
and higher-order approximation of wide neural networks.
arXiv preprint arXiv:1910.01619, 2019.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. Provably effi-
cient exploration in policy optimization. arXiv preprint
arXiv:1912.05830, 2019.

Du, S, Lee, J., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks.
In International Conference on Machine Learning, pp.
1675-1685. PMLR, 2019.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. arXiv preprint arXiv:1810.02054, 2018.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International conference on
machine learning, pp. 1329—1338. PMLR, 2016.

Gao, R., Cai, T., Li, H., Wang, L., Hsieh, C.-J., and Lee, J. D.
Convergence of adversarial training in overparametrized
neural networks. arXiv preprint arXiv:1906.07916, 2019.

Grzes, M. Reward shaping in episodic reinforcement learn-
ing. 2017.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. arXiv
preprint arXiv:1806.07572, 2018.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu, T.
Reward-free exploration for reinforcement learning. In
International Conference on Machine Learning, pp. 4870—
4879. PMLR, 2020a.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Conference on Learning Theory, pp.
2137-2143. PMLR, 2020b.

Kakade, S., Krishnamurthy, A., Lowrey, K., Ohnishi, M.,
and Sun, W. Information theoretic regret bounds for on-
line nonlinear control. arXiv preprint arXiv:2006.12466,
2020.

Kaufmann, E., Ménard, P., Domingues, O. D., Jonsson,
A., Leurent, E., and Valko, M. Adaptive reward-free
exploration. arXiv preprint arXiv:2006.06294, 2020.

Koller, D., Megiddo, N., and Von Stengel, B. Fast algo-
rithms for finding randomized strategies in game trees. In
Proceedings of the twenty-sixth annual ACM symposium
on Theory of computing, pp. 750-759, 1994.

Laud, A. D. Theory and application of reward shaping in
reinforcement learning. Technical report, 2004.

Liu, Q., Yu, T., Bai, Y., and Jin, C. A sharp analysis of
model-based reinforcement learning with self-play. arXiv
preprint arXiv:2010.01604, 2020.

Ménard, P., Domingues, O. D., Jonsson, A., Kaufmann, E.,
Leurent, E., and Valko, M. Fast active learning for pure
exploration in reinforcement learning. arXiv preprint
arXiv:2007.13442, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529-533, 2015.

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and
Srebro, N. Towards understanding the role of over-
parametrization in generalization of neural networks.
arXiv preprint arXiv:1805.12076, 2018.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, 1.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484-489, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
L., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. nature, 550(7676):354-359, 2017.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger,
M. Gaussian process optimization in the bandit set-
ting: No regret and experimental design. arXiv preprint
arXiv:0912.3995, 2009.

On Reward-Free RL with Kernel and Neural Function Approximations

Steinwart, I. and Christmann, A. Support vector machines.
Springer Science & Business Media, 2008.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P, et al. Grandmaster level in starcraft ii

using multi-agent reinforcement learning. Nature, 575
(7782):350-354, 2019.

Wang, R., Du, S. S., Yang, L. F,, and Salakhutdinov, R. On
reward-free reinforcement learning with linear function
approximation. arXiv preprint arXiv:2006.11274, 2020a.

Wang, R., Salakhutdinov, R., and Yang, L. F. Provably effi-
cient reinforcement learning with general value function
approximation. arXiv preprint arXiv:2005.10804, 2020b.

Wang, W. Y., Li, J., and He, X. Deep reinforcement learning
for nlp. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics: Tutorial
Abstracts, pp. 19-21, 2018.

Wang, Y., Wang, R., Du, S. S., and Krishnamurthy,
A. Optimism in reinforcement learning with gener-
alized linear function approximation. arXiv preprint
arXiv:1912.04136, 2019.

Yang, L. and Wang, M. Sample-optimal parametric g-
learning using linearly additive features. In Interna-
tional Conference on Machine Learning, pp. 6995-7004.
PMLR, 2019.

Yang, L. and Wang, M. Reinforcement learning in feature
space: Matrix bandit, kernels, and regret bound. In In-
ternational Conference on Machine Learning, pp. 10746
10756. PMLR, 2020.

Yang, Z., Jin, C., Wang, Z., Wang, M., and Jordan, M.
Provably efficient reinforcement learning with kernel and
neural function approximations. Advances in Neural
Information Processing Systems, 33, 2020.

Zanette, A., Brandfonbrener, D., Brunskill, E., Pirotta, M.,
and Lazaric, A. Frequentist regret bounds for randomized
least-squares value iteration. In International Conference
on Artificial Intelligence and Statistics, pp. 1954—1964.
PMLR, 2020a.

Zanette, A., Lazaric, A., Kochenderfer, M. J., and Brunskill,
E. Provably efficient reward-agnostic navigation with

linear value iteration. arXiv preprint arXiv:2008.07737,
2020b.

Zhang, Z., Du, S. S., and Ji, X. Nearly minimax opti-
mal reward-free reinforcement learning. arXiv preprint
arXiv:2010.05901, 2020.

Zhou, D., He, J., and Gu, Q. Provably efficient reinforce-
ment learning for discounted mdps with feature mapping.
arXiv preprint arXiv:2006.13165, 2020.

