
A General Framework For Detecting Anomalous Inputs to DNN Classifiers

Appendix

Algorithm 2 Meta-algorithm for Anomaly Detection

Inputs: Trained DNN F(·), Dataset D, Test input x,
FPR α or detection threshold τ .
Output: Detector decision – normal 0 or anomaly 1.

Preprocessing:
Calculate the detection threshold τ (if not specified).
Class prediction of x: ĉ = argmaxc∈[m] Fc(x).
Layer representations of x: x(`) = f`(x), ∀` ∈ L.
Data subsets: D̂a(`, ĉ) and Da(`, c), ∀ ` ∈ L, c ∈ [m].
I. Test statistics:

for each layer ` ∈ L:
Calculate t(`)p | ĉ = T (x(`), ĉ, D̂a(`, ĉ)).

Calculate t(`)s | c = T (x(`), c,Da(`, c)), ∀c ∈ [m].

Compile the vectors: tp | ĉ, ts | 1, · · · , ts |m.
II. Normalizing transformations:

if multivariate normalization:
Calculate q(tp | ĉ), q(ts | 1), · · · , q(ts |m).

else
for each layer ` ∈ L:

Calculate q(t(`)p | ĉ), q(t
(`)

s | 1), · · · , q(t
(`)

s |m).

for each layer pair (`1, `2) ∈ L2: [optional]
Calculate q(t(`1)p | ĉ , t

(`2)

p | ĉ).

Calculate q(t(`1)s | 1 , t
(`2)

s | 1), · · · , q(t
(`1)

s |m, t
(`2)

s |m).

III. Layerwise aggregation and scoring:
if multivariate normalization:

Set qagg(tp | ĉ) = q(tp | ĉ).
Set qagg(ts | c) = q(ts | c), ∀c ∈ [m].

else
Create the sets Qp | ĉ and Qs | c, ∀c ∈ [m].
Calculate qagg(tp | ĉ) = r(Qp | ĉ) .
Calculate qagg(ts | c) = r(Qs | c), ∀c ∈ [m].

Calculate the final score:
S(qagg(tp | ĉ), qagg(ts | 1), · · · , qagg(ts |m), ĉ) .

IV. Detection decision:
if S(qagg(tp | ĉ), qagg(ts | 1), · · · , qagg(ts |m), ĉ) ≥ τ :

Return anomaly (1).
else

Return normal (0).

The appendices are organized as follows.

• Appendix A provides a background on adversarial attacks
and defenses, and discusses prior works in more detail.

• Appendix B describes the harmonic mean p-value (HMP)
method for aggregating p-values.

• Appendix C discusses details of the adaptive attack
method that were left out of § 5.

• Appendix D discusses the implementation details such
as computing platform, datasets, DNN architectures, ex-
perimental setup, and the method implementation details,
hyperparameters etc.

• Appendix E discusses additional experiments that we per-
formed including ablation studies, performance on attack

transfer and attacks of varying strength, and a comparison
of running times.

A. Background and Related Works
We provide a background on adversarial attacks and defense
methods, followed by a detailed discussion of related works.

A.1. Adversarial Attacks

Adversarial attacks may be broadly classified into training-
time or data poisoning attacks, and test-time or evasion
attacks (Biggio & Roli, 2018). Data poisoning attacks focus
on tampering with the training set of a learning algorithm by
introducing malicious input patterns that steer the learning
algorithm to a sub-optimal solution, causing degradation in
performance (Biggio et al., 2012; Muñoz-González et al.,
2017; Steinhardt et al., 2017). Evasion attacks focus on
tampering with test inputs to an already-trained ML model
such that the model predicts incorrectly on them. In both
cases, an adversary aims to modify the inputs in such a way
that the changes are not easily perceived by a human or
flagged by a detector. For example, a test image of the digit
1 may be modified by introducing minimal perturbations
to the pixels such that a classifier is fooled into classifying
it as the digit 7, while the image still looks like the digit 1
to a human. In this work, we focus on detecting test-time
evasion attacks.

Given a test input x ∈ X from class c, adversarial attack
methods aim to create a minimally-perturbed input x′ =
x + δ that is mis-classified by the classifier either into a
specific class (targeted attack) or into any class other than c
(untargeted attack). This is formulated as an optimization
problem, which in its most general form looks like

min
δ
‖δ‖p s.t.

x + δ ∈ X

Ĉ(x + δ) = c′ (targeted)

or Ĉ(x + δ) 6= c (untargeted)

A number of adversarial attack methods have been proposed
based on this general formulation (Szegedy et al., 2014;
Goodfellow et al., 2015; Madry et al., 2018; Carlini & Wag-
ner, 2017b; Moosavi-Dezfooli et al., 2016; Papernot et al.,
2016; Kurakin et al., 2017; Moosavi-Dezfooli et al., 2017).
Some of the well-known methods for generating adversarial
data include the fast gradient sign method (FGSM) (Good-
fellow et al., 2015), projected gradient descent (PGD) at-
tack (Madry et al., 2018), Carlini-Wagner attack (Carlini &
Wagner, 2017b), and DeepFool attack (Moosavi-Dezfooli
et al., 2016). These attack methods can be categorized into
white-box or black-box depending on the extent of their
knowledge about the classifier’s structure, parameters, loss
function, and learning algorithm. Most of the commonly

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

Table 1: Notations and Definitions

Term Description

[m] := {1, · · · ,m} Set of classes.
L = {0, · · · , L}, L2 = {(`1, `2) ∈ L × L : `2 > `1} Set of layers and distinct layer pairs.
‖ · ‖p `p norm of a vector.
d(x,y) Distance between a pair of vectors; cosine distance unless specified otherwise.
1[·] Indicator function mapping an input condition to 1 if true and 0 if false.

hσ(x,y) = e−
1
σ2

d(x,y)2 Gaussian or RBF kernel.
F(x) = [F1(x), · · · , Fm(x)], F : X 7→ ∆m Input-output mapping learned by the DNN classifier.
∆m = {(p1, · · · , pm) ∈ [0, 1]m :

∑
i pi = 1} Space of output probabilities for the m classes.

Ĉ(x) = arg maxc∈[m] Fc(x) Class prediction of the DNN.
x(`) := f`(x) ∈ Rd` , ` = 0, 1, · · · , L Flattened layer representations of the DNN (` = 0 refers to the input).
C and Ĉ Random variables corresponding to the true class and DNN-predicted class.
Da = {(x(0)

n , · · · ,x(L)
n , cn, ĉn), n = 1, · · · , N} Labeled dataset with the layer representations, true class, and predicted class.

D̂a(`, ĉ) Subset of Da corresponding to layer ` and predicted class ĉ.
Da(`, c) Subset of Da corresponding to layer ` and true class c.
T (x(`), ĉ, D̂a(`, ĉ)) = T

(`)
p | ĉ Test statistic from layer ` conditioned on the predicted class ĉ.

T (x(`), c,Da(`, c)) = T
(`)
s | c, c ∈ [m] Test statistic from layer ` conditioned on a candidate true class c.

tp | ĉ = [t
(0)
p | ĉ, · · · , t

(L)
p | ĉ] Vector of test statistics from the layers conditioned on the predicted class ĉ.

ts | c = [t
(0)
s | c, · · · , t

(L)
s | c], c ∈ [m] Vector of test statistics from the layers conditioned on a candidate true class c.

qagg(tp | ĉ), qagg(ts | 1), · · · , qagg(ts |m) Aggregate normalized test statistic from the predicted class and candidate true classes.

(k
(`)
1 , · · · , k(`)m) ∈ {0, 1, · · · , k}m s.t.

∑
i k

(`)
i = k Class counts from the k-nearest neighbors of a representation vector from layer `.

N
(`)
k (x(`)) ⊂ {1, · · · , N} Index set of the k-nearest neighbors of a layer representation x(`) relative to Da.

used test-time attacks on DNN classifiers are strongly white-
box in that they assume a complete knowledge of the system.
For a detailed discussion and taxonomy of adversarial attack
methods, we refer readers to the recent surveys (Akhtar &
Mian, 2018; Yuan et al., 2019).

A.2. Adversarial Defenses

On the defense side of adversarial learning, the focus can
be broadly categorized into (1) adversarial training - where
the objective is to train robust classifiers that generalize well
in the face of adversarial attacks (Madry et al., 2018; Fawzi
et al., 2016; 2018; Goodfellow et al., 2015), (2) adversar-
ial detection - where the objective is to detect inputs that
are adversarially manipulated by identifying signatures or
patterns that make them different from natural inputs seen
by the classifier at training time (Feinman et al., 2017; Xu
et al., 2018; Lee et al., 2018; Ma et al., 2018). One approach
to adversarial training involves augmenting the training set
of the classifier with adversarial samples created from one
or multiple attack methods along with their true labels, and
retraining the classifier on the augmented training set (possi-
bly initialized with parameters from a prior non-adversarial
training) (Goodfellow et al., 2015). A limitation of this ap-
proach is that the resulting classifier may still fail on attacks
that were not seen by the classifier during training. This
has lead to research in the direction of robust optimization,
where the learning objective of the classifier (usually an

empirical risk function) is modified into a min-max opti-
mization problem, with the inner maximization performed
on a suitably chosen perturbation set (e.g., an `∞ norm
ball) (Madry et al., 2018). Adversarial detection, on the
other hand, does not usually involve special training or mod-
ification of the underlying classifier to predict accurately
on adversarial inputs. Instead, the focus is on methods that
can detect adversarial inputs while operating at low false
positive (natural inputs detected as adversarial) rates using
ideas from the anomaly detection literature. The detector
flags inputs that are suspicious and likely to be misclassified
by the classifier so that they may be analyzed by an expert
(possibly another ML system) for decision making down
the line. There have been a plethora of works on the defense
side adversarial learning. Recent surveys on this topic can
be found in (Biggio & Roli, 2018; Miller et al., 2020).

A.3. Adversarial Samples as Anomalies

Adversarial detection is closely related to the problem of
anomaly or outlier detection (Chandola et al., 2009; Zhao
& Saligrama, 2009) with some important distinctions. The
objective of anomaly detection is to determine if an input
follows a pattern that is significantly different from that
observed on a given data set. Stated differently, an input
is said to be anomalous if it has a very low probability
under the reference marginal distribution p0(x) underly-
ing a given data set. On the other hand, adversarial in-

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

Intermediate
layers

c

c

c

Logits

Class prediction

(argmax)

Class-conditional
Test statistics

Class-conditional
Test statistics

Class-conditional
Test statistics

Corrected class prediction

Anomalous
input

Class-conditional p-value
estimates

Scoring function

Natural
input

Figure 5: Overview of the proposed detection framework. The DNN classifies a test input x into one of the m classes. JTLA uses the
predicted class and the layer representations to calculate m+ 1 class-conditional test statistics at each layer. The test statistics from the
layers are aggregated into normalized p-value estimates, which are then used by the scoring function to determine whether the input is
natural or anomalous.

puts from a test-time attack are not necessarily anomalous
with respect to the marginal data distribution because of
the way they are created by minimally perturbing a valid
input x ∼ p0(· | c) from a given class c. It is useful to
consider the following notion of adversarial inputs. Sup-
pose a clean input x from class c (i.e., x ∼ p0(· | c)) is
perturbed to create an adversarial input x′ that appears to
be from the same class c according to the true (Bayes) class
posterior distribution, i.e., c = arg maxk p0(k |x′). How-
ever, it is predicted into a different class c′ by the clas-
sifier, i.e., Ĉ(x′) = arg maxk Fk(x′) = c′. From this
standpoint, we hypothesize that an adversarial input x′ is
likely to be a typical sample from the conditional distri-
bution p0(· | c) of the true class, while it is also likely to
be an anomalous sample from the conditional distribution
p0(· | c′) of the predicted class. We note that (Miller et al.,
2019) use a similar hypothesis to motivate their detection
method.

A.4. Related Works

We categorize and review some closely-related prior works
on adversarial and OOD detection. For works that are based
on multiple layer representations of a DNN, we discuss
how the methods fit into the proposed meta-algorithm for
anomaly detection.

Supervised Methods

In (Lee et al., 2018), the layer representations of a DNN
are modeled class-conditionally using multivariate Gaussian

densities, which leads to the Mahalanobis distance confi-
dence score being used as a test statistic (feature) at the lay-
ers. The feature vector of Mahalanobis distances from the
layers is used to train a binary logistic classifier for discrim-
inating adversarial (or OOD samples) from natural samples.
While this method uses the class-conditional densities of
the layer representations, it uses a rather simple parametric
model based on multivariate Gaussians, which may not be
suitable for the intermediate layer representations (issues
include high dimensionality, non-negative activations, and
multimodality). Also, this method does not use the pre-
dicted class of the DNN; instead it finds the “closest” class
corresponding to each layer representation. In the context
of the meta-algorithm, this method does not explicitly apply
a normalizing transformation to the test statistics. However,
the Mahalanobis distance can be interpreted as the negative-
log-density, which follows the Chi-squared distribution (at
each layer) under the Gaussian density assumption. Finally,
we note that using a binary logistic classifier is equivalent
to using a weighted linear combination of the test statistics
for scoring as shown in Appendix A.5.

(Ma et al., 2018) propose using the local intrinsic dimension-
ality (LID) of the layer representations as a test statistic for
characterizing adversarial samples. Similar to the approach
of (Lee et al., 2018), they calculate a test statistic vector
of LID estimates from the layer representations, which is
used for training a logistic classifier for discriminating ad-
versarial samples from natural samples. In the context of
the meta-algorithm, this method does not calculate class-

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

conditional test statistics. The LID is estimated based on the
marginal distribution of the layer representation manifold.
The LID test statistics are not normalized in any way, and
use of the logistic classifier implies that this method also
uses a weighted linear combination of the test statistics for
scoring.

In (Yang et al., 2020), feature attribution methods are used
to characterize the input and intermediate layer represen-
tations of a DNN. They find that adversarial inputs drasti-
cally alter the feature attribution map compared to natural
inputs. Statistical dispersion measures such as the inter-
quartile range (IQR) and median absolute deviation (MAD)
are used to quantify the dispersion in the distribution of attri-
bution values, which are then used as test statistics (features)
to train a logistic classifier for discriminating adversarial
samples from natural samples. In the context of the meta-
algorithm, this method does not calculate class-conditional
test statistics. The test statistics based on IQR or MAD are
not normalized in any way. Similar to (Lee et al., 2018)
and (Ma et al., 2018), this method uses a weighted linear
combination of the test statistics for scoring.

Unsupervised Methods

(Roth et al., 2019) show that the log-odds ratio of inputs to
a classifier (not necessarily a DNN) can reveal some inter-
esting properties of adversarial inputs. They propose test
statistics based on the expected log-odds of noise-perturbed
inputs from different source and predicted class pairs. These
test statistics are z-score normalized and thresholded to de-
tect adversarial inputs. Their method does not use multiple
layer representations for detection. They also propose a
reclassification method for correcting the classifier’s pre-
diction on adversarial inputs. This is based on training
logistic classifiers (one for each predicted class) that use the
expected noise-perturbed log-odds ratio as features.

In (Zheng & Hong, 2018), the class-conditional distributions
of fully-connected intermediate layer representations are
modeled using Gaussian mixture models 12. Inputs with a
likelihood lower than a (class-specific) threshold under each
class-conditional mixture model are rejected as adversarial.
A key limitation of this method is that it is challenging to
accurately model the high-dimensional layer representations
of a DNN using density models such as Gaussian mixtures.

In (Miller et al., 2019), an anomaly detection method fo-
cusing on adversarial attacks is proposed, which in its basic
form can be described as follows. The class-conditional den-
sity of the layer representations of a DNN are modeled using
Gaussian mixture models, and they are used to estimate a
Bayes class posterior at each layer. The Kullback-Leibler
divergence between the class posterior of the DNN (based
on the softmax function) and the estimated Bayes class pos-

12Convolutional layers are not modeled in their approach.

terior from each layer are used as test statistics for detecting
adversarial samples. A number of methods are proposed
for combining these class-conditional test statistics from the
layers (e.g., maximum and weighted sum across the layers).
Their method does not apply any explicit normalization of
the test statistics from the layers.

(Sastry & Oore, 2020) propose a method for detecting OOD
samples based on analyzing the Gram matrices of the layer
representations of a DNN. The Gram matrices of different
orders (order 1 corresponds to the standard definition) cap-
ture the pairwise correlations between the elements of a
layer representation. At training time, their detector records
the element-wise minimum and maximum values of the
Gram matrices (of different orders) from a training set of
natural inputs, conditioned on each predicted class. The
extent of deviation from the minimum and maximum values
observed at training time is used to calculate a class-specific
deviation test statistic at each layer. The final score for OOD
detection is obtained by adding up the normalized deviations
from the layers, where the normalization factor for a layer
is the expected deviation observed on a held-out validation
dataset. We note that the deviation statistic based on Gram
matrices from the layer activations proposed in (Sastry &
Oore, 2020) can be used as a test statistic for JTLA as well.

Confidence Metrics for Classifiers

Works such as the trust score (Jiang et al., 2018) and deep
KNN (Papernot & McDaniel, 2018) have explored the prob-
lem of developing a confidence metric that can be used to
independently validate the predictions of a classifier. Inputs
with a low confidence score are expected to be misclassified
and can be flagged as potentially adversarial or OOD. Deep
KNN (Papernot & McDaniel, 2018) uses the class labels
of the k-nearest neighbors of DNN layer representations
to calculate a non-conformity score corresponding to each
class. Large values of non-conformity corresponding to the
predicted class indicate that an input may not have a reliable
prediction. The method calculates empirical p-values of the
non-conformity scores to provide a confidence score, credi-
bility score, and an alternate (corrected) class prediction for
test inputs. We note that the deep KNN test statistic based
on the kNN class counts from the predicted class k(`)ĉ and its
complement k − k(`)ĉ can be considered as a binomial spe-
cialization of the multinomial test statistic (§ 4.1). The trust
score (Jiang et al., 2018) estimates the α-high density (level)
set for each class, and calculates the distances from a test
point to the α-high density sets from the classes to define a
confidence metric. These methods can also be categorized
as unsupervised.

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

A.5. Scoring with a Logistic classifier

Consider a binary logistic classifier that takes a vector of
test statistics t as input and produces an output probability
for class 1 given by

P (Y = 1 | t) =
1

1 + exp(−wT t − b)
,

where w and b are weight vector and bias parameters. A
detection decision of 1 (anomaly) is made when the output
probability exceeds a threshold τ . It is easy to see that this
results in the following decision rule:

ψ(x(0), · · · ,x(L), ĉ) =

{
1 if wT t ≥ log τ

1−τ − b

0 otherwise

In other words, the score function is a weighted linear com-
bination of the test statistics from the layers.

B. Harmonic Mean p-value Method
The harmonic mean p-value (HMP) (Wilson, 2019) is a
recently proposed method for combining p-values from a
large number of dependent tests. It is rooted in ideas from
Bayesian model averaging and has some desirable properties
such as robustness to positive dependency between the p-
values, and an ability to detect small statistically-significant
groups from a large number of p-values (tests). The main
result of (Wilson, 2019) can be summarized as follows.
Given a set of p-values p1, · · · , pm from m hypothesis
tests, the weighted harmonic p-value of any subset R ⊂
{1, · · · ,m} of the p-values is given by

p−1agg =

∑
i∈R

wip
−1
i∑

i∈R
wi

,

where the weights wi are non-negative and satisfy∑m
i=1 wi = 1. In our problem, we apply the HMP method

with the weights all set to the same value, resulting in the
p-value aggregation function r(·) defined in Eq. (11).

In our experiments, we found the HMP method to have
comparable or slightly worse performance than Fisher’s
method of combining p-values. Results from these ablation
experiments can be found in Appendix E.2.

C. Details and Extensions of the Adaptive
Attack

We first discuss the method we used for setting the scale of
the Gaussian kernel per layer in the adaptive attack method
of § 5. We then discuss an untargeted variant of the proposed
adaptive attack, followed by an alternate formulation for the
attack objective function.

C.1. Setting the Kernel Scale

For a given clean input x, the scale of the Gaussian kernel for
each layer σ` determines the effective number of samples
that contribute to the soft count that approximates the kNN
counts in Eq. (14). Intuitively, we would like the kernel
to have a value close to 1 for points within a distance of
η` (the kNN radius centered on f`(x)), and decay rapidly
to 0 for points further away. Let Nk(f`(x)) denote the
index set of the k-nearest neighbors of f`(x) from the `-th
layer representations of the dataset Da. The probability of
selecting the k-nearest neighbors from the set of N samples
in Da can be expressed as

s1(σ`) =

∑
n∈Nk(f`(x))

hσ`(f`(x), f`(xn))

N∑
n=1

hσ`(f`(x), f`(xn))

.

We could choose σ` to maximize this probability and push
it close to 1. However, this is likely to result in a very small
value for σ`, which would concentrate all the probability
mass on the nearest neighbor. To ensure that the probability
mass is distributed sufficiently uniformly over the k-nearest
neighbors we add the following normalized entropy 13 term
as a regularizer

s2(σ`) = − 1

log k

∑
i∈Nk(f`(x))

pi(σ`) log pi(σ`),

where

pi(σ`) =
hσ`(f`(x), f`(xi))∑

j ∈Nk(f`(x))

hσ`(f`(x), f`(xj))
.

Both terms s1(σ`) and s2(σ`) are bounded to the inter-
val [0, 1]. We find a suitable σ` by maximizing a convex
combination of the two terms, i.e.,

max
σ`∈R+

(1− α) s1(σ`) + α s2(σ`). (15)

We set α to 0.5 in our experiments, and used a simple line
search to find the approximate maximizer of Eq. (15).

C.2. Untargeted Attack Formulation

The formulation in § 5, where a specific class c′ 6= c is
chosen, is used to create a targeted attack. Alternatively, a
simple modification to Eq. (13) that considers the log-odds
of class c, log pc

1−pc , can be used to create an untargeted
attack, resulting in the following objective function to be
minimized:
13The entropy is divided by the maximum possible value of log k

to scale it to the range [0, 1].

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

J(δ) = ‖δ‖22 + λ log

L∑
`=0

N∑
n=1 :
cn=c

hσ`(f`(x + δ), f`(xn))

− λ log

L∑
`=0

N∑
n=1 :
cn 6=c

hσ`(f`(x + δ), f`(xn)). (16)

C.3. Alternate Attack Loss Function

Starting from equation Eq. (13), but now assuming that the
probability estimate for each class based on the kNN model
factors into a product of probabilities across the layers of
the DNN (i.e., independence assumption), we get

log
pc
pc′

= log
kc
kc′

= log

∏
` k

(`)
c / k∏

` k
(`)
c′ / k

=

L∑
`=0

log k(`)c −
L∑
`=0

log k
(`)
c′ .

Using the soft count approximation based on the Gaussian
kernel (as before) leads to the following alternative loss
function for the targeted adaptive attack

J(δ) = ‖δ‖22 + λ

L∑
`=0

log

N∑
n=1 :
cn=c

hσ`(f`(x + δ), f`(xn))

− λ

L∑
`=0

log

N∑
n=1 :
cn=c

′

hσ`(f`(x + δ), f`(xn)). (17)

In contrast to Eq. (14), this loss function considers the class
probability estimates from each layer, instead of a single
class probability estimate based on the cumulative kNN
counts across the layers. A special case of the loss function
Eq. (17) that includes only the final (logit) layer of the DNN
fL(x) can be directly compared to the Carlini-Wagner attack
formulation (Carlini & Wagner, 2017b). With this formula-
tion, the logit layer representations of an adversarial input
will be guided closer to the neighboring representations
from class c′, and away from the neighboring representa-
tions from class c.

D. Additional Implementation Details
D.1. Computing Platform

Our experiments were performed on a single server running
Ubuntu 18.04 with 128 GB memory, 4 NVIDIA GeForce
RTX 2080 GPUs, and 32 CPU cores.

D.2. Datasets & DNN Architectures

A summary of the image classification datasets we used,
the architecture and test set performance of the correspond-
ing DNNs are given in Table 2. Each dataset has 10 im-
age classes. We followed recommended best practices for

training DNNs on image classification problems (using tech-
niques like Dropout). We did not train a DNN on the Not-
MNIST dataset because this dataset is used only for evalua-
tion in the OOD detection experiments.

D.3. Method Implementations

The code associated with our work can be accessed here
14. We utilized the authors original implementation for
the following methods: (i) deep mahalanobis detector 15,
(ii) the odds are odd detector 16. We implemented the re-
maining detection methods, viz. LID, DKNN, and Trust,
and this is available as part of our released code. All
implementations are in Python3 and are based on stan-
dard scientific computing libraries such as Numpy, Scipy,
and Scikit-learn (Pedregosa et al., 2011). We used
PyTorch as the deep learning and automatic differen-
tiation backend (Paszke et al., 2017). We perform ap-
proximate nearest neighbor search using the NNDescent
method (Dong et al., 2011) to efficiently construct and query
from kNN graphs at the DNN layer representations. We
used the implementation of NNDescent provided by the
library PyNNDescent 17. Our implementation of JTLA
is highly modular, allowing for new test statistics to be eas-
ily plugged in to the existing implementation. We provide
implementations of the following test statistics: (i) multi-
nomial class counts, (ii) binomial class counts, (iii) trust
score, (iv) local intrinsic dimensionality, and (v) average
kNN distance.

In our experiments with JTLA, where Fisher’s method or
HMP method are used for combining the p-values, we in-
cluded p-values estimated from the individual layers (listed
in Tables 3, 4, and 5) and from all distinct layer pairs. The
number of nearest neighbors k is the only hyperparame-
ter of the proposed method. This is set to be a function
of the number of in-distribution training samples n using
the heuristic k =

⌈
n0.4

⌉
. For methods like DKNN, LID,

and Trust that also depend on k, we found that setting
k in this way produces comparable results to that obtained
over a range of k values. Therefore, to maintain consis-
tency, we set k for all the (applicable) methods using the
rule k =

⌈
n0.4

⌉
.

For the method Trust, we applied the trust score to the in-
put, logit (pre-softmax) layer, and the fully-connected layer
prior to the logit (pre-logit) layer. Since it was reported in
(Jiang et al., 2018) that the trust score works well mainly in
low-dimensional settings, we applied the same dimension-

14https://github.com/jayaram-r/
adversarial-detection

15https://github.com/pokaxpoka/deep_
Mahalanobis_detector

16https://github.com/yk/icml19_public
17https://github.com/lmcinnes/pynndescent

https://github.com/jayaram-r/adversarial-detection
https://github.com/jayaram-r/adversarial-detection
https://github.com/jayaram-r/adversarial-detection
https://github.com/pokaxpoka/deep_Mahalanobis_detector
https://github.com/pokaxpoka/deep_Mahalanobis_detector
https://github.com/yk/icml19_public
https://github.com/lmcinnes/pynndescent

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

Table 2: Datasets & DNN Architectures.

Dataset
Input
dimension

Train
size

Test
size

Test
accuracy (%)

DNN
architecture

MNIST (LeCun et al., 1998) 28× 28× 1 50,000 10,000 99.12 2 Conv. + 2 FC layers (LeCun et al., 1998)
SVHN (Netzer et al., 2011) 32× 32× 3 73,257 26,032 89.42 2 Conv. + 3 FC layers
CIFAR-10
(Krizhevsky et al., 2009)

32× 32× 3 50,000 10,000 95.45 ResNet-34 (He et al., 2016)

Not-MNIST (Bulatov, 2011) 28× 28× 1 500,000 18,724 N/A N/A

ality reduction that was applied to JTLA (see Tables 3, 4,
and 5) on the input and pre-logit layer representations. We
found the pre-logit layer to produce the best detection per-
formance in our experiments. Hence, we report results for
Trust with the pre-logit layer in all our experiments. The
constant α, which determines the fraction of samples with
lowest empirical density to be excluded from the density
level sets, is set to 0 in our experiments. We explored a few
other values of α, but did not find a significant difference
in performance. This is consistent with the observation in
Section 5.3 of (Jiang et al., 2018).

The methods Mahalanobis and LID train a logistic clas-
sifier to discriminate adversarial samples from natural sam-
ples. The regularization constant of the logistic classifier is
found by searching (over a set of 10 logarithmically spaced
values between 0.0001 to 10000) for the value that leads to
the largest average test-fold area under the ROC curve, in a
5-fold stratified cross-validation setup.

For the method Odds, the implementation of the authors
returns a binary (0 / 1) detection decision instead of a con-
tinuous score that can be used to rank adversarial samples.
The binary decision is based on applying z-score normaliza-
tion to the original score, and comparing it to the 99.9-th
percentile of the standard Gaussian density. Instead of using
the thresholded decision, we used the z-score-normalized
score of Odds in order to get a continuous score that is
required by the metrics average precision and pAUC-α.

Details on the DNN Layer Representations

The DNN layers used in our experiments and their raw
dimensionality are listed for the three datasets in Tables 3,
4, and 5. An exception to this is the LID method, for
which we follow the implementation of (Ma et al., 2018) and
calculate the LID features from all the intermediate layers.
For DKNN and LID, we did not apply any dimensionality
reduction or pre-processing of the layer representations to be
consistent with the respective papers. For Mahalanobis,
the implementation of the authors performs global average
pooling at each convolutional layer to transform a C×W ×
H tensor (with C channels) to a C-dimensional vector.

For JTLA, we use the neighborhood preserving projection
(NPP) method (He et al., 2005) to perform dimensionality

Table 3: Layer representations of the DNN trained on MNIST. The
output of the block listed in the first column is used as the layer
representation.

Layer block
Layer
index

Original
dimension

Intrinsic
dimension

Projected
dimension

Input 0 784 13 31
Conv-1 + ReLu 1 21632 22 53
Conv-2 + Maxpool + Dropout 2 9216 18 77
FC-1 + ReLu + Dropout 3 128 9 90
FC-2 (Logit) 4 10 6 10

reduction on the layer representations. We chose NPP be-
cause it performs an efficient linear projection that attempts
to preserve the neighborhood structure in the original space
as closely as possible in the projected (lower dimensional)
space. Working with the lower dimensional layer representa-
tions mitigates problems associated with the curse of dimen-
sionality, and significantly reduces the memory utilization
and the running time of JTLA. The original dimension,
intrinsic dimension estimate, and the projected dimension
of the layer representations for the three datasets are listed
in Tables 3, 4, and 5. We did not apply dimension reduction
to the logit layer because it has only 10 dimensions.

Table 4: Layer representations of the DNN trained on SVHN. The
output of the block listed in the first column is used as the layer
representation.

Layer block
Layer
index

Original
dimension

Intrinsic
dimension

Projected
dimension

Input 0 3072 18 43
Conv-1 + ReLu 1 57600 38 380
Conv-2 + ReLu + Maxpool + Dropout 2 12544 42 400
FC-1 + ReLu + Dropout 3 512 12 120
FC-2 + ReLu + Dropout 4 128 7 10
FC-3 (Logit) 5 10 4 10

The procedure we used for determining the projected di-
mension is summarized as follows. We used the training
partition of each dataset (that was used to train the DNN)
for this task in order to avoid introducing any bias on the
test partition (which is used for the detection and corrected
classification experiments). At each layer, we first estimate
the intrinsic dimension (ID) as the median of the LID esti-
mates of the samples, found using the method of (Amsaleg
et al., 2015). The ID estimate dint is used as a lower bound

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

for the projected dimension. Using a 5-fold stratified cross-
validation setup, we search over 20 linearly spaced values in
the interval [dint, 10 dint] for the projected dimension (found
using NPP) that results in the smallest average test-fold er-
ror rate for a standard k-nearest neighbors classifier. The
resulting projected dimensions for each dataset (DNN archi-
tecture) are given in Tables 3, 4, and 5.

Table 5: Layer representations of the ResNet-34 trained on CIFAR-
10. The output of the block listed in the first column is used
as the layer representation. Legend: RB - Residual block, BN -
BatchNorm

Layer block
Layer
index

Original
dimension

Intrinsic
dimension

Projected
dimension

Input 0 3072 25 48
Conv-1 + BN + ReLU 1 65536 33 330
RB-1 2 65536 58 580
RB-2 3 32768 59 590
RB-3 4 16384 28 28
RB-4 5 8192 15 15
2D Avg. Pooling 6 512 9 9
FC (Logit) 7 10 8 10

Note on Performance Calculation

The following procedure is used to calculate performance
metrics as a function of the perturbation norm of adversarial
samples. Suppose there are Na adversarial samples and Nn
natural samples in a test set, with N = Na+Nn. Define the
maximum proportion of adversarial samples pa = Na /N .
The adversarial samples are first sorted in increasing order
of their perturbation norm. The proportion of adversarial
samples is varied over 12 equally-spaced values between
0.005 and min(0.3, pa). For a given proportion pi, the top
Ni = dpiNe adversarial samples (sorted by norm) are
selected. The perturbation norm of all these adversarial sam-
ples will be below a certain value; this value is shown on the
x-axis of the performance plots. The performance metrics
(average precision, pAUC-α etc.) are then calculated from
the Ni adversarial samples and the Nn natural samples.

In order to calculate the performance metrics as a function of
the proportion of adversarial or OOD (anomalous) samples,
the only difference is that we do not sort the anomalous
samples in a deterministic way. For a given proportion pi,
we select Ni = dpiNe anomalous samples at random
uniformly, and calculate the performance metrics based on
the Ni anomalous and Nn natural samples. To account
for variability, this is repeated over 100 random subsets of
Ni anomalous samples each, and the median value of the
performance metrics is reported. Note that the detection
methods need to score the samples only once, and the above
calculations can be done based on the saved scores.

D.4. Details on the Adversarial Attacks

We list below the parameters of the adversarial attack meth-
ods we implemented using Foolbox (Rauber et al., 2017).
We utilize the same variable names used by Foolbox in order
to enable easy replication.

• PGD attack (Madry et al., 2018): `∞ norm with
the norm-ball radius ε linearly spaced in the interval
[1
255 ,

21
255]. Using the notation of the Foolbox library:

epsilon = [1
255 ,

3
255 , · · · ,

21
255], stepsize

= 0.05, binary_search = False,
iterations = 40, p_norm = inf.

• Carlini-Wagner (CW) attack (Carlini & Wagner, 2017b):
`2 norm with the confidence parameter of the attack
varied over the set {0, 6, 14, 22}. Using the notation of
the Foolbox library:
confidence = [0,6,14,22],
max_iterations = 750, p_norm = 2.

• FGSM attack (Goodfellow et al., 2015): `∞ norm with
maximum norm-ball radius εmax = 1. Using the notation
of the Foolbox library:
max_epsilon = 1, p_norm = inf.

For the adversarial detection experiments in § 6.1, we re-
ported results for the attack parameter setting that would
produce adversarial samples with the lowest perturbation
norm (least perceptible), in order to make the detection task
challenging. This corresponds to ε = 1

255 for the PGD
attack, confidence = 0 for the CW attack, and εmax = 1
for the FGSM attack. These same parameters are also used
in the experiments in Appendix F.2, F.3, F.4, F.6, and F.7.
In Appendix F.1, the strength of the attack is varied and
the attack parameters used are described there. The adver-
sarial samples are generated once from the clean samples
corresponding to each train fold and test fold (from cross-
validation), and saved to files for reuse in all the experiments.
This way, we ensure that there is no randomness in the ex-
periments arising due to the adversarial sample generation.

Adaptive Attack:

Here we provide additional details on the adaptive (defense-
aware) attack method proposed in § 5. The constant λ
in the objective function controls the perturbation norm
of the adversarial sample, and smaller values of λ lead
to solutions with a smaller perturbation norm. We follow
the approach of (Carlini & Wagner, 2017b) to set λ to the
smallest possible value that leads to a successful adversarial
perturbation. This is found using a bisection line search over
ten steps. An adversarial input is considered successful if it
modifies the initially-correct class prediction of the defense
method. We also follow the approach of (Carlini & Wagner,
2017b) to implicitly constraint the adversarial inputs to lie

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

in the same range as the original inputs using the hyperbolic
tangent and its inverse function. Suppose the inputs lie in
the range [a, b]d, the following sequence of transformations
is applied to each component of the vectors

zi = tanh−1(2
xi − a
b− a

− 1)

z′i = zi + wi

x′i = (b− a)
1

2
(1 + tanh(zi + wi)) + a

effectively allowing the perturbation w to be optimized over
Rd. The resulting unconstrained optimization is solved
using the RMSProp variant of stochastic gradient descent
with adaptive learning rate (Ruder, 2016). The maximum
number of gradient descent steps is set to 1000. For all
experiments based on the adaptive attack method, the attack
targets the variant of JTLA based on p-value normalization
at the individual layers and layer pairs, Fisher’s method for
p-value aggregation, and the multinomial test statistic.

E. Additional Experiments
In this section, we supplement the results in § 6 with more
extensive experiments.

E.1. Attack Transfer and Attacks of Varying Strength

We evaluate the performance of the detection methods on a
task with different adversarial attacks used in the train and
test sets. The strength of the attacks are also varied in both
the train and test sets. Recall that we use a 5-fold cross-
validation framework for evaluation. Hence, for a train/test
split corresponding to fold i ∈ {1, 2, 3, 4, 5} , adversarial
samples from Attack A are generated in the train split, while
adversarial samples from Attack B are generated in the test
split. Supervised methods, Mahalanobis and LID, learn
using both the adversarial and clean samples from the train
split, while the unsupervised methods, JTLA, Odds, DKNN,
and Trust, learn using only the clean samples from the
train split.

`2-CW attack to `∞-PGD attack

The `∞-PGD (Madry et al., 2018) attack is applied on the
test split with perturbation strength parameter ε varied over
the values {1/255, 3/255, 5/255, 7/255, 9/255}. For each
clean sample, one of these ε values is randomly selected and
used to create an attack sample. The `2-CW attack (Car-
lini & Wagner, 2017b) is applied to the train split with
the confidence parameter value randomly selected from the
set {0, 6, 14, 22}. The result of this experiment is given
in Figure 6, with the average precision of the compared
methods plotted as a function of the perturbation norm on
the x-axis. The `∞ norm is used on the x-axis to match
the norm type used by the PGD attack (that is applied to
the test split). We observe that Mahalanobis and both

variants of JTLA have the best performance on CIFAR-10,
while both variants of JTLA outperform the other meth-
ods on SVHN. On MNIST, JTLA based on the aK-LPE
method (§ 4.2.B) and Trust have the best performance.
The methods Mahalanobis, Trust, and Odds do not
consistently have good performance, while the LID method
has poor performance on all datasets.

`∞-PGD attack to `2-CW attack

In this experiment, the `2-CW attack is applied to the test
split and the `∞-PGD attack is applied to the train split.
The attack parameters (strength) are varied as described
earlier. The result of this experiment is given in Figure 7,
with the average precision of the methods plotted as a func-
tion of the `2 norm of the attack (since the `2-CW attack
is applied to the test split). From the figure, we make the
following observations. On CIFAR-10, Odds outperforms
the other methods, followed by the two variants of JTLA.
On SVHN, the two variants of JTLA have the best per-
formance, followed by Odds. On MNIST, the methods
JTLA, Odds, and Trust have very similar average pre-
cision that is higher than the other methods. The methods
Mahalanobis, DKNN, and LID do not have good perfor-
mance in this experiment. We hypothesize that the Odds
method (Roth et al., 2019) works well in detecting CW
attacks because it uses a test statistic based on the noise-
perturbed log-odds ratio of all pairs of classes, which is
well-matched to the CW attack that is based on skewing the
log-odds ratio of the class pair involved in the attack.

E.2. Ablation Experiments

We discuss the ablation experiments that we performed to
get a better understanding of the components of the proposed
method. Specifically, we are interested in understanding

1. The relative performance of the proposed p-value based
normalization methods (§ 4.2) and the p-value aggre-
gation methods (§ 4.3).

2. The value of including p-values from test statistics at
all layer pairs (in addition to the individual layers).

3. The relative performance of using only the last few
layer representations for detection.

4. The relative performance of the two scoring methods
in § 4.4 on the task of adversarial detection.

Tables 6, 7, and 8 summarize the results of these experi-
ments on the task of detecting adversarial samples from the
`∞-PGD attack with ε = 1 / 255, and the `2-CW attack
with confidence set to 0. DNNs trained on the SVHN and
CIFAR-10 datasets (described earlier) are used, and average
precision and pAUC-0.2 (partial AUROC below FPR = 0.2)
are reported as detection metrics. Unlike the results in Fig.
2 and Fig. 3, we do not vary the proportion of adversarial
samples, and report performance with all the adversarial

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

(a) CIFAR-10 (b) SVHN (c) MNIST

Figure 6: Average precision on the attack transfer experiment: CW to PGD attack.

(a) CIFAR-10 (b) SVHN (c) MNIST

Figure 7: Average precision on the attack transfer experiment: PGD to CW attack.

samples included.

Table 6 focuses on points 1 and 2, and compares the pro-
posed p-value normalization and aggregation methods. P-
values from the layer pairs are included in the first case and
not included in the second case. The best performing config-
uration (across the rows) is highlighted in bold. We observe
that p-value normalization at the layers with aggregation us-
ing Fisher’s method has the best performance in most cases.
Including the layer pairs did not result in a significant im-
provement in these experiments. It is surprising that Fisher’s
method has better (in some cases comparable) performance
compared to the HMP and the aK-LPE methods despite its
simplistic assumption of independent tests (p-values). We
believe this can be attributed to the fact that the multivariate
p-values estimated by the aK-LPE method (Eq. (9)) require
a large sample size to converge to their true values. Since
we apply this estimator class conditionally, the moderate
number of samples per class (ranging from 500 to 5000 in
our experiments) may result in estimation errors. Also, we
conjecture that Fisher’s method achieves a higher detection
rate (TPR) at the expense of a higher FPR, while the HMP

method has a more conservative TPR with a lower FPR.

Table 7 focuses on point 3 and compares the performance
of using all the layer representations (listed in tables 4 and
5) with the performance from using only the final one, two,
or three layer representations 18. We observe that including
more layers generally increases the detection performance,
confirming the intuition behind using multiple layers. For
the CW attack on CIFAR-10, using only the final (logit)
layer has comparable performance to using all the layers.
This is consistent with the design of the CW attack based
on only the logit layer representation.

Table 8 focuses on point 4 to understand if the score function
(12) is better suited for adversarial samples since it consid-
ers the aggregate p-values from the candidate true classes.
From the table, we observe that the adversarial score func-
tion clearly outperforms the OOD score function for each
combination of normalization and aggregation method.

18We focus on the deeper layers since their representations are
most useful for classification.

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

Table 6: Ablation experiment - performance of different p-value normalization and aggregation methods, and the effect of includ-
ing/excluding layer pairs. The multinomial test statistic is used in all cases.

Normalization
method

Aggregation
method

SVHN, PGD (ε = 1/255) SVHN, CW (confidence = 0) CIFAR-10, PGD (ε = 1/255) CIFAR-10, CW (confidence = 0)
average

precision
pAUC-0.2

average
precision

pAUC-0.2
average

precision
pAUC-0.2

average
precision

pAUC-0.2

p-values from layers
& layer pairs (§4.2.A)

Fisher 0.7382 0.8025 0.9631 0.9213 0.7710 0.7790 0.9664 0.9377
HMP 0.7296 0.7966 0.9611 0.9171 0.7614 0.7705 0.9653 0.9344

p-values from layers
Fisher 0.7393 0.8005 0.9634 0.9214 0.7734 0.7781 0.9667 0.9380
HMP 0.7247 0.7925 0.9591 0.9140 0.7538 0.7617 0.9616 0.9315

Multivariate p-value
(aK-LPE, §4.2.B)

None 0.7161 0.7840 0.9559 0.9042 0.7437 0.7518 0.9650 0.9296

Table 7: Ablation experiment: effect of including only the last few layers for detection.

Normalization
method

Aggregation
method

Layers
included

SVHN, PGD (ε = 1 / 255) SVHN, CW (confidence = 0) CIFAR-10, PGD (ε = 1 / 255) CIFAR-10, CW (confidence = 0)
average

precision
pAUC-0.2

average
precision

pAUC-0.2
average

precision
pAUC-0.2

average
precision

pAUC-0.2

p-values from layers
& layer pairs (§4.2.A)

Fisher

All 0.7382 0.8025 0.9631 0.9213 0.7710 0.7790 0.9664 0.9377
Final (logits) 0.6347 0.7396 0.9141 0.8538 0.7399 0.7636 0.9664 0.9371
Last 2 0.6440 0.7431 0.9213 0.8599 0.7410 0.7650 0.9688 0.9401
Last 3 0.6847 0.7674 0.9388 0.8857 0.7473 0.7657 0.9660 0.9358

E.3. Results on the FGSM Attack

Figure 8 presents the average precision of the different de-
tection methods as a function of the `2 norm of perturbation
for the FGSM attack method. It is clear that both variants
of JTLA outperform the other methods, consistent with the
trend observed on other attacks in § 6.

E.4. Evaluation of Partial Area Under the ROC Curve

Here we compare the performance of methods using pAUC-
0.2, a metric calculating the partial area under the ROC
curve for FPR below 0.2. Comparing the area under the
entire ROC curve can lead to misleading interpretations be-
cause it includes FPR values that one would rarely choose
to operate in. Therefore, to reflect realistic operating con-
ditions, we chose a maximum FPR of 0.2. Recall that for
the PGD attack we vary the proportion of adversarial sam-
ples along the x-axis because most of the samples from this
attack have the same perturbation norm.

On the CIFAR-10 dataset (Figure 9), we observe that JTLA
has better performance than the other methods in most cases.
On the adaptive attack, Mahalanobis has slightly better
performance than JTLA with the multivariate p-value esti-
mation method (aK-LPE). We make similar observations on
the SVHN dataset (Figure 10), with a minor exception on
the adaptive attack where the Odds method performs better
than JTLA as the perturbation norm increases.

On the MNIST dataset (Figure 11), we observe some differ-
ent trends in the performance compared to the other datasets.
On the CW and FGSM attacks, the methods Odds and
Trust perform comparably or slightly better than JTLA
(particularly the variant based on Fisher’s method). On the

adaptive attack, the performance of JTLA based on Fisher’s
method decreases significantly as the perturbation norm in-
creases. On the other hand, the variant of JTLA based on
the aK-LPE method outperforms the other methods on this
attack. We think that this contrast in performance is due to
the fact that the adaptive attack samples were optimized to
fool the variant of JTLA based on Fisher’s method. Also, at-
tack samples with higher perturbation norm are more likely
to be successful. On the PGD attack, Odds outperforms
the other methods, but the pAUC-0.2 of all methods, ex-
cept LID and DKNN, are higher than 0.95 in this case. We
conjecture that the good performance of most methods on
MNIST could be due to the simplicity of the input space
and the classification problem.

E.5. Results on the MNIST Dataset

In Figure 12, we compare the average precision of different
methods on the MNIST dataset for the CW, PGD, and adap-
tive attacks (results for the FGSM attack were presented
in Appendix E.3). We observe that Odds has good perfor-
mance on this dataset, outperforming JTLA in some cases.
The method Trust (which uses the pre-logit, fully con-
nected layer) also performs well on this dataset. This could
be due to the fact that on the MNIST dataset, the attack
samples exhibit very distinctive patterns at the logit and pre-
logit DNN layers, which are the focus of the methods Odds
and Trust. We note that Odds and Trust do not carry
over this good performance to all datasets and attacks. Also,
both variants of JTLA perform well in the low perturbation
norm regime.

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

Table 8: Ablation experiment: comparison of the adversarial and OOD score functions (§4.4) on different adversarial attacks. The
adversarial score function outperforms the OOD score function in all cases.

Normalization
method

Aggregation
method

Scoring
method

SVHN, PGD (ε = 1 / 255) SVHN, CW (confidence = 0) CIFAR-10, PGD (ε = 1 / 255) CIFAR-10, CW (confidence = 0)
average

precision
pAUC-0.2

average
precision

pAUC-0.2
average

precision
pAUC-0.2

average
precision

pAUC-0.2

p-values from layers
& layer pairs (§4.2.A)

Fisher
Adversarial 0.7382 0.8025 0.9631 0.9213 0.7710 0.7790 0.9664 0.9377
OOD 0.7078 0.7736 0.9524 0.8973 0.7492 0.7612 0.9620 0.9253

HMP
Adversarial 0.7296 0.7966 0.9611 0.9171 0.7614 0.7705 0.9653 0.9344
OOD 0.6946 0.7617 0.9482 0.8882 0.7396 0.7501 0.9599 0.9205

Multivariate p-value
(aK-LPE, §4.2.B)

None
Adversarial 0.7161 0.7840 0.9559 0.9042 0.7437 0.7518 0.9650 0.9296
OOD 0.6986 0.7664 0.9511 0.8941 0.7065 0.7247 0.9575 0.9149

(a) CIFAR-10 (b) SVHN (c) MNIST

Figure 8: Average precision on the FGSM attack (εmax = 1) for all datasets.

E.6. Running Time Comparison

Table 9 reports the wall-clock running time (in minutes) of
the different detection methods per-fold, averaged across all
attack methods. Trust consistently has the least running
time, while both variants of JTLA have low running time as
well. The running time of Mahalanobis is comparable
to JTLA on MNIST and SVHN, but is higher on CIFAR-
10. This is because Mahalanobis performs a search for
the best noise parameter at each layer using 5-fold cross-
validation, which takes a longer time on the Resnet-34 DNN
for CIFAR-10. Odds and LID have much higher running
time compared to the other methods. For each test sample,
Odds computes an expectation over noisy inputs (from a
few different noise parameters), which increases its running
time as the size of the DNN increases. The computation
involved in estimating the LID features at the DNN layers
increases with the sample size used for estimation and the
number of layers.

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

(a) CW, confidence = 0 (b) Adaptive attack

(c) FGSM, εmax = 1 (d) PGD, ε = 1/255

Figure 9: CIFAR-10 experiments: pAUC-0.2 for different attacks.

(a) CW, confidence = 0 (b) Adaptive attack

(c) FGSM, εmax = 1 (d) PGD, ε = 1/255

Figure 10: SVHN experiments: pAUC-0.2 for different attacks.

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

(a) CW, confidence = 0 (b) Adaptive attack

(c) FGSM, εmax = 1 (d) PGD, ε = 1/255

Figure 11: MNIST experiments: pAUC-0.2 for different attacks.

Table 9: Average wall-clock running time per-fold (in minutes) for the different detection methods.

Dataset JTLA, Fisher JTLA, LPE Mahalanobis Odds LID DKNN Trust

CIFAR-10 2.73 2.18 15.08 142.94 49.74 11.99 0.53
SVHN 6.37 5.01 4.19 33.60 100.80 23.54 0.60
MNIST 0.92 0.85 1.18 6.79 6.96 1.73 0.24

(a) CW, confidence = 0 (b) Adaptive attack (c) PGD, ε = 1/255

Figure 12: MNIST experiments: average precision for different attacks.

