Learning Transferable Visual Models From Natural Language Supervision

A. Linear-probe evaluation

We provide additional details for linear probe experiments
presented in this paper, including the list of the datasets and
models used for evaluation.

A.1. Datasets

We use the 12 datasets from the well-studied evaluation
suite introduced by (Kornblith et al., 2019) and add 15
additional datasets in order to assess the performance of
models on a wider variety of distributions and tasks. These
datasets include MNIST, the Facial Expression Recognition
2013 dataset (Goodfellow et al., 2015), STL-10 (Coates
et al., 2011), EuroSAT (Helber et al., 2019), the NWPU-
RESISC45 dataset (Cheng et al., 2017), the German Traf-
fic Sign Recognition Benchmark (GTSRB) dataset (Stal-
lkamp et al., 2011), the KITTI dataset (Geiger et al., 2012),
PatchCamelyon (Veeling et al., 2018), the UCF101 action
recognition dataset (Soomro et al., 2012), Kinetics 700 (Car-
reira et al., 2019), 2,500 random samples of the CLEVR
dataset (Johnson et al., 2017), the Hateful Memes dataset
(Kiela et al., 2020), and the ImageNet-1k dataset (Deng
et al., 2012). For the two video datasets (UCF101 and Ki-
netics700), we use the middle frame of each video clip as
the input image. STL-10 and UCF101 have multiple pre-
defined train/validation/test splits, 10 and 3 respectively, and
we report the average over all splits. Details on each dataset
and the corresponding evaluation metrics are provided in
Table 2.

Additionally, we created two datasets that we call Coun-
try211 and Rendered SST2. The Country211 dataset is
designed to assess the geolocation capability of visual rep-
resentations. We filtered the YFCC100m dataset (Thomee
et al., 2016) to find 211 countries (defined as having an
ISO-3166 country code) that have at least 300 photos with
GPS coordinates, and we built a balanced dataset with 211
categories, by sampling 200 photos for training and 100
photos for testing, for each country.

The Rendered SST2 dataset is designed to measure the opti-
cal character recognition capability of visual representations.
To do so, we used the sentences from the Stanford Sentiment
Treebank dataset (Socher et al., 2013b) and rendered them
into images, with black texts on a white background, in a
448 %448 resolution. Two example images from this dataset
are shown in Figure 8.

A.2. Models

In combination with the datasets listed above, we evaluate
the following series of models using linear probes.

LM RNSO This is a multimodal model that uses an au-
toregressive loss instead of a contrastive loss, while using

the ResNet-50 architecture as in the smallest contrastive
model. To do so, the output from the CNN is projected into
four tokens, which are then fed as a prefix to a language
model autoregressively predicting the text tokens. Apart
from the training objective, the model was trained on the
same dataset for the same number of epochs as other CLIP
models.

CLIP-RN Five ResNet-based contrastive CLIP models
are included. As discussed in the paper, the first two models
follow ResNet-50 and ResNet-101, and we use EfficientNet-
style (Tan & Le, 2019) scaling for the next three models
which simultaneously scale the model width, the number
of layers, and the input resolution to obtain models with
roughly 4x, 16x, and 64x computation.

CLIP-ViT We include four CLIP models that use the Vi-
sion Transformer (Dosovitskiy et al., 2020) architecture as
the image encoder. We include three models trained on 224-
by-224 pixel images: ViT-B/32, ViT-B/16, ViT-L/14, and
the ViT-L/14 model fine-tuned on 336-by-336 pixel input
images.

EfficietNet We use the nine models (BO-B8) from the
original EfficientNet paper (Tan & Le, 2019), as well as
the noisy-student variants (BO-B7, L2-475, and L2-800)
(Tan & Le, 2019). The largest models (L2-475 and L2-800)
take the input resolutions of 475x475 and 800x800 pixels,
respectively.

Instagram-pretrained ResNeXt We use the four models
(32x8d, 32x16d, 32x32d, 32x48d) released by (Mahajan
et al., 2018), as well as their two FixRes variants which use
higher input resolutions (Touvron et al., 2019).

Big Transfer (BiT) We use BiT-S and BiT-M models
(Kolesnikov et al., 2019), trained on the ImageNet-1k and
ImageNet-21k datasets. The model weights for BiT-L is not
publicly available.

Vision Transformer (ViT) We also include four ViT
(Dosovitskiy et al., 2020) checkpoints pretrained on the
ImageNet-21k dataset, namely ViT-B/32, ViT-B/16, ViT-
L/16, and ViT-H/14. We note that their best-performing
models, trained on the JFT-300M dataset, are not available
publicly.

SimCLRv2 The SimCLRv2 (Chen et al., 2020a) project
released pre-trained and fine-tuned models in various set-
tings. We use the seven pretrain-only checkpoints with
selective kernels.

BYOL We use the recently released model weights of
BYOL (Grill et al., 2020), specifically their 50x1 and 200x2
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Montias ... pumps a lot of energy into his
nicely nuanced narrative and surrounds
himself with a cast of quirky -- but not
stereotyped -- street characters.

It's clear the filmmakers weren't sure where
they wanted their story to go, and even more
clear that they lack the skills to get us to

this undetermined destination.

Figure 8. Two example images from the Rendered SST2 dataset

checkpoints.

Momentum Contrast (MoCo) We include the MoCo-v1
(He et al., 2020) and the MoCo-v2 (Chen et al., 2020b)
checkpoints.

VirTex We use the pretrained model of VirTex (Desai &
Johnson, 2020). We note that VirTex has a similar model
design to CLIP-AR but is trained on a 1000x smaller dataset
of high-quality captions from MSCOCO.

ResNet We add the original ResNet checkpoints released
by (He et al., 2016b), namely ResNet-50, ResNet-101, and
ResNet152.

A.3. Evaluation

We use image features taken from the penultimate layer of
each model, ignoring any classification layer provided. For
CLIP-ViT models, we used the features before the linear
projection to the embedding space, which corresponds to
I_f in Figure 3. We train a logistic regression classifier
using scikit-learn’s L-BFGS implementation, with maxi-
mum 1,000 iterations, and report the corresponding met-
ric for each dataset. We determine the L2 regularization
strength A using a hyperparameter sweep on the validation
sets over the range between 10~¢ and 106, with 96 log-
arithmically spaced steps. To save compute required for
the sweeps, we perform a parametric binary search that
starts with A = [107%,107%,1072, 1,102, 10%, 105] and it-
eratively halves the interval around the peak until it reaches
a resolution of 8 steps per decade. The hyperparameter
sweeps are performed on a validation split of each dataset.
For the datasets that contain a validation split in addition to

a test split, we use the provided validation set to perform
the hyperparameter search, and for the datasets that do not
provide a validation split or have not published labels for
the test data, we split the training dataset to perform the
hyperparameter search and report the performance on the
unused split.

A.4. Results

The individual linear probe scores are provided in Table 3
and plotted in Figure 10. The best-performing CLIP model,
using ViT-L/14 archiecture and 336-by-336 pixel images,
achieved the state of the art in 21 of the 27 datasets, i.e.
included in the Clopper-Pearson 99.5% confidence interval
around each dataset’s top score. For many datasets, CLIP
performs significantly better than other models, demonstrat-
ing the advantage of natural language supervision over tradi-
tional pre-training approaches based on image classification.
See Section 3.3 for more discussions on the linear probe
results.

We also visualize per-dataset differences in the performance
of the best CLIP model and the best model in our evaluation
suite across all 27 datasets in Figure 9. CLIP outperforms
the Noisy Student EfficientNet-L2 on 21 of the 27 datasets.
CLIP improves the most on tasks which require OCR (SST2
and HatefulMemes), geo-localization and scene recognition
(Country211, SUN397), and activity recognition in videos
(Kinetics700 and UCF101). In addition CLIP also does
much better on fine-grained car and traffic sign recognition
(Stanford Cars and GTSRB). This may reflect a problem
with overly narrow supervision in ImageNet. A result such
as the 14.7% improvement on GTSRB could be indicative
of an issue with ImageNet-1K, which has only a single la-
bel for all traffic and street signs. This could encourage
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Dataset Classes Trainsize Testsize Evaluation metric
Food-101 102 75,750 25,250 accuracy
CIFAR-10 10 50,000 10,000 accuracy
CIFAR-100 100 50,000 10,000 accuracy
Birdsnap 500 42,283 2,149 accuracy
SUN397 397 19,850 19,850 accuracy
Stanford Cars 196 8,144 8,041 accuracy
FGVC Aircraft 100 6,667 3,333 mean per class
Pascal VOC 2007 Classification 20 5,011 4,952 11-point mAP
Describable Textures 47 3,760 1,880 accuracy
Oxford-IIIT Pets 37 3,680 3,669 mean per class
Caltech-101 102 3,060 6,085 mean-per-class
Oxford Flowers 102 102 2,040 6,149 mean per class
MNIST 10 60,000 10,000 accuracy
Facial Emotion Recognition 2013 8 32,140 3,574 accuracy
STL-10 10 1000 8000 accuracy
EuroSAT 10 10,000 5,000 accuracy
RESISC45 45 3,150 25,200 accuracy
GTSRB 43 26,640 12,630 accuracy
KITTI 4 6,770 711 accuracy
Country211 211 43,200 21,100 accuracy
PatchCamelyon 2 294,912 32,768 accuracy
UCF101 101 9,537 1,794 accuracy
Kinetics700 700 494,801 31,669  mean(topl, top5)
CLEVR Counts 8 2,000 500 accuracy
Hateful Memes 2 8,500 500 ROC AUC
Rendered SST2 2 7,792 1,821 accuracy
ImageNet 1000 1,281,167 50,000 accuracy

Table 2. Datasets examined for linear probes. We note that, for the Birdsnap and Kinetics700 datasets, we used the resources that are
available online at the time of this writing.

a supervised representation to collapse intra-class details
and hurt accuracy on a fine-grained downstream task. As
mentioned, CLIP still underperforms the EfficientNet on
several datasets. Unsurprisingly, the dataset that the Effi-
cientNet does best relative to CLIP on is the one it was
trained on: ImageNet. The EffcientNet also slightly outper-
forms CLIP on low-resolution datasets such as CIFAR10
and CIFAR100. We suspect this is at least partly due to the
lack of scale-based data augmentation in CLIP. The Effi-
cientNet also does slightly better on PatchCamelyon and
CLEVRCounts, datasets where overall performance is still
low for both approaches.
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Figure 9. CLIP’s features outperform the features of the best
ImageNet model on a wide variety of datasets. Fitting a linear
classifier on CLIP’s features outperforms using the Noisy Student
EfficientNet-L2 on 21 out of 27 datasets.
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“ RI52x2 82.3 96.7 83.9 58.1 68.5 64.9 58.7 86.6 79.1 92.2 94.1 96.0 98.2 64.1 99.0 98.0 88.1 77.0 69.8 18.4 85.3 82.7 56.2 53.6 56.0 56.5 79.2
R152x3 83.6 96.8 84.5 60.3 69.1 68.5 63.1 86.7 80.5 92.6 94.9 96.3 98.7 65.4 99.2 98.1 89.5 78.4 68.5 19.4 85.2 83.5 57.0 54.4 54.6 54.2 80.0

s 50x1 74.0 93.6 79.1 47.6 63.7 61.6 62.3 82.6 77.0 88.3 93.7 94.3 98.7 58.8 97.4 97.6 88.2 80.1 71.4 14.1 84.8 77.3 49.3 56.1 53.8 54.4 73.3
s 200x2 78.5 96.2 83.3 53.4 68.5 61.7 55.4 86.6 77.4 91.9 95.5 93.9 98.7 62.6 99.0 97.7 87.4 77.1 76.4 16.4 84.0 82.6 55.1 54.1 52.5 52.4 79.2
S vl 65.9 85.0 63.1 27.5 52.6 35.9 43.5 75.7 70.0 70.4 78.1 85.4 97.6 54.3 90.1 97.1 82.9 62.6 60.2 12.6 85.7 64.2 40.7 54.7 55.6 53.5 57.2
§ v2 72.2 93.4 76.3 39.6 60.2 48.3 51.1 82.6 75.1 84.4 89.9 90.7 98.4 58.3 96.9 97.2 85.4 75.7 75.4 13.2 85.6 72.7 47.8 56.9 53.9 53.8 69.1
VirTex | 57.9 83.9 57.5 17.0 49.8 22.4 34.5 83.8 58.2 53.6 70.6 74.7 98.1 56.5 89.8 94.8 74.1 69.5 71.3 8.7 83.1 61.5 39.9 45.5 53.5 55.8 50.7

3 50 71.3 91.8 74.5 52.7 60.5 49.9 48.5 83.8 72.3 92.4 90.8 90.8 98.3 54.9 97.1 96.7 83.6 70.6 67.1 11.7 82.5 71.2 46.8 43.0 56.5 55.5 74.3
Z 101 72.7 93.0 77.2 53.7 60.8 50.1 47.0 84.4 71.6 92.3 91.9 90.4 98.5 56.6 97.8 97.1 83.4 72.5 63.6 11.9 83.3 72.7 48.3 43.2 53.0 54.7 75.8
& 152 73.7 93.5 78.0 55.1 61.6 52.8 48.4 84.5 71.9 93.0 92.1 89.6 98.2 57.0 98.2 97.0 83.1 70.1 70.2 12.3 82.9 75.3 49.2 42.4 53.2 53.9 77.1

Table 3. Linear probe performance. Scores within the 99.5% Clopper-Pearson confidence interval of each dataset’s top score are shown in
bold.
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Figure 10. Linear probe performance plotted for each of the 27 datasets, using the data from Table 3.
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Figure 12. CLIP’s zero-shot performance compared to linear-probe ResNet performance
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Figure 13. Prompt engineering and ensembling improve zero-
shot performance. Compared to the baseline of using contextless
class names, prompt engineering and ensembling boost zero-shot
classification performance by almost 5 points on average across
36 datasets. This improvement is similar to the gain from using
4 times more compute with the baseline zero-shot method but is
“free” when amortized over many predictions.

B. Zero-Shot Analysis

To provide a qualitative summary / overview of CLIP’s zero-
shot performance we visualize a randomly selected predic-
tion for 36 different zero-shot CLIP classifiers in Figure 11.
In addition, Table 4 and Figure 12 show the individual zero-
shot performance scores for each dataset. In the following,
we describe additional details of our zero-shot results.

Most standard image classification datasets treat the infor-
mation naming or describing classes which enables natural
language based zero-shot transfer as an afterthought. The
vast majority of datasets annotate images with just a numeric
id of the label and contain a file mapping these ids back to
their names in English. Some datasets, such as Flowers102
and GTSRB, don’t appear to include this mapping at all in
their released versions preventing zero-shot transfer entirely.
For many datasets, we observed these labels may be chosen
somewhat haphazardly and do not anticipate issues related
to zero-shot transfer which relies on task description in order
to transfer successfully.

A common issue is polysemy. When the name of a class
is the only information provided to CLIP’s text encoder it
is unable to differentiate which word sense is meant due to
the lack of context. In some cases multiple meanings of the
same word might be included as different classes in the same

dataset! This happens in ImageNet which contains both
construction cranes and cranes that fly. Another example is
found in classes of the Oxford-IIIT Pet dataset where the
word boxer is, from context, clearly referring to a breed of
dog, but to a text encoder lacking context could just as likely
refer to a type of athlete.

Another issue we encountered is that it’s relatively rare in
our pre-training dataset for the text paired with the image
to be just a single word. Usually the text is a full sentence
describing the image in some way. To help bridge this
distribution gap, we found that using the prompt template
“A photo of a {label}.” tobe a good default that
helps specify the text is about the content of the image. This
often improves performance over the baseline of using only
the label text. For instance, just using this prompt improves
accuracy on ImageNet by 1.3%.

Similar to the “prompt engineering” discussion around GPT-
3 (Brown et al., 2020; Gao et al., 2020), we have also
observed that zero-shot performance can be significantly
improved by customizing the prompt text to each task. A
few, non exhaustive, examples follow. We found on several
fine-grained image classification datasets that it helped to
specify the category. For example on Oxford-IIIT Pets, us-
ing“A photo of a {label}, a type of pet.”
to help provide context worked well. Likewise, on Food101
specifying a type of food and on FGVC Aircraft a type of
aircraft helped too. For OCR datasets, we found that putting
quotes around the text or number to be recognized improved
performance. Finally, we found that on satellite image classi-
fication datasets it helped to specify that the images were of
this form and we use variants of “a satellite photo
of a {label}.”.

We also experimented with ensembling over multiple zero-
shot classifiers as another way of improving performance.
These classifiers are computed by using different context
prompts such as ‘A photo of a big {label}”and
“A photo of a small {label}”. We construct the
ensemble over the embedding space instead of probability
space. This allows us to cache a single set of averaged text
embeddings so that the compute cost of the ensemble is the
same as using a single classifier when amortized over many
predictions. We’ve observed ensembling across many gen-
erated zero-shot classifiers to reliably improve performance
and use it for the majority of datasets. On ImageNet, we
ensemble 80 different context prompts and this improves
performance by an additional 3.5% over the single default
prompt discussed above. When considered together, prompt
engineering and ensembling improve ImageNet accuracy
by almost 5%. In Figure 13 we visualize how prompt engi-
neering and ensembling change the performance of a set of
CLIP models compared to the contextless baseline approach
of directly embedding the class name as done in Li et al.
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Figure 14. The data efficiency of zero-shot transfer varies
widely. Calculating the number of labeled examples per class
a linear classifier on the same CLIP feature space requires to match
the performance of the zero-shot classifier contextualizes the ef-
fectiveness of zero-shot transfer. Values are estimated based on
log-linear interpolation of 1, 2, 4, 8, 16-shot and fully supervised
results. Performance varies widely from still underperforming a
one-shot classifier on two datasets to matching an estimated 184
labeled examples per class.

(2017).

In addition to studying the average performance of zero-shot
CLIP and few-shot logistic regression in the main body, we
also examine performance on individual datasets. In Figure
14, we show estimates for the number of labeled examples
per class that a logistic regression classifier on the same
feature space requires to match the performance of zero-shot
CLIP. Since zero-shot CLIP is also a linear classifier, this
estimates the effective data efficiency of zero-shot transfer
in this setting. In order to avoid training thousands of linear
classifiers, we estimate the effective data efficiency based
on a log-linear interpolation of the performance of a 1, 2,
4, 8, 16-shot (when possible), and a fully supervised linear
classifier trained on each dataset. We find that zero-shot
transfer can have widely varying efficiency per dataset from
less than 1 labeled example per class to 184. Two datasets,

Flowers102 and EuroSAT underperform one-shot models.

Half of the datasets require less than 5 examples per class
with a median of 5.4. However, the mean estimated data
efficiency is 20.8 examples per class. This is due to the
20% of datasets where supervised classifiers require many

labeled examples per class in order to match performance.

On ImageNet, zero-shot CLIP matches the performance of

a 16-shot linear classifier trained on the same feature space.

If we assume that evaluation datasets are large enough that
the parameters of linear classifiers trained on them are well
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Figure 15. Zero-shot performance is correlated with linear
probe performance but still mostly sub-optimal. Comparing
zero-shot and linear probe performance across datasets shows a
strong correlation with zero-shot performance mostly shifted 10 to
25 points lower. On only 5 datasets does zero-shot performance
approach linear probe performance (<3 point difference).

estimated, then, because CLIP’s zero-shot classifier is also
a linear classifier, the performance of the fully supervised
classifiers roughly sets an upper bound for what zero-shot
transfer can achieve. In Figure 15 we compare CLIP’s zero-
shot performance with fully supervised linear classifiers
across datasets. The dashed, y = z line represents an “op-
timal” zero-shot classifier that matches the performance of
its fully supervised equivalent. For most datasets, the per-
formance of zero-shot classifiers still underperform fully su-
pervised classifiers by 10% to 25%, suggesting that there is
still plenty of headroom for improving CLIP’s task-learning
and zero-shot transfer capabilities.

There is a positive correlation of 0.82 (p-value < 1079)
between zero-shot performance and fully supervised perfor-
mance, suggesting that CLIP is relatively consistent at con-
necting underlying representation and task learning to zero-
shot transfer. However, zero-shot CLIP only approaches
fully supervised performance on 5 datasets: STL10, CI-
FAR10, Food101, OxfordPets, and Caltech101. On all 5
datasets, both zero-shot accuracy and fully supervised accu-
racy are over 90%. This suggests that CLIP may be more
effective at zero-shot transfer for tasks where its underly-
ing representations are also high quality. The slope of a
linear regression model predicting zero-shot performance
as a function of fully supervised performance estimates that
for every 1% improvement in fully supervised performance,
zero-shot performance improves by 1.28%. However, the
95th-percentile confidence intervals still include values of
less than 1 (0.93-1.79).
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Figure 16. Zero-shot CLIP performance scales smoothly as a
function of model compute. Across 39 evals on 36 different
datasets, average zero-shot error is well modeled by a log-log
linear trend across a 44x range of compute spanning 5 different
CLIP models. Lightly shaded lines are performance on individual
evals, showing that performance is much more varied despite the
smooth overall trend.

Over the past few years, empirical studies of deep learning
systems have documented that performance is predictable
as a function of important quantities such as training com-
pute and dataset size (Hestness et al., 2017; Kaplan et al.,
2020). The GPT family of models has so far demonstrated
consistent improvements in zero-shot performance across
a 1000x increase in training compute. In Figure 16, we
check whether the zero-shot performance of CLIP follows
a similar scaling pattern. We plot the average error rate
of the 5 ResNet CLIP models across 39 evaluations on 36
different datasets and find that a similar log-log linear scal-
ing trend holds for CLIP across a 44x increase in model
compute. While the overall trend is smooth, we found that
performance on individual evaluations can be much noisier.
We are unsure whether this is caused by high variance be-
tween individual training runs on sub-tasks (as documented
in D’ Amour et al. (2020)) masking a steadily improving
trend or whether performance is actually non-monotonic as
a function of compute on some tasks.

C. Data Overlap Analysis

Our early attempts at duplicate detection and analysis used
nearest neighbors in the model’s learned embedding space.
While it is intuitive to use a model’s own notion of similar-
ity, we encountered issues. We found the model’s feature
space is weighted very heavily towards semantic similar-
ity. Many false positives occurred due to distinct objects
that would be described similarly (soccer balls, flowers of
the same species, etc...) having almost perfect similarity.
We also observed the model was quite poor at assigning
certain kinds of near-duplicates high similarity scores. We

noticed repeatedly that images with high-frequency textures
(such as fur or stripe patterns) pre-processed by different
resizing algorithms (nearest neighbor vs bi-linear) could
have surprisingly low similarity. This resulted in many false
negatives.

We built our own near-duplicate detector to fix this issue.
We created a synthetic data augmentation pipeline that com-
bined a variety of common image manipulations. The aug-
mentation pipeline combines random cropping and zooming,
aspect ratio distortion, downsizing and upscaling to different
resolutions, minor rotations, jpeg compression, and HSV
color jitter. The pipeline also randomly selects from differ-
ent interpolation algorithms for all relevant steps. We then
trained a model to maximize the similarity of an image and
its transformed variant while minimizing similarity to all
other images in a training batch. We used the same n-pair /
InfoNCE loss as CLIP but with a fixed temperature of 0.07.

We selected a ResNet-50 as the model architecture. We
modified the base ResNet-50 with the anti-alias improve-
ments from (Zhang, 2019) and used weight norm (Sali-
mans & Kingma, 2016) instead of batch norm (Ioffe &
Szegedy, 2015) to avoid leaking information about dupli-
cates via batch statistics - a problem previously noted in
(Henaff, 2020). We also found the GELU activation func-
tion (Hendrycks & Gimpel, 2016) to perform better for this
task. We trained the model with a total batch size of 1,712
for approximately 30 million images sampled from our pre-
training dataset. At the end of training it achieves nearly
100% accuracy on its proxy training task.

With this trained duplicate detector, we then use the follow-
ing procedure:

1) For each evaluation dataset, we run a duplicate detector
on its examples. We then manually inspect the found near-
est neighbors and set a per dataset threshold to keep high
precision while maximizing recall. Using this threshold,
we then create two new subsets, Overlap, which contains
all examples which have a similarity to a training example
above the threshold, and C1lean, which contains all exam-
ples that are below this threshold. We denote the unaltered
full dataset A11 for reference. From this we first record the
degree of data contamination as the ratio of the number of
examples in Overlap to the size of A11.

2) We then compute the zero-shot accuracy of CLIP
RN50x64 on the three splits and report A11 - Clean
as our main metric. This is the difference in accuracy due
to contamination. When positive it is our estimate of how
much the overall reported accuracy on the dataset was in-
flated by over-fitting to overlapping data.

3) The amount of overlap is often small so we also run a
binomial significance test where we use the accuracy on
Clean as the null hypothesis and compute the one-tailed
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Figure 17. Few statistically significant improvements in accuracy due to detected data overlap. (Left) While several datasets have
up to 20% apparent differences in zero-shot accuracy on detected overlapping vs clean examples only 5 datasets out of 35 total have
99.5% Clopper-Pearson confidence intervals that exclude a 0% accuracy difference. 2 of these datasets do worse on overlapping data.
(Right) Since the percentage of detected overlapping examples is almost always in the single digits, the overall test accuracy gain due to
overlap is much smaller with the largest estimated increase being only 0.6% on Birdsnap. Similarly, for only 6 datasets are the accuracy
improvements statistically significant when calculated using a one-sided binomial test.

(greater) p-value for the Overlap subset. We also calculate
99.5% Clopper-Pearson confidence intervals on Dirty as
another check.

A summary of this analysis is presented in Figure 17. Out
of 35 datasets studied, 9 datasets have no detected overlap
at all. Most of these datasets are synthetic or specialized
making them unlikely to be posted as normal images on
the internet (for instance MNIST, CLEVR, and GTSRB) or
are guaranteed to have no overlap due to containing novel
data from after the date our dataset was created (ObjectNet
and Hateful Memes). This demonstrates our detector has
a low-false positive rate which is important as false posi-
tives would under-estimate the effect of contamination in
our analysis. There is a median overlap of 2.2% and an av-
erage overlap of 3.2%. Due to this small amount of overlap,
overall accuracy is rarely shifted by more than 0.1% with
only 7 datasets above this threshold. Of these, only 2 are
statistically significant after Bonferroni correction. The max
detected improvement is only 0.6% on Birdsnap which has
the second largest overlap at 12.1%. The largest overlap is
for Country211 at 21.5%. This is due to it being constructed
out of YFCC100M, which our pre-training dataset contains
a filtered subset of. Despite this large overlap there is only
a 0.2% increase in accuracy on Country211. This may be
because the training text accompanying an example is often
not related to the specific task a downstream eval measures.
Country211 measures geo-localization ability, but inspect-
ing the training text for these duplicates showed they often
do not mention the location of the image.

We are aware of two potential concerns with our analysis.
First our detector is not perfect. While it achieves near
100% accuracy on its proxy training task and manual in-
spection + threshold tuning results in very high precision
with good recall among the found nearest-neighbors, we can
not tractably check its recall across 400 million examples.
Another potential confounder of our analysis is that the un-
derlying data distribution may shift between the Overlap
and Clean subsets. For example, on Kinetics-700 many
“overlaps” are in fact all black transition frames. This ex-
plains why Kinetics-700 has an apparent 20% accuracy drop
on Overlap. We suspect more subtle distribution shifts
likely exist. One possibility we noticed on CIFAR-100 is
that, due to the very low resolution of its images, many
duplicates were false positives of small objects such as birds
or planes. Changes in accuracy could instead be due to
changes in the class distribution or difficulty of the dupli-
cates. Unfortunately, these distribution and difficulty shifts
could also mask the effects of over-fitting.

D. Robustness to Natural Distribution Shift

While the robustness results in the main body show that
zero-shot models can be much more robust, they do not nec-
essarily mean that supervised learning on ImageNet causes
a robustness gap. Other details of CLIP, such as its large
and diverse pre-training dataset or use of natural language
supervision could also result in much more robust models
regardless of whether they are zero-shot or fine-tuned. As
an initial experiment to potentially begin narrowing this
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Figure 18. While supervised adaptation to ImageNet increases ImageNet accuracy by 9.2 %, it slightly reduces average robustness.
(Left) Customizing zero-shot CLIP to each dataset improves robustness compared to using a single static zero-shot ImageNet classifier
and pooling predictions across similar classes as in Taori et al. (2020). CLIP models adapted to ImageNet have similar effective robustness
as the best prior ImageNet models. (Right) Details of per dataset changes in accuracy for the two robustness interventions. Adapting to
ImageNet increases accuracy on ImageNetV?2 noticeably but trades off accuracy on several other distributions. Dataset specific zero-shot
classifiers can improve accuracy by a large amount but are limited to only a few datasets that include classes which don’t perfectly align

with ImageNet categories.

down, we also measure how the performance of CLIP mod-
els change after adapting to the ImageNet distribution via
a L2 regularized logistic regression classifier fit to CLIP
features on the ImageNet training set. We visualize how
performance changes from the zero-shot classifier in Figure
18. Although adapting CLIP to the ImageNet distribution
increases its ImageNet accuracy by 9.2% to 85.4% overall,
and ties the accuracy of the 2018 SOTA from Mahajan et al.
(2018), average accuracy under distribution shift slightly
decreases.

It is surprising to see a 9.2% increase in accuracy, which cor-
responds to roughly 3 years of improvement in SOTA, fail
to translate into any improvement in average performance
under distribution shift. We also break down the differences
between zero-shot accuracy and linear classifier accuracy
per dataset in Figure 18 and find performance still increases
significantly on one dataset, ImageNetV2. ImageNetV2
closely followed the creation process of the original Ima-
geNet dataset which suggests that gains in accuracy from
supervised adaptation are closely concentrated around the
ImageNet distribution. Performance decreases by 4.7% on
ImageNet-R, 3.8% on ObjectNet, 2.8% on ImageNet Sketch,
and 1.9% on ImageNet-A. The change in accuracy on the
two other datasets, Youtube-BB and ImageNet Vid, is in-

significant.

How is it possible to improve accuracy by 9.2% on the Im-
ageNet dataset with little to no increase in accuracy under
distribution shift? Is the gain primarily from “exploiting
spurious correlations”? Is this behavior unique to some com-
bination of CLIP, the ImageNet datatset, and the distribution
shifts studied, or a more general phenomena? Does it hold
for end-to-end finetuning as well as linear classifiers? We
do not have confident answers to these questions at this time.
Prior work has also pre-trained models on distributions other
than ImageNet, but it is common to study and release mod-
els only after they have been fine-tuned to ImageNet. As a
step towards understanding whether pre-trained zero-shot
models consistently have higher effective robustness than
fine-tuned models, we encourage the authors of Mahajan
et al. (2018), Kolesnikov et al. (2019), and Dosovitskiy et al.
(2020) to, if possible, study these questions on their models
as well.

We also investigate another robustness intervention enabled
by flexible zero-shot natural-language-based image classi-
fiers. The target classes across the 7 transfer datasets are
not always perfectly aligned with those of ImageNet. Two
datasets, Youtube-BB and ImageNet-Vid, consist of super-
classes of ImageNet. This presents a problem when trying
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Figure 19. Few-shot CLIP also increases effective robustness
compared to existing ImageNet models but is less robust than
zero-shot CLIP. Minimizing the amount of ImageNet training
data used for adaption increases effective robustness at the cost of
decreasing relative robustness. 16-shot logistic regression CLIP
matches zero-shot CLIP on ImageNet, as previously reported in
Figure 14, but is less robust.

to use the fixed 1000-way classifier of an ImageNet model
to make predictions. Taori et al. (2020) handle this by max-
pooling predictions across all sub-classes according to the
ImageNet class hierarchy. Sometimes this mapping is much
less than perfect. For the person class in Youtube-BB, pre-
dictions are made by pooling over the ImageNet classes for
a baseball player, a bridegroom, and a scuba diver. With
CLIP we can instead generate a custom zero-shot classi-
fier for each dataset directly based on its class names. In
Figure 18 we see that this improves average effective ro-
bustness by 5% but is concentrated in large improvements
on only a few datasets. Curiously, accuracy on ObjectNet
also increases by 2.3%. Although the dataset was designed
to closely overlap with ImageNet classes, using the names
provided for each class by ObjectNet’s creators still helps a
small amount compared to using ImageNet class names and
pooling predictions when necessary.

While zero-shot CLIP improves effective robustness, Figure
18 shows that the benefit is almost entirely gone in a fully
supervised setting. To better understand this difference, we
investigate how effective robustness changes on the contin-
uum from zero-shot to fully supervised. In Figure 19 we
visualize the performance of 0-shot, 1-shot, 2-shot, 4-shot,
- -+, 128-shot, and fully supervised logistic regression classi-

fiers on the best CLIP model’s features. We see that while
few-shot models also show higher effective robustness than
existing models, this benefit fades as in-distribution per-
formance increases with more training data and is mostly,
though not entirely, gone for the fully supervised model.
Additionally, zero-shot CLIP is notably more robust than
a few-shot model with equivalent ImageNet performance.
Across our experiments, high effective robustness seems to
result from minimizing the amount of distribution specific
training data a model has access to, but this comes at a cost
of reducing dataset-specific performance.

Taken together, these results suggest that the recent shift
towards large-scale task and dataset agnostic pre-training
combined with a reorientation towards zero-shot and few-
shot benchmarking on broad evaluation suites (as advocated
by Yogatama et al. (2019) and Linzen (2020)) promotes the
development of more robust systems and provides a more
accurate assessment of performance. We are curious to see
if the same results hold for zero-shot models in the field
of NLP such as the GPT family. While Hendrycks et al.
(2020) has reported that pre-training improves relative ro-
bustness on sentiment analysis, Miller et al. (2020)’s study
of the robustness of question answering models under nat-
ural distribution shift finds, similar to Taori et al. (2020),
little evidence of effective robustness improvements to date.

E. Broader Impacts

CLIP has a wide range of capabilities due to its ability to
carry out arbitrary image classification tasks. One can give
it images of cats and dogs and ask it to classify cats, or give
it images taken in a department store and ask it to classify
shoplifters—a task with significant social implications and
for which Al may be unfit. Like any image classification
system, CLIP’s performance and fitness for purpose need to
be evaluated, and its broader impacts analyzed in context.
CLIP also introduces a capability that will magnify and alter
such issues: CLIP makes it possible to easily create your
own classes for categorization (to ‘roll your own classifier’)
without a need for re-training. This capability introduces
challenges similar to those found in characterizing other,
large-scale generative models like GPT-3 (Brown et al.,
2020); models that exhibit non-trivial zero-shot (or few-
shot) generalization can have a vast range of capabilities,
many of which are made clear only after testing for them.

Our studies of CLIP in a zero-shot setting show that the
model displays significant promise for widely-applicable
tasks like image retrieval or search. For example, it can find
relevant images in a database given text, or relevant text
given an image. Further, the relative ease of steering CLIP
toward bespoke applications with little or no additional data
or training could unlock a variety of novel applications that
are hard for us to envision today, as has occurred with large



Learning Transferable Visual Models From Natural Language Supervision

language models over the past few years.

In addition to the more than 30 datasets studied in earlier
sections of this paper, we evaluate CLIP’s performance on
the FairFace benchmark and undertake exploratory bias
probes. We then characterize the model’s performance in
a downstream task, surveillance, and discuss its usefulness
as compared with other available systems. Many of CLIP’s
capabilities are omni-use in nature (e.g. OCR can be used
to make scanned documents searchable, to power screen
reading technologies, or to read license plates). Several
of the capabilities measured, from action recognition, ob-
ject classification, and geo-localization, to facial emotion
recognition, can be used in surveillance. Given its social
implications, we address this domain of use specifically in
the Surveillance section.

We have also sought to characterize the social biases inher-
ent to the model. Our bias tests represent our initial efforts
to probe aspects of how the model responds in different sce-
narios, and are by nature limited in scope. CLIP and models
like it will need to be analyzed in relation to their specific
deployments to understand how bias manifests and iden-
tify potential interventions. Further community exploration
will be required to develop broader, more contextual, and
more robust testing schemes so that Al developers can bet-
ter characterize biases in general purpose computer vision
models.

E.1. Bias

Algorithmic decisions, training data, and choices about how
classes are defined and taxonomized (which we refer to in-
formally as “class design”) can all contribute to and amplify
social biases and inequalities resulting from the use of Al
systems (Noble, 2018; Bechmann & Bowker, 2019; Bowker
& Star, 2000). Class design is particularly relevant to mod-
els like CLIP, since any developer can define a class and the
model will provide some result.

In this section, we provide preliminary analysis of some
of the biases in CLIP, using bias probes inspired by those
outlined in Buolamwini & Gebru (2018) and Kirkkédinen
& Joo (2019). We also conduct exploratory bias research
intended to find specific examples of biases in the model,
similar to that conducted by Solaiman et al. (2019).

We start by analyzing the performance of Zero-Shot CLIP on
the face image dataset FairFace (Kirkkiinen & Joo, 2019)?

?FairFace is a face image dataset designed to balance age, gen-
der, and race, in order to reduce asymmetries common in previous
face datasets. It categorizes gender into 2 groups: female and male
and race into 7 groups: White, Black, Indian, East Asian, Southeast
Asian, Middle Eastern, and Latino. There are inherent problems
with race and gender classifications, as e.g. Bowker & Star (2000)
and Keyes (2018) have shown. While FairFace’s dataset reduces
the proportion of White faces, it still lacks representation of entire

as an initial bias probe, then probe the model further to
surface additional biases and sources of biases, including
class design.

We evaluated two versions of CLIP on the FairFace dataset:
a zero-shot CLIP model (“ZS CLIP”), and a logistic regres-
sion classifier fitted to FairFace’s dataset on top of CLIP’s
features (“LR CLIP”). We find that LR CLIP gets higher
accuracy on the FairFace dataset than both the ResNext-101
32x48d Instagram model (“Linear Probe Instagram™) (Ma-
hajan et al., 2018) and FairFace’s own model on most of the
classification tests we ran®. ZS CLIP’s performance varies
by category and is worse than that of FairFace’s model for a
few categories, and better for others. (See Table 5 and Table
6).

Additionally, we test the performance of the LR CLIP and
ZS CLIP models across intersectional race and gender cate-
gories as they are defined in the FairFace dataset. We find
that model performance on gender classification is above
95% for all race categories. Table 7 summarizes these re-
sults.

While LR CLIP achieves higher accuracy than the Linear
Probe Instagram model on the FairFace benchmark dataset
for gender, race and age classification of images by intersec-
tional categories, accuracy on benchmarks offers only one
approximation of algorithmic fairness, as Raji et al. (2020)
have shown, and often fails as a meaningful measure of fair-
ness in real world contexts. Even if a model has both higher
accuracy and lower disparities in performance on different
sub-groups, this does not mean it will have lower disparities
in impact (Scheuerman et al., 2019). For example, higher
performance on underrepresented groups might be used by
a company to justify their use of facial recognition, and to
then deploy it ways that affect demographic groups dispro-
portionately. Our use of facial classification benchmarks to
probe for biases is not intended to imply that facial classi-
fication is an unproblematic task, nor to endorse the use of
race, age, or gender classification in deployed contexts.

We also probed the model using classification terms with
high potential to cause representational harm, focusing on
denigration harms in particular (Crawford, 2017). We car-
ried out an experiment in which the ZS CLIP model was
required to classify 10,000 images from the FairFace dataset.
In addition to the FairFace classes, we added in the follow-
ing classes: ‘animal’, ‘gorilla’, ‘chimpanzee’, ‘orangutan’,

large demographic groups, effectively erasing such categories. We
use the 2 gender categories and 7 race categories defined in the
FairFace dataset in a number of our experiments not in order to
reinforce or endorse the use of such reductive categories, but in
order to enable us to make comparisons to prior work.

30One challenge with this comparison is that the FairFace model
uses binary classes for race (“White” and “Non-White”), instead
of breaking down races into finer-grained sub-groups.
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Model Race Gender Age
FairFace Model 93.7 942  59.7
Linear Probe CLIP 934 96.5 63.8
Zero-Shot CLIP 58.3 959 571
Linear Probe Instagram  90.8 932 542

Table 5. Percent accuracy on Race, Gender, and Age classification
of images in FairFace category ‘White’

Model Race Gender Age
FairFace Model 75.4 944  60.7
Linear Probe CLIP 92.8 97.7 63.1
Zero-Shot CLIP 91.3 972 543
Linear Probe Instagram  87.2 939 54.1

Table 6. Percent accuracy on Race, Gender, and Age classification
of images in FairFace categories ‘Black,” ‘Indian,” ‘East Asian,’
‘Southeast Asian,” ‘Middle Eastern,” and ‘Latino’ (grouped to-
gether as FairFace category ‘Non-White’)

Middle Southeast East

Model Gender Black White Indian Latino Eastern Asian Asian Average
Male 969 964 98.7 965 989 96.2 969 972
Linear Probe CLIP Female 979 96.7 979 992 972 98.5 973 978
974 965 983 978 984 973 971 975
Male 963 964 97.7 972 983 95,5 96.8 969
Zero-Shot CLIP Female 97.1 953 983 978 975 972 964 97.0
96.7 959 980 975 98.0 96.3  96.6
Male 925 948 962 931 96.0 92.7 934 94.1
Linear Probe Instagram Female 90.1 914 950 948 95.0 94.1 943 934
913 932 956 940 956 934 939

Table 7. Percent accuracy on gender classification of images by FairFace race category

‘thief’, ‘criminal’ and ‘suspicious person’. The goal of this
experiment was to check if harms of denigration dispropor-
tionately impact certain demographic subgroups.

We found that 4.9% (confidence intervals between 4.6%
and 5.4%) of the images were misclassified into one of
the non-human classes we used in our probes (‘animal’,
‘chimpanzee’, ‘gorilla’, ‘orangutan’). Out of these, ‘Black’
images had the highest misclassification rate (approximately
14%:; confidence intervals between [12.6% and 16.4%])
while all other races had misclassification rates under 8§%.
People aged 0-20 years had the highest proportion being
classified into this category at 14% .

We also found that 16.5% of male images were misclassified
into classes related to crime (‘thief’, ‘suspicious person’ and
‘criminal’) as compared to 9.8% of female images. Inter-
estingly, we found that people aged 0-20 years old were
more likely to fall under these crime-related classes (approx-
imately 18%) compared to images of people in different
age ranges (approximately 12% for people aged 20-60 and
0% for people over 70). We found significant disparities in
classifications across races for crime related terms, which is
captured in Table 8.

Given that we observed that people under 20 were the most

likely to be classified in both the crime-related and non-
human animal categories, we carried out classification for
the images with the same classes but with an additional
category ‘child’ added to the categories. Our goal here
was to see if this category would significantly change the
behaviour of the model and shift how the denigration harms
are distributed by age. We found that this drastically reduced
the number of images of people under 20 classified in either
crime-related categories or non-human animal categories
(Table 9). This points to how class design has the potential
to be a key factor determining both the model performance
and the unwanted biases or behaviour the model may exhibit
while also asks overarching questions about the use of face
images to automatically classify people along such lines
(Blaise Aguera y Arcas & Todorov, 2017).

The results of these probes can change based on the class
categories one chooses to include as well as the specific
language one uses to describe each class. Poor class design
can lead to poor real world performance; this concern is
particularly relevant to a model like CLIP, given how easily
developers can design their own classes.

We also carried out experiments similar to those outlined by
Schwemmer et al. (2020) to test how CLIP treated images
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Middle Southeast  East
Category Black White Indian Latino Eastern Asian Asian
Crime-related Categories  16.4 24.9 24.4 10.8 19.7 4.4 1.3
Non-human Categories 14.4 5.5 7.6 3.7 2.0 1.9 0.0

Table 8. Percent of images classified into crime-related and non-human categories by FairFace Race category. The label set included 7
FairFace race categories each for men and women (for a total of 14), as well as 3 crime-related categories and 4 non-human categories.

Category Label Set 0-2 39

10-19  20-29

30-39 40-49 50-59 60-69 over 70

Default Label Set 30.3 35.0

29.5
Default Label Set + ‘child’ category 2.3 4.3 14.7

16.3 13.9 18.5 19.1 16.2 10.4
15.0 13.4 18.2 18.6 15.5 94

Table 9. Percent of images classified into crime-related and non-human categories by FairFace Age category, showing comparison between
results obtained using a default label set and a label set to which the label *child’ has been added. The default label set included 7 FairFace
race categories each for men and women (for a total of 14), 3 crime-related categories and 4 non-human categories.

of men and women differently using images of Members
of Congress. As part of these experiments, we studied
how certain additional design decisions such as deciding
thresholds for labels can impact the labels output by CLIP
and how biases manifest.

We carried out three experiments - we tested for accuracy
on gender classification and we tested for how labels were
differentially distributed across two different label sets. For
our first label set, we used a label set of 300 occupations and
for our second label set we used a combined set of labels that
Google Cloud Vision, Amazon Rekognition and Microsoft
Azure Computer Vision returned for all the images.

We first simply looked into gender prediction performance
of the model on the images of Members of Congress, in
order to check to see if the model correctly recognized
men as men and women as women given the image of a
person who appeared to be in an official setting/position of
power. We found that the model got 100% accuracy on the
images. This is slightly better performance than the model’s
performance on the FairFace dataset. We hypothesize that
one of the reasons for this is that all the images in the
Members of Congress dataset were high-quality and clear,
with the people clearly centered, unlike those in the FairFace
dataset.

In order to study how the biases in returned labels depend on
the thresholds set for label probability, we did an experiment
in which we set threshold values at 0.5% and 4.0%. We
found that the lower threshold led to lower quality of labels.
However, even the differing distributions of labels under
this threshold can hold signals for bias. For example, we
find that under the 0.5% threshold labels such as ‘nanny’
and ‘housekeeper’ start appearing for women whereas labels

such as ‘prisoner’ and ‘mobster’ start appearing for men.
This points to gendered associations similar to those that
have previously been found for occupations (Schwemmer
et al., 2020) (Nosek et al., 2002) (Bolukbasi et al., 2016).

At the higher 4% threshold, the labels with the highest prob-
ability across both genders include “lawmaker”, “legislator”
and “congressman”’. However, the presence of these biases
amongst lower probability labels nonetheless point to larger
questions about what ‘sufficiently’ safe behaviour may look
like for deploying such systems.

When given the combined set of labels that Google Cloud
Vision (GCV), Amazon Rekognition and Microsoft returned
for all the images, similar to the biases Schwemmer et al.
(2020) found in GCV systems, we found our system also
disproportionately attached labels to do with hair and ap-
pearance in general to women more than men. For ex-
ample, labels such as ‘brown hair’, ‘blonde’ and ‘blond’
appeared significantly more often for women. Additionally,
CLIP attached some labels that described high status occu-
pations disproportionately more often to men such as ‘ex-
ecutive’ and ‘doctor’. Out of the only four occupations that
it attached more often to women, three were ‘newscaster’,
‘television presenter’ and ‘newsreader’ and the fourth was
‘Judge’. This is again similar to the biases found in GCV
and points to historical gendered differences (Schwemmer
et al., 2020).

Interestingly, when we lowered the threshold to 0.5% for
this set of labels, we found that the labels disproportionately
describing men also shifted to appearance oriented words
such as ‘suit’, ‘tie’ and ‘necktie’ (Figure 20). Many occupa-
tion oriented words such as ‘military person’ and ‘executive’
- which were not used to describe images of women at the
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Figure 20. CLIP performance on Member of Congress images when given the combined returned label set for the images from Google
Cloud Vision, Amazon Rekognition and Microsoft Azure Computer Vision. The 20 most gendered labels for men and women were
identified with x? tests with the threshold at 0.5%. Labels are sorted by absolute frequencies. Bars denote the percentage of images for a

certain label by gender.

higher 4% threshold - were used for both men and women
at the lower 0.5% threshold, which could have caused the
change in labels for men. The reverse was not true. Descrip-
tive words used to describe women were still uncommon
amongst men.

Design decisions at every stage of building a model impact
how biases manifest and this is especially true for CLIP
given the flexibility it offers. In addition to choices about
training data and model architecture, decisions about things
like class designs and thresholding values can alter the labels
a model outputs and as a result heighten or lower certain
kinds of harm, such as those described by Crawford (2017).
People designing and developing models and Al systems
have considerable power. Decisions about things like class
design are a key determiner not only of model performance,
but also of how and in what contexts model biases manifest.

These experiments are not comprehensive. They illus-
trate potential issues stemming from class design and other
sources of bias, and are intended to spark inquiry.

E.2. Surveillance

We next sought to characterize model performance in re-
lation to a downstream task for which there is significant
societal sensitivity: surveillance. Our analysis aims to better
embody the characterization approach described above and
to help orient the research community towards the potential

future impacts of increasingly general purpose computer
vision models and aid the development of norms and checks
around such systems. Our inclusion of surveillance is not
intended to indicate enthusiasm for this domain - rather, we
think surveillance is an important domain to try to make
predictions about given its societal implications (Zuboff,
2015; Browne, 2015).

‘We measure the model’s performance on classification of
images from CCTV cameras and zero-shot celebrity identifi-
cation. We first tested model performance on low-resolution
images captured from surveillance cameras (e.g. CCTV
cameras). We used the VIRAT dataset (Oh et al., 2011) and
data captured by Varadarajan & Odobez (2009), which both
consist of real world outdoor scenes with non-actors.

Given CLIP’s flexible class construction, we tested 515
surveillance images captured from 12 different video se-
quences on self-constructed general classes for coarse and
fine grained classification. Coarse classification required the
model to correctly identify the main subject of the image (i.e.
determine if the image was a picture of an empty parking
lot, school campus, etc.). For fine-grained classification, the
model had to choose between two options constructed to
determine if the model could identify the presence/absence
of smaller features in the image such as a person standing
in the corner.

For coarse classification, we constructed the classes by hand-
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captioning the images ourselves to describe the contents
of the image and there were always at least 6 options for
the model to choose from. Additionally, we carried out a
‘stress test’ where the class set included at least one more
caption for something that was ‘close’ to the image (for
example, ‘parking lot with white car’ vs. ‘parking lot with
red car’). We found that the model had a top-1 accuracy
of 91.8% on the CCTV images for the initial evaluation.
The accuracy dropped significantly to 51.1% for the second
evaluation, with the model incorrectly choosing the ‘close’
answer 40.7% of the time.

For fine-grained detection, the zero-shot model performed
poorly, with results near random. Note that this experiment
was targeted only towards detecting the presence or absence
of small objects in image sequences.

We also tested CLIP’s zero-shot performance for ‘in the
wild’ identity detection using the CelebA dataset*. We
did this to evaluate the model’s performance for identity
detection using just the publicly available data it was pre-
trained on. While we tested this on a dataset of celebrities
who have a larger number of images on the internet, we
hypothesize that the number of images in the pre-training
data needed for the model to associate faces with names will
keep decreasing as models get more powerful (see Table
10), which has significant societal implications (Garvie,
2019). This mirrors recent developments in natural language
processing, in which recent large language models trained
on Internet data often exhibit a surprising ability to provide
information related to relatively minor public figures (Brown
et al., 2020).

We found that the model had 59.2% top-1 accuracy out
of 100 possible classes for ‘in the wild” 8k celebrity im-
ages. However, this performance dropped to 43.3% when
we increased our class sizes to 1k celebrity names. This
performance is not competitive when compared to produc-
tion level models such as Google’s Celebrity Recognition
(Google). However, what makes these results noteworthy is
that this analysis was done using only zero-shot identifica-
tion capabilities based on names inferred from pre-training
data - we didn’t use any additional task-specific dataset, and
so the (relatively) strong results further indicate that before
deploying multimodal models, people will need to carefully
study them for behaviors in a given context and domain.

CLIP offers significant benefit for tasks that have relatively
little data given its zero-shot capabilities. However, large
datasets and high performing supervised models exist for
many in-demand surveillance tasks such as facial recogni-
tion. As a result, CLIP’s comparative appeal for such uses
is low. Additionally, CLIP is not designed for common

“Note: The CelebA dataset is more representative of faces with
lighter skin tones. Due to the nature of the dataset, we were not
able to control for race, gender, age, etc.

Model 100 Classes 1k Classes 2k Classes
CLIP L/14 59.2 433 422
CLIP RN50x64 56.4 39.5 38.4
CLIP RN50x16 52.7 374 36.3
CLIP RN50x4 52.8 38.1 37.3

Table 10. CelebA Zero-Shot Top-1 Identity Recognition Accuracy

surveillance-relevant tasks like object detection and seman-
tic segmentation. This means it has limited use for certain
surveillance tasks when models that are designed with these
uses in mind such as Detectron2 (Wu et al., 2019) are widely
available.

However, CLIP does unlock a certain aspect of usability
given how it removes the need for training data. Thus, CLIP
and similar models could enable bespoke, niche surveillance
use cases for which no well-tailored models or datasets exist,
and could lower the skill requirements to build such appli-
cations. As our experiments show, ZS CLIP displays non-
trivial, but not exceptional, performance on a few surveil-
lance relevant tasks today.

E.3. Future Work

This preliminary analysis is intended to illustrate some of
the challenges that general purpose computer vision models
pose and to give a glimpse into their biases and impacts.
We hope that this work motivates future research on the
characterization of the capabilities, shortcomings, and biases
of such models, and we are excited to engage with the
research community on such questions.

We believe one good step forward is community exploration
to further characterize the capabilities of models like CLIP
and - crucially - identify application areas where they have
promising performance and areas where they may have
reduced performance’. This process of characterization can
help researchers increase the likelihood models are used
beneficially by:

* Identifying potentially beneficial downstream uses of
models early in the research process, enabling other
researchers to think about applications.

» Surfacing tasks with significant sensitivity and a large
set of societal stakeholders, which may call for inter-
vention by policymakers.

* Better characterizing biases in models, alerting other
researchers to areas of concern and areas for interven-

3 A model could be unfit for use due to inadequate performance
or due to the inappropriateness of Al use in the application area
itself.
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Majority Vote

Majority Vote Accuracy

Accuracy on Full Dataset  on Guesses Accuracy

on Guesses
Zero-shot human 53.7 57.0 69.7 63.9
Zero-shot CLIP 93.5 93.5 93.5 93.5
One-shot human 75.7 80.3 78.5 81.2
Two-shot human 75.7 85.0 79.2 86.1

Table 11. Comparison of human performance on Oxford IIT Pets.
As in Parkhi et al. (2012), the metric is average per-class classifica-
tion accuracy. Most of the gain in performance when going from
the human zero shot case to the human one shot case is on images
that participants were highly uncertain on. “Guesses” refers to
restricting the dataset to where participants selected an answer
other than “I don’t know”, the “majority vote” is taking the most
frequent (exclusive of ties) answer per image.

tions.

 Creating suites of tests to evaluate systems like CLIP
on, so we can better characterize model capabilities
earlier in the development cycle.

* Identifying potential failure modes and areas for further
work.

We plan to contribute to this work, and hope this analysis
provides some motivating examples for subsequent research.

F. Comparison to Human Performance

How does CLIP compare to human performance and human
learning? To get a better understanding of how well humans
perform in similar evaluation settings to CLIP, we evaluated
humans on one of our tasks. We wanted to get a sense of
how strong human zero-shot performance is at these tasks,
and how much human performance is improved if they are
shown one or two image samples. This can help us to
compare task difficulty for humans and CLIP, and identify
correlations and differences between them.

We had five different humans look at each of 3669 images
in the test split of the Oxford IIT Pets dataset (Parkhi et al.,
2012) and select which of the 37 cat or dog breeds best
matched the image (or ‘I don’t know’ if they were com-
pletely uncertain). In the zero-shot case the humans were
given no examples of the breeds and asked to label them
to the best of their ability without an internet search. In
the one-shot experiment the humans were given one sample
image of each breed and in the two-shot experiment they
were given two sample images of each breed.®

SThere is not a perfect correspondence between the human
few-shot tasks and the model’s few-shot performance since the
model cannot refer to sample images in the way that the humans
can.

One possible concern was that the human workers were not
sufficiently motivated in the zero-shot task. High human
accuracy of 94% on the STL-10 dataset (Coates et al., 2011)
and 97-100% accuracy on the subset of attention check
images increased our trust in the human workers.

Interestingly, humans went from a performance average of
54% to 76% with just one training example per class, and
the marginal gain from an additional training example is
minimal. The gain in accuracy going from zero to one shot
is almost entirely on images that humans were uncertain
about. This suggests that humans “know what they don’t
know” and are able to update their priors on the images they
are most uncertain in based on a single example. Given this,
it seems that while CLIP is a promising training strategy for
zero-shot performance (Figure 4) and does well on tests of
natural distribution shift (Figure 7), there is a large differ-
ence between how humans learn from a few examples and
the few-shot methods in this paper.

This suggests that there are still algorithmic improvements
waiting to be made to decrease the gap between machine
and human sample efficiency, as noted by Lake et al. (2016)
and others. Because these few-shot evaluations of CLIP
don’t make effective use of prior knowledge and the humans
do, we speculate that finding a method to properly integrate
prior knowledge into few-shot learning is an important step
in algorithmic improvements to CLIP. To our knowledge,
using a linear classifier on top of the features of a high-
quality pre-trained model is near state-of-the-art for few
shot learning (Tian et al., 2020), which suggests that there is
a gap between the best few-shot machine learning methods
and human few-shot learning.

If we plot human accuracy vs CLIP’s zero shot accuracy
(Figure 21), we see that the hardest problems for CLIP are
also hard for humans. To the extent that errors are consistent,
our hypothesis is that this is due to at least a two factors:
noise in the dataset (including mislabeled images) and out of
distribution images being hard for both humans and models.

G. Dataset Ablation on YFCC100M

To study whether our custom dataset is critical to the perfor-
mance of CLIP, we trained a model on a filtered subset of
the YFCC100M dataset (details described in Section 2.1)
and compared its performance to the same model trained on
an equally sized subset of WIT. We train each model for 32
epochs at which point transfer performance begins to plateau
due to overfitting. We used a smaller batch size of 2048 and
weight decay of 0.1, otherwise using the same hyperparam-
eters in Tables 18 and 19. Results are shown in Table 12.
Across our whole eval suite, YFCC and WIT perform simi-
larly on average for both zero-shot and linear probe settings.
However, performance on specific fine-grained classifica-
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Figure 21. The hardest problems for CLIP also tend to be the hard-
est problems for humans. Here we rank image categories by diffi-
culty for CLIP as measured as probability of the correct label.

tion datasets can vary widely - sometimes by over 10%.
Our speculation is that these differences in performance re-
flect the relative density of relevant data in each pre-training
dataset. For instance, pre-training on YFCC100M, which
might contain many photos of birds and flowers (common
subjects for photographers), results in better performance on
Birdsnap and Flowers102, while pre-training on WIT results
in better car and pet classifiers (which appear common in
our dataset).

Overall, these results are encouraging as they suggest our
approach can use any reasonably filtered collection of paired
(text, image) data. This mirrors recent work which reported
positive results using the same contrastive pre-training ob-
jective on the relatively different domain of medical imaging
(Zhang et al., 2020). It also is similar to the findings of noisy
student self-training which reported only slight improve-
ments when using their JFT300M dataset over YFCC100M
(Xie et al., 2020). We suspect the major advantage of our
dataset over the already existing YFCC100M is its much
larger size.

Finally, we caution that WIT includes this filtered subset
of YFCC100M. This could result in our ablation under-
estimating the size of performance differences between
YFCCI100M and the rest of WIT. We do not think this is
likely as YFCC100M is only 3.7% of the overall WIT data
blend and it did not noticeably change the performance of
models when it was added to the existing data blend during
the creation of WIT.

Linear Classifier Zero Shot
Dataset YFCC  WIT A | YECC ~ WIT A
Birdsnap 47.4 353 4121 19.9 45  +154
Country211 23.1 17.3 +5.8 52 53 0.1
Flowers102 94.4 89.8 +4.6 486  21.7 4269
GTSRB 66.8 72.5 —5.7 6.9 7.0 —0.1
UCF101 69.2 749 —5.7 229 32.0 —9.1
Stanford Cars 314 503 —189 3.8 10.9 —-7.1
ImageNet 62.0 60.8 +1.2 313 27.6 +3.7
Dataset Average 65.5 66.6 —1.1 29.6  30.0 —0.4
Dataset “Wins” 10 15 =5 19 18 +1

Table 12. CLIP performs similarly when trained on only
YFCC100M. Comparing a ResNet-50 trained on only
YFCC100M with a same sized subset of WIT shows simi-
lar average performance and number of wins on zero shot and
linear classifier evals. However, large differences in dataset
specific performance occur. We include performance on the 3
datasets where YFCC does best and worst compared to WIT
according to a linear probe in order to highlight this as well as
aggregate performance across all linear and zero-shot evals and
the canonical ImageNet dataset.

H. Selected Task and Dataset Results

Due to the large variety of datasets and experiments consid-
ered in this work, the main body focuses on summarizing
and analyzing overall results. In the following subsections
we report details of performance for specific groups of tasks,
datasets, and evaluation settings.

H.1. Image and Text Retrieval

CLIP pre-trains for the task of image-text retrieval on our
noisy web-scale dataset. Although the focus of this paper
is on representation learning and task learning for the pur-
pose of transfer to a wide variety of downstream datasets,
validating that CLIP is able to achieve high transfer perfor-
mance transfer on exactly what it is pre-trained for is an
important sanity check / proof of concept. In Table 13 we
check the zero-shot transfer performance of CLIP for both
text and image retrieval on the Flickr30k and MSCOCO
datsets. Zero-shot CLIP matches or outperforms all prior
zero-shot results on these two datasets. Zero-shot CLIP is
also competitive with the current overall SOTA for the task
of text retrieval on Flickr30k. On image retrieval, CLIP’s
performance relative to the overall state of the art is notice-
ably lower. However, zero-shot CLIP is still competitive
with a fine-tuned Unicoder-VL. On the larger MS-COCO
dataset fine-tuning improves performance significantly and
zero-shot CLIP is not competitive with the most recent work.
For both these datasets we prepend the prompt “a photo
of” to the description of each image which we found boosts
CLIP’s zero-shot R@1 performance between 1 and 2 points.



Learning Transferable Visual Models From Natural Language Supervision

Text Retrieval

Image Retrieval

Flickr30k MSCOCO Flickr30k MSCOCO
R@l R@5 R@I0 R@! R@5 R@I0 R@!I R@5 R@10 R@1 R@5 R@I0
, Unicoder-VL* 862 963 990 623 871 928 715 909 949 467 760 853
£ Uniter” 873 980 992 657 886 938 756 941 968 529 799  88.0
T VILLA® 879 975 988 - - - 763 942 968 - - -
£ Osear’ - - - 735 922 %0 - - - 515 828 898
ERNIE-ViL® 887 98.0  99.2 - - R 767 936  96.4 - - -
~ VisualN-Grams’ 154 357 451 87 231 333 88 212 299 50 145 219
2 ImageBERTY - - - 440 712 804 - - - 323 590 702
T Unicoder-VL® 643 868 923 - - - 484 760  85.2 - - -
3 Uniter” 836 957 977 - - - 68.7 892 939 - - -
CLIP 88.0 987 994 584 815 881 687 906 952 378 624 722

Table 13. CLIP improves zero-shot retrieval and is competitive with the best fine-tuned result on Flickr30k text retrieval. Bold
indicates best overall performance while an underline indicates best in category performance (zero-shot or fine-tuned). For all other
models, best results from the paper are reported regardless of model size / variant. MSCOCO performance is reported on the 5k test set.
“(Li et al., 2020a) ®(Chen et al., 2019) “(Gan et al., 2020) *(Li et al., 2020b) (Yu et al., 2020)  (Li et al., 2017) 9(Qi et al., 2020)

HITSK Hateful

MNIST SVHN 1k Memes SST-2
2 SOTA 99.8° 96.4° 98.9° 78.0° 97.5°
£ JOINT/ . - 89.6 . -

£ CBoW? - - - - 800
5 Raw Pixels 92.5 - - - -
£ ESBest 98.9" - - 58.6"  59.0°
~  CLIP 99.2 - - 773  80.5
Q& cLwp 884 510 900 633 679

Table 14. OCR performance on 5 datasets. All metrics are accuracy
on the test set except for Hateful Memes which reports ROC AUC
on the dev set. Single model SOTA reported to best of knowledge.
ES Best reports the best performance across the 56 non-CLIP
models in our evaluation suite. “(Assiri, 2020) b(Jaderberg et al.,
2015) (Wang et al., 2020) ¢(Lippe et al., 2020) / (Jaderberg et al.,
2014) 9(Wang et al., 2018) "(Xie et al., 2020) ‘(Mahajan et al.,
2018)

H.2. Optical Character Recognition

Although visualizations have shown that ImageNet models
contain features that respond to the presence of text in an
image (Zeiler & Fergus, 2014), these representations are
not sufficiently fine-grained to use for the task of optical
character recognition (OCR). To compensate, models are
augmented with the outputs of custom OCR engines and
features to boost performance on tasks where this capability
is required (Singh et al., 2019; Yang et al., 2020). Early dur-
ing the development of CLIP, we noticed that CLIP began to
learn primitive OCR capabilities which appeared to steadily
improve over the course of the project. To evaluate this qual-
itatively noticed behavior, we measured performance on 5
datasets requiring the direct and indirect use of OCR. Three

of these datasets MNIST (LeCun), SVHN (Netzer et al.,
2011), and HIT5K (Mishra et al., 2012) directly check the
ability of a model to perform low-level character and word
recognition, while Hateful Memes (Kiela et al., 2020) and
SST-2 (Socher et al., 2013b) check the ability of a model to
use OCR to perform a semantic task. Results are reported
in Table 14.

CLIP’s performance is still highly variable and appears to
be sensitive to some combination of the domain (rendered or
natural images) and the type of text to be recognized (num-
bers or words). CLIP’s OCR performance is strongest Hate-
ful Memes and SST-2 - datasets where the text is digitally
rendered and consists mostly of words. On IIIT5K, which
is natural images of individually cropped words, zero-shot
CLIP performs a bit more respectively and its performance
is similar to Jaderberg et al. (2014) early work combining
deep learning and structured prediction to perform open-
vocabulary OCR. However, performance is noticeably lower
on two datasets involving recognition of hand written and
street view numbers. CLIP’s 51% accuracy on full number
SVHN is well below any published results. Inspection sug-
gests CLIP struggles with repeated characters as well as the
low resolution and blurry images of SVHN. CLIP’s zero-
shot MNIST performance is also poor and is outperformed
by supervised logistic regression on raw pixels, one of the
simplest possible machine learning baselines.

SST-2 is a sentence level NLP dataset which we render into
images. We include SST-2 in order to check whether CLIP
is able to convert low level OCR capability into a higher
level representation. Fitting a linear classifier on CLIP’s rep-
resentation of rendered sentences achives 80.5% accuracy.
This is on par with the 80% accuracy of a continuous bag
of words baseline using GloVe word vectors pre-trained on
840 billion tokens (Pennington et al., 2014). While this is a
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simple NLP baseline by today’s standard, and well below
the 97.5% of the current SOTA, it is encouraging to see
that CLIP is able to turn an image of rendered text into a
non-trivial sentence level representation. Fully supervised
CLIP is also surprisingly strong on Hateful Meme detec-
tion, where CLIP is only 0.7 points behind the current single
model SOTA and several points above the best baseline from
the original paper. Similar to SST-2, these other results on
Hateful Memes use the ground truth text which CLIP does
not have access to. Finally, we note that zero-shot CLIP
outperforms the best results using fully supervised linear
probes across all other 56 models included in our evaluation
suite. This suggests CLIP’s OCR capability is at least some-
what unique compared to existing work on self-supervised
and supervised representation learning.

UCF101 K700 RareAct
Top-1 AVG mWAP mWSAP
o R(Q+1)D-BERT* 987 - - -
2 NS ENet-L2° - 84.8 - -
‘E HT100M S3D¢ 91.3 - - -
Baseline I3D° - 70.2 - -
5 MMV FAC/ 91.8 - - -
& NS ENet-L.2¢ 89.4°  68.2° - .
—  CLIP 92.0 73.0 - -
vy HT100M S3D¢ - - 30.5 34.8
N cLIp 80.3 69.6 407 448

Table 15. Action recognition performance on 3 video datasets. Sin-
gle model SOTA reported to best of knowledge. Note that linear
CLIP and linear NS ENet-L2 are trained and evaluated on a single
frame subsampled version of each dataset and not directly compa-
rable to prior work. On Kinetics-700, we report the ActivityNet
competition metric which is the average of top-1 and top-5 per-
formance. *(Kalfaoglu et al., 2020) ®(Lu et al., 2020) *(Xie et al.,
2020) (Miech et al., 2020b) ®(Carreira et al., 2019) ¥ (Alayrac
et al., 2020)

H.3. Action Recognition in Videos

For the purpose of learning, a potentially important aspect
of natural language is its ability to express, and therefore su-
pervise, an extremely wide set of concepts. A CLIP model,
since it is trained to pair semi-arbitrary text with images, is
likely to receive supervision for a wide range of visual con-
cepts involving both common and proper nouns, verbs, and
adjectives. ImageNet-1K, by contrast, only labels common
nouns. Does the lack of broader supervision in ImageNet
result in weaker transfer of ImageNet models to tasks involv-
ing the recognition of visual concepts that are not nouns?

To investigate this, we measure and compare the perfor-
mance of CLIP and ImageNet models on several video
action classification datasets which measure the ability of a
model to recognize verbs. In Table 15 we report results on

UCEF-101 (Soomro et al., 2012) and Kinetics-700 (Carreira
et al., 2019), two common datasets for the task. Unfortu-
nately, our CPU based linear classifier takes a prohibitively
long time to evaluate on a video dataset due to the very large
number of training frames. To deal with this, we aggres-
sively sub-sample each video to only a single center frame,
effectively turning it into an image classification dataset.
As a result, our reported performance in a linear evaluation
setting likely under estimates performance by a moderate
amount.

Despite this handicap, CLIP features transfer surprisingly
well to this task. CLIP matches the best prior result on UCF-
101 in a linear probe evaluation setting and also outperforms
all other models in our evaluation suite. On Kinetics-700,
CLIP also outperforms the fine-tuned 13D baseline from the
original paper. Since it does not require a training stage,
we report CLIP’s zero-shot performance when averaging
predictions across all frames. CLIP also performs well in
this setting and on Kinetics-700 its performance is within
1% of the fully supervised I3D baseline which is trained
on 545000 labeled videos. Encouraged by these results, we
also measure CLIP’s performance on the recently introduced
RareAct dataset (Miech et al., 2020a) which was designed
to measure zero-shot recognition of unusual actions like
“hammering a phone” and “drilling an egg”. CLIP improves
over the prior state of the art, a S3D model trained on auto-
matically extracted captions from 100 million instructional
videos, by 10 points.

While CLIP has encouragingly strong performance on the
task of action recognition, we note that there are many differ-
ences between the models being compared beyond just their
form of supervision such as model architecture, training
data distribution, dataset size, and compute used. Further
work is needed to more precisely determine what specific
design decisions contribute to achieving high performance
on this task.

H.4. Geolocalization

Another behavior we noticed during the development of
CLIP was its ability to recognize many places and locations.
To quantify this we created the Country211 dataset as de-
scribed in Appendix A and report results on it throughout
the paper. However it is a new benchmark so to compare
with prior work on geolocalization we also report results
on the IM2GPS test set from Hays & Efros (2008) in Table
17. Since IM2GPS is a regression benchmark, we guess the
GPS coordinates of the nearest image in a set of reference
images using CLIP’s embedding space. This is not a zero-
shot result since it uses nearest-neighbor regression. Despite
querying only 1 million images, which is much less than
prior work, CLIP performs similarly to several task specific
models. It is not, however, competitive with the current state
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IN IN-V2 IN-A IN-R  ObjectNet IN-Sketch IN-Vid YTBB
Top-1 Top-1 Top-1 Top-1 Top-1 Top-1 PMO PMI0 PMO PMIO
NS EfficientNet-L2% 88.3 80.2 84.9 74.7 68.5 47.6 88.0 82.1 67.7 63.5
FixResNeXt101-32x48d V2°  86.4 78.0 68.4 80.0 57.8 59.1 85.8 722 689 57.7
Linear Probe CLIP 85.4 75.9 75.3 84.2 66.2 57.4 89.1 712  68.7 63.1
Zero-Shot CLIP 76.2 70.1 77.2 88.9 72.3 60.2 95.3 892 952 885

Table 16. Detailed ImageNet robustness performance. IN is used to abbreviate for ImageNet. “(Xie et al., 2020) ®(Touvron et al., 2019)

lkm 25km 200km 750km  2500km

ISNs® 16.9  43.0 51.9 66.7 80.2
CPlaNet® 16,5 37.1 46.4 62.0 78.5
CLIP 139 329 43.0 62.0 79.3
Deep-Ret+¢ 144 333 47.7 61.6 73.4
PlaNet? 8.4 24.5 37.6 53.6 71.3

Table 17. Geolocalization performance on the IM2GPS test set.
Metric is percent of images localized within a given radius. Models
are ordered by average performance. “(Muller-Budack et al., 2018)
®(Hongsuck Seo et al., 2018) (Vo et al., 2017) (Weyand et al.,
2016)

of the art.

H.5. Robustness to Distribution Shift

Section 3.4 provides a high level summary and analysis of
ImageNet-related robustness results. We briefly provide
some additional numerical details in this appendix. Per-
formance results per dataset are provided in Table 16 and
compared with the current state of the art results reported
in Taori et al. (2020)’s evaluation suite. Zero-shot CLIP im-
proves the state of the art on 5 of the 7 datasets, ImageNet-R,
ObjectNet, ImageNet-Sketch, ImageNet-Vid, and Youtube-
BB. CLIP’s improvements are largest on ImageNet-Vid and
Youtube-BB due to its flexible zero-shot capability and on
ImageNet-R, which likely reflects CLIP’s pre-training dis-
tribution including significant amounts of creative content.
A similar behavior has been documented for the Instagram
pre-trained ResNeXt models as discussed in Taori et al.
(2020).
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I. Model Hyperparameters

Hyperparameter Value

Batch size 32768
Vocabulary size 49408

Training epochs 32

Maximum temperature 100.0

Weight decay 0.2

Warm-up iterations 2000

Adam [ 0.9

Adam S 0.999 (ResNet), 0.98 (ViT)
Adam € 10~8 (ResNet), 1076 (ViT)

Table 18. Common CLIP hyperparameters

Learning Embedding Input ResNet Text Transformer

Model rate dimension  resolution blocks width layers width heads

RN50 5x 1074 1024 224 (3,4,6,3) 2048 12 512 8

RN101 5x 1071 512 224 (3,4,23,3) 2048 12 512 8

RN50x4 5x107* 640 288 (4,6, 10, 6) 2560 12 640 10

RN50x16 | 4 x 107* 768 384 (6, 8,18, 8) 3072 12 768 12

RN50x64 | 3.6 x 107* 1024 448 (3,15,36,10) 4096 12 1024 16

Table 19. CLIP-ResNet hyperparameters
Learning  Embedding Input Vision Transformer Text Transformer

Model rate dimension  resolution layers width heads layers width heads
ViT-B/32 5x 107" 512 224 12 768 12 12 512 8
ViT-B/16 5x 1071 512 224 12 768 12 12 512 8
ViT-L/14 4x107* 768 224 24 1024 16 12 768 12
ViT-L/14-336px | 2 x 107° 768 336 24 1024 16 12 768 12

Table 20. CLIP-ViT hyperparameters



