
A General Framework For Detecting Anomalous Inputs to DNN Classifiers

Jayaram Raghuram * 1 Varun Chandrasekaran * 1 Somesh Jha 1 2 Suman Banerjee 1

Abstract
Detecting anomalous inputs, such as adversarial
and out-of-distribution (OOD) inputs, is critical
for classifiers (including deep neural networks
or DNNs) deployed in real-world applications.
While prior works have proposed various meth-
ods to detect such anomalous samples using in-
formation from the internal layer representations
of a DNN, there is a lack of consensus on a prin-
cipled approach for the different components of
such a detection method. As a result, often heuris-
tic and one-off methods are applied for different
aspects of this problem. We propose an unsuper-
vised anomaly detection framework based on the
internal DNN layer representations in the form of
a meta-algorithm with configurable components.
We proceed to propose specific instantiations for
each component of the meta-algorithm based on
ideas grounded in statistical testing and anomaly
detection. We evaluate the proposed methods
on well-known image classification datasets with
strong adversarial attacks and OOD inputs, in-
cluding an adaptive attack that uses the internal
layer representations of the DNN (often not con-
sidered in prior work). Comparisons with five
recently-proposed competing detection methods
demonstrates the effectiveness of our method in
detecting adversarial and OOD inputs.

1. Introduction
Deep neural networks (DNNs) have achieved impressive
performance on a variety of challenging machine learn-
ing (ML) problems such as image classification, object de-
tection, speech recognition, and natural language process-
ing (He et al., 2015; Krizhevsky et al., 2017). However, it is
well-known that DNN classifiers can be highly inaccurate
(sometimes with high confidence) on test inputs from out-

*Equal contribution 1Computer Sciences, University of Wisconsin,
Madison, USA. 2XaiPient Inc., Princeton, NJ, USA. Correspon-
dence to: Jayaram Raghuram <jayaramr@cs.wisc.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

side the training distribution (Nguyen et al., 2015; Szegedy
et al., 2014; Hendrycks & Gimpel, 2017; Hein et al., 2019).
Such anomalous inputs can arise in real-world settings either
unintentionally due to external factors, or due to malicious
adversaries that intend to cause prediction errors in the DNN
and disrupt the system (Barreno et al., 2006; Biggio & Roli,
2018). Therefore, it is critical to have a defense mechanism
that can detect such anomalous inputs, and take suitable
corrective action (e.g., abstain from predicting (Tax & Duin,
2008) or provide a more reliable class prediction).

In this work, we propose JTLA (Joint statistical Testing
across DNN Layers for Anomalies), a general unsupervised
framework for detecting anomalous inputs (including adver-
sarial and OOD) to a DNN classifier using its layer repre-
sentations. JTLA utilizes the rich information at the inter-
mediate layer representations of a DNN to obtain a better
understanding of the patterns produced by anomalous inputs
for detection. Our method is unsupervised, i.e., it does not
utilize any specific class(es) of known anomalous samples
for learning or tuning its parameters. While a number of
prior works have addressed the problem of adversarial and
OOD detection (Feinman et al., 2017; Xu et al., 2018; Li &
Li, 2017; Lee et al., 2018; Ma et al., 2018; Roth et al., 2019),
including ones that utilize intermediate layer representations
of a DNN (Li & Li, 2017; Meng & Chen, 2017; Xu et al.,
2018; Lee et al., 2018; Zheng & Hong, 2018; Ma et al.,
2018; Papernot & McDaniel, 2018; Miller et al., 2019; Yang
et al., 2020; Sastry & Oore, 2020), some key limitations
persist, that we propose to address in this work.

Limitations of prior work. First, a number of existing de-
tection methods (Feinman et al., 2017; Lee et al., 2018; Ma
et al., 2018; Yang et al., 2020) being supervised, have to be
presented with a broad sampling of known anomalous sam-
ples for training (e.g., different adversarial attacks of varying
strength). Such methods typically also need to configure
hyper-parameters based on the known anomalous samples
from the training set (e.g., using cross-validation). As a
result, they often do not generalize well to unknown anoma-
lies (e.g., novel or adaptive attacks). It has been shown that
a majority of the current detection methods fail to handle
unseen and adaptive adversaries that are aware of the de-
fense mechanism (Carlini & Wagner, 2017a; Tramèr et al.,
2020). Second, detection methods that use only the input,
output (pre-softmax), or a specific DNN layer (Roth et al.,

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

2019; Hendrycks & Gimpel, 2017; Feinman et al., 2017)
do not jointly exploit the properties exhibited by anoma-
lous inputs across the layers. Third, although methods
that utilize information from multiple layers (listed earlier)
propose specific test statistics or features calculated from
the layer representations (e.g., local intrinsic dimensional-
ity (Ma et al., 2018)), there is a lack of a general anomaly
detection framework where one can plug-in test statistics,
aggregation, and scoring methods suitable for the detection
task. Fourth, existing unsupervised detection methods that
are based on density (generative) modeling of the DNN layer
representations (Zheng & Hong, 2018; Miller et al., 2019;
Feinman et al., 2017) are not well-suited to handle the (often
very) high dimensional layer representations. Finally, we
observe that existing detection methods often do not utilize
the predicted class of the DNN to focus on class-conditional
properties of the layer representations (Ma et al., 2018; Li &
Li, 2017; Xu et al., 2018; Yang et al., 2020), which can lead
to improved detection performance. While prior works such
as (Roth et al., 2019; Miller et al., 2019; Zheng & Hong,
2018; Sastry & Oore, 2020) are exceptions to this, there is
still need for a unified approach in this regard.

Our contributions can be summarized as follows:

• We propose a general unsupervised framework JTLA for
detecting anomalous inputs to a DNN using its layer repre-
sentations. We first present a meta-algorithm and describe
its components in general terms (§ 3). We then propose
specific methods for realizing the components in a princi-
pled way (§ 4). The proposed framework is modular, and a
number of prior works for anomaly detection based on the
layer representations can be cast into this meta-algorithm.

• The importance of designing an adaptive, defense-aware
adversary has been underscored in the literature (Carlini
& Wagner, 2017a; Tramèr et al., 2020). We propose
and evaluate against an adversarial attack that focuses on
defenses (such as ours) that use the k-nearest neighbors
of the layer representations of the DNN (§ 5).

• We report extensive experimental evaluations comparing
JTLA with five baseline methods on three image classifi-
cation datasets trained with suitably-complex DNN archi-
tectures. For adversarial detection, we evaluate on three
well-known whitebox attacks and our proposed defense-
aware attack (§ 6 and Appendix E) 1.

2. Related Works
We provide a brief review of related works on adversar-
ial and OOD detection, focusing on methods that use the
internal layer representations of a DNN. A detailed discus-

1The code base associated with our work can be found at:
https://github.com/jayaram-r/
adversarial-detection.

sion of closely-related prior works, and how they fit into
the proposed anomaly detection framework is provided in
Appendix A.4. Recent surveys on adversarial learning and
anomaly detection for DNNs can be found in (Biggio &
Roli, 2018; Miller et al., 2020; Bulusu et al., 2020).

Prior works on adversarial and OOD detection can be
broadly categorized into unsupervised and supervised meth-
ods. Supervised methods such as (Lee et al., 2018), (Ma
et al., 2018), and (Yang et al., 2020) use a training set of
adversarial or OOD samples (i.e., known anomalies) to train
a binary classifier that discriminates natural inputs from
anomalies. They extract specific informative test statistics
from the layer representations as features for the classifier.
On the other hand, unsupervised methods such as (Roth
et al., 2019; Zheng & Hong, 2018; Miller et al., 2019; Sas-
try & Oore, 2020; Li & Li, 2017; Xu et al., 2018), rely on
interesting statistical properties and generative modeling
of natural inputs at specific (e.g., logit) or multiple layer
representations of the DNN for detection. Works such as
the trust score (Jiang et al., 2018), deep kNN (Papernot &
McDaniel, 2018), and by Jha et al. (2019) have explored
the problem of developing a confidence metric that can in-
dependently validate the predictions of a classifier. Inputs
with low confidence scores are likely to be misclassified and
hence are detected as anomalies.

3. Anomaly Detection Meta-algorithm
We first introduce the notation and problem setup, followed
by a description of the proposed meta-algorithm.

3.1. Notations and Setup

Consider the conventional classification problem where
the goal is to accurately classify an input x ∈ X into
one of m classes [m] := {1, · · · ,m}. We focus on
DNN classifiers that learn a function of the form F(x) =
[F1(x), · · · , Fm(x)], F : X 7→ ∆m , where X is the space
of inputs to the DNN and ∆m = {(p1, · · · , pm) ∈ [0, 1]m :∑
i pi = 1} is the space of output class probabilities. The

class prediction of the DNN based on its output class prob-
abilities is defined as Ĉ(x) = arg maxc∈[m] Fc(x) . The
multi-layer architecture of a DNN allows the input-output
mapping to be expressed as a composition of multiple func-
tions, i.e., F(x) = (gL ◦gL−1 · · · ◦g1)(x) , where L is the
number of layers. The output from an intermediate layer
` ∈ {1, · · · , L} of the DNN, f`(x) = (g` ◦ · · · ◦ g1)(x) ∈
Rd` , is referred to as its layer representation 2. We also use
the shorthand notation x(`) = f`(x), with x(0) = f0(x)
denoting the vectorized input. The set of layers and dis-
tinct layer pairs are denoted by L = {0, · · · , L} and
L2 = {(`1, `2) ∈ L × L : `2 > `1}. Table 1 in the

2Layers with tensor-valued outputs (e.g., convolution) are flattened
into vectors. Boldface symbols are used for vectors and tensors.

https://github.com/jayaram-r/adversarial-detection
https://github.com/jayaram-r/adversarial-detection

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

Appendix provides a quick reference for the notations.

We assume access to the trained DNN classifier to defend,
and a labeled data set D = {(xn, cn), n = 1, · · · , N}
that is different from the one used to train the DNN and
does not contain any anomalous samples. We define an
augmented data set Da = {(x(0)

n , · · · ,x(L)
n , cn, ĉn), n =

1, · · · , N} that is obtained by passing samples from D
through the DNN and extracting their layer representations
x
(`)
n = f`(xn), ` ∈ L and the class prediction ĉn = Ĉ(xn).

We also define subsets of Da corresponding to each layer
` ∈ L, and each predicted class ĉ ∈ [m] or true class
c ∈ [m] respectively as:

D̂a(`, ĉ) = {(x(`)
n , cn, ĉn), n = 1, · · · , N : ĉn = ĉ},

Da(`, c) = {(x(`)
n , cn, ĉn), n = 1, · · · , N : cn = c}.

3.2. Components of the Meta-algorithm

Algorithm 1 Meta-algorithm for Anomaly Detection

1: Inputs: Trained DNN F(·), Dataset D, Test input x,
FPR α or detection threshold τ .

2: Output: Detector decision – normal 0 or anomaly 1.

3: Preprocessing:
4: Calculate the detection threshold τ (if not specified).
5: Calculate the class prediction and layer representations of x.
6: Create the data subsets corresponding to each layer, predicted

class, and m true classes.
7: I. Test statistics (TS):
8: for each layer `:
9: Calculate the TS at layer ` conditioned on the predicted

class and the m candidate true classes.
10: Compile the m+ 1 TS vectors from the layers.
11: II. Normalizing transformations:
12: if multivariate normalization:
13: Normalize each of the m+ 1 TS vectors.
14: else
15: for each layer `:
16: Normalize the m+ 1 TS from layer `.
17: for each distinct layer pair (`1, `2): [optional]
18: Normalize the m+ 1 TS pairs from layers `1, `2.
19: III. Layerwise aggregation and scoring:
20: if multivariate normalization:
21: No need to aggregate the normalized TS.
22: else
23: Aggregate the normalized TS from the layers and layer

pairs for the predicted class and each candidate true class.
24: Calculate the final score from the m+ 1 aggregated nor-

malized TS.
25: IV. Detection decision:
26: Return anomaly (1) if the final score exceeds threshold;

Else return normal (0).

The proposed meta-algorithm for detecting anomalous in-
puts to a DNN classifier based on its layer representations
is given in Algorithm 1. A more formal version of the same
can be found in Algorithm 2 in the Appendix. Details of the

individual components of the meta-algorithm are discussed
next. For this discussion, consider a test sample x whose
true class is unknown, predicted class is Ĉ(x) = ĉ, and
layer representations are x(`), ` ∈ L.

Figure 1: Distribution of test statistics corresponding to nor-
mal and adversarial samples (PGD, `∞ attack) from the layers
of a DNN trained on the SVHN dataset. The top and bottom
figures show the multinomial test statistic (§ 4.1) conditioned on
the predicted and true class respectively. BC is the Bhattacharya
coefficient, which is a measure of distribution overlap.

I. Test Statistics: In line with prior works that use the layer
representations of a DNN for detection, we define test statis-
tics at each layer that capture a statistical property of the
layer representation useful for detection (e.g., Mahalanobis
distances (Lee et al., 2018)). The test statistics are defined
to be conditioned on the predicted class and on each can-
didate true class (since the true class is unknown). The
latter is particularly useful for adversarial samples, since
they are known to have originated from one of them classes.
For a test input x predicted as class ĉ, the test statistic at
any layer ` conditioned on the predicted class is defined as
T (x(`), ĉ, D̂a(`, ĉ)) . It captures how anomalous the layer
representation x(`) is with respect to the distribution of natu-
ral inputs predicted into class ĉ by the DNN. Similarly, a set
of m test statistics at layer `, conditioned on each candidate
true class c, are defined as T (x(`), c,Da(`, c)), c ∈ [m].
They capture how anomalous x(`) is with respect to the dis-
tribution of natural inputs from a true class c. A mild require-
ment on the definition of the test statistic function is that
larger values of T (·) correspond to larger deviations of the
layer representation from the class-conditional distribution
of natural inputs. When the input is clear from the context,
we denote the test statistic random variables by T

(`)
p | ĉ :=

T (x(`), ĉ, D̂a(`, ĉ)) and T
(`)
s | c := T (x(`), c,Da(`, c)). Spe-

cific values of the test statistic are denoted by t(`)p | ĉ and t(`)s | c.
The vector of test statistics across the layers is defined as
tp | ĉ := [t

(0)
p | ĉ, · · · , t

(L)
p | ĉ] given the predicted class ĉ, and

as ts | c := [t
(0)
s | c, · · · , t

(L)
s | c], ∀c ∈ [m] given each candi-

date true class. In § 4.1, we propose a test statistic based
on the multinomial likelihood ratio test (LRT) applied to

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

class counts from the k-nearest neighbors (kNN) of a layer
representation. However, the above definitions are general
and apply to test statistics proposed in prior works such as
Gram matrix-based deviations (Sastry & Oore, 2020).

II. Distribution-Independent Normalization: In the ab-
sence of any prior assumptions, the class-conditional and
marginal distributions of the test statistics are unknown and
expected to change across the DNN layers (e.g., see Fig. 1).
Therefore, in order to effectively combine the test statistics
from the layers for anomaly scoring, it is important to apply
a normalizing transformation that (ideally) makes the trans-
formed test statistics distribution independent. Some prior
works partially address this using heuristic approaches such
as z-score normalization (Roth et al., 2019) and scaling by
the expected value (Sastry & Oore, 2020) in order to account
for the distribution and range differences of the test statistics
across the layers. We propose two approaches for applying
normalizing transformations – the first one focuses on test
statistics from the individual layers and layer pairs, and the
second one focuses on the vector of test statistic across the
layers. Considering test statistic pairs and the vector of test
statistics allows our method to capture the joint effect of
anomalous inputs on the layer representations.

Consider the first approach. In the meta-algorithm, such
normalizing transformations are defined as q(t(`)p | ĉ) for the
test statistic at layer ` conditioned on the predicted class ĉ,
and q(t

(`)
s | c), ∀c ∈ [m] for the test statistic at layer ` condi-

tioned on each candidate true class. For each pair of layers
(`1, `2) ∈ L2, q(t(`1)p | ĉ , t

(`2)
p | ĉ) and q(t

(`1)
s | c , t

(`2)
s | c), ∀c ∈ [m]

define the normalizing transformations for the correspond-
ing test statistic pair conditioned on the predicted class ĉ
and on each candidate true class respectively. Since it is not
efficient to include all the layer pairs beyond few tens of
layers, this is specified as optional in Algorithm 1.

In the second approach, q(tp | ĉ) and q(ts | c), ∀c ∈ [m]
define the normalizing transformations for a vector of test
statistics from the layers conditioned on the predicted class
ĉ and on each candidate true class respectively 3. In § 4.2,
we propose specific realizations for each case of the above
normalizing transformations based on class-conditional p-
values. They have the advantage of being nonparametric,
and transform the test statistics into probabilities that, for
natural inputs, will be approximately uniform on [0, 1].

III. Layerwise Aggregation and Scoring: The normalized
test statistics can be interpreted as anomaly scores that are
each based on information from one or more layer repre-
sentations and a specific (predicted or true) class. The goal
of a scoring function is to aggregate the multiple anomaly

3Although the function q(·) is different depending on the class,
layer(s), and the number of test statistic inputs, we use the same
overloaded notation for clarity.

scores in a principled way such that the combined score
is low for inputs following the same distribution as nor-
mal inputs to the DNN, and high for anomalies. Prior
works have taken approaches such as average or maximum
of the normalized test statistics (Miller et al., 2019; Sas-
try & Oore, 2020), or a weighted sum of unnormalized
test statistics, with the weights trained using a binary lo-
gistic classifier (Lee et al., 2018; Ma et al., 2018; Yang
et al., 2020). In our meta-algorithm, we define an aggre-
gation function r(·) that combines the set of all normal-
ized test statistics from the individual layers and (option-
ally) layer pairs as follows: qagg(tp | ĉ) = r(Qp | ĉ) and
qagg(ts | c) = r(Qs | c), ∀c ∈ [m], where

Qp | ĉ = {q(t(`)p | ĉ), ∀` ∈ L}

∪ {q(t(`1)p | ĉ , t
(`2)
p | ĉ), ∀(`1, `2) ∈ L2} and (1)

Qs | c = {q(t(`)s | c), ∀` ∈ L}

∪ {q(t(`1)p | c , t
(`2)
p | c), ∀(`1, `2) ∈ L2}, ∀c ∈ [m]

define the sets of normalized test statistics.

Motivated by ideas from multiple testing, we propose spe-
cific aggregation functions r(·) in § 4.3 for combining
multiple p-values from the layers and layer pairs. For
the normalization approach that directly transforms the
test statistic vector from the layers, there is no need for
an aggregation function; we simply set qagg(tp | ĉ) =
q(tp | ĉ) and qagg(ts | c) = q(ts | c), ∀c ∈ [m]. The final
anomaly score in the meta-algorithm is defined to be a
simple function of the aggregate, normalized test statis-
tics, i.e., S(qagg(tp | ĉ), qagg(ts | 1), · · · , qagg(ts |m), ĉ). We
propose specific realizations of the score functions for ad-
versarial and OOD detection in § 4.4.

IV. Detection Decision: The detection decision for a test
input x predicted into class ĉ is obtained by thresholding
the final anomaly score as follows:
ψτ (x(0), · · · ,x(L), ĉ) =

1
[
S(qagg(tp | ĉ), qagg(ts | 1), · · · , qagg(ts |m), ĉ) ≥ τ

]
(2)

where decisions 0 and 1 correspond to natural and anoma-
lous inputs respectively, and 1[·] is the indicator function.
The threshold τ is usually set based on a false positive rate
(FPR) that is suitable for the target application. In order to
operate the detector at an FPR α ∈ (0, 1) (usually a small
value e.g., 0.01), the threshold can be set by estimating the
FPR P̂F(τ) from the set of natural inputs Da as follows:

τα = sup{τ ∈ R : P̂F(τ) ≤ α}, where

P̂F(τ) =
1

N

N∑
n=1

ψτ (x(0)
n , · · · ,x(L)

n , ĉn). (3)

This threshold choice ensures that natural inputs are ac-
cepted by the detector with a probability close to 1− α.

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

4. A Realization of the Meta-algorithm
In this section, we propose concrete methods for realizing
the components of the anomaly detection meta-algorithm.

4.1. Test Statistic Based on kNN Class Counts

Consider a set of natural inputs to the DNN that are pre-
dicted into a class ĉ ∈ [m]. The class counts from the kNN
of its representations from a layer ` ∈ L are expected to
follow a certain distribution, wherein class ĉ has a higher
probability than the other classes. A similar observation
can be made for natural inputs from a candidate true class
c ∈ [m]. Let (k

(`)
1 , · · · , k(`)m) denote the tuple of class

counts from the kNN N
(`)
k (x(`)) of a layer representation

x(`), such that k(`)i ∈ {0, 1, · · · , k} and
∑m
i=1 k

(`)
i = k.

The null (natural) distribution of the kNN class counts at a
layer ` conditioned on the predicted class ĉ can be modeled
using the following multinomial distribution

p(k
(`)
1 , · · · , k(`)m | Ĉ = ĉ) = k!

m∏
i=1

[π
(`)
i | ĉ]

k
(`)
i

k
(`)
i !

, (4)

where (π
(`)
1 | ĉ, · · · , π

(`)
m | ĉ) are the multinomial probability

parameters specific to class ĉ and layer ` (they are non-
negative and sum to 1). We estimate these parameters from
the labeled subset D̂a(`, ĉ) using maximum-a-posteriori
(MAP) estimation with the Dirichlet conjugate prior distri-
bution (Barber, 2012) 4. For a test input x sampled from
the natural data distribution that is predicted into class ĉ
by the DNN, we expect the multinomial distribution (4) to
be a good fit for the class counts observed from its kNN at
layer `. In order to test whether the observed class counts
(k

(`)
1 , · · · , k(`)m) from layer ` given predicted class ĉ are con-

sistent with distribution (4), we apply the well-known multi-
nomial LRT (Read & Cressie, 2012), whose log-likelihood
ratio statistic is given by

T (x(`), ĉ, D̂a(`, ĉ)) =

m∑
i=1

k
(`)
i log

k
(`)
i

k π
(`)
i | ĉ

. (5)

This test statistic is a class count deviation measure which
is always non-negative, with larger values corresponding to
a larger deviation from the null distribution (4). In a similar
way, the test statistics conditioned on each candidate true
class are defined as

T (x(`), c,Da(`, c)) =

m∑
i=1

k
(`)
i log

k
(`)
i

k π̃
(`)
i | c

, ∀c ∈ [m].

(6)
Here, (π̃

(`)
1 | c, · · · , π̃

(`)
m | c) are the multinomial parameters

specific to class c and layer `, which are estimated from the
corresponding data subset Da(`, c).

4We set the prior counts of the Dirichlet distribution to a small non-
zero value to avoid 0 estimates for the multinomial parameters.

4.2. Normalizing Transformations Based on p-values

Recall that we are interested in designing a normalizing
transformation that, for natural inputs, makes the trans-
formed test statistics across the layers and classes follow the
same distribution. One such approach is to use the p-value,
that calculates the probability of a test statistic taking values
(as or) more extreme than the observed value. More gener-
ally, a p-value is defined as any transformation of the test
statistic (possibly a vector), following the null hypothesis
distribution, into a uniformly distributed probability (Root
et al., 2016). This provides a simple approach for normaliz-
ing the class-conditional test statistics in both the univariate
and multivariate cases, as discussed next.

A. p-values at Individual Layers and Layer Pairs

For an input predicted into class ĉ with class-conditional
test statistics at a layer ` given by t

(`)
p | ĉ, t

(`)
s | 1, · · · , t

(`)
s |m, the

normalizing p-value transformations are defined as 5:
q(t

(`)
p | ĉ) = P(T

(`)
p | ĉ ≥ t

(`)
p | ĉ | Ĉ = ĉ)

q(t
(`)
s | c) = P(T

(`)
s | c ≥ t

(`)
s | c |C = c), ∀c ∈ [m]. (7)

Similarly the normalizing p-value transformations for test
statistic pairs from layers (`1, `2) are defined as:

q(t
(`1)
p | ĉ , t

(`2)
p | ĉ) = P(T

(`1)
p | ĉ ≥ t

(`1)
p | ĉ , T

(`2)
p | ĉ ≥ t

(`2)
p | ĉ | Ĉ = ĉ)

q(t
(`1)
s | c , t

(`2)
s | c) =

P(T
(`1)
s | c ≥ t

(`1)
s | c , T

(`2)
s | c ≥ t

(`2)
s | c |C = c), ∀c ∈ [m]. (8)

Since the class-conditional distributions of the test statistics
are unknown, we estimate the p-values using the empir-
ical cumulative distribution function of the test statistics
calculated from the corresponding data subsets of Da 6.

B. Multivariate p-value Based Normalization

In this approach, we consider the class-conditional joint
density of a test statistic vector from the layers, and propose
a normalizing transformation q : RL+1 7→ [0, 1] based
on the idea of multivariate p-values. Consider an input
predicted into a class ĉ, that has a vector of test statistics
tp | ĉ = t from the layers. Suppose f0(tp | ĉ | ĉ) denotes
the true null-hypothesis density of tp | ĉ conditioned on
the predicted class ĉ, then the region outside the level set
of constant density equal to f0(t | ĉ) is given by {tp | ĉ ∈
RL+1 : f0(tp | ĉ | ĉ) < f0(t | ĉ)} . The multivariate p-
value for t is the probability of this region under the null
hypothesis probability measure (Root et al., 2016).

We use the averaged localized p-value estimation method us-
ing kNN graphs (aK-LPE) proposed by (Qian & Saligrama,

5We use one-sided, right-tailed p-values since larger values of the
test statistic correspond to a larger deviation.

6In our implementation, we averaged the p-value estimates from a
hundred bootstrap samples in order to reduce the variance.

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

2012). The main idea is to define a score function based on
nearest neighbor graphs G(t) that captures the local relative
density around t. They show that a score function defined as
the average distance from t to its k

2 -th through 3k
2 -th nearest

neighbors provides the following asymptotically-consistent
p-value estimate:

qlpe(t) =
1

|Dt|
∑

tn∈Dt

1[G(t) ≤ G(tn)], (9)

where Dt is a large sample of test statistic vectors corre-
sponding to natural inputs. In our problem, we apply the
above p-value transformation (using the appropriate data
subsets) to normalize the m+ 1 test statistic vectors giving:
qlpe(tp | ĉ), qlpe(ts | 1), · · · , qlpe(ts |m).

4.3. Aggregation of p-values

The p-value based normalized test statistics capture the ex-
tent of deviation of the test statistics of an input relative to
their distribution on natural inputs; smaller p-values corre-
spond to a larger deviation. For approach A in § 4.2, we
can consider each p-value to correspond to a hypothesis test
involving a particular layer or layer pair. We are interested
in combining the evidence from these multiple tests (Dudoit
& Van Der Laan, 2007) into a single p-value for the overall
problem of testing for natural versus anomalous inputs. We
investigate two methods for combining p-values from multi-
ple tests and define the corresponding aggregation functions.
Note that there is no need to aggregate p-values for approach
B in § 4.2, and we simply set qagg(tp | ĉ) = qlpe(tp | ĉ) and
qagg(ts | c) = qlpe(ts | c), ∀c ∈ [m].

Fisher’s method (Fisher, 1992) provides a principled way of
combining p-values from multiple independent tests based
on the idea that, under the null hypothesis, the sum of the
log of multiple p-values follows a χ2-distribution. The
aggregate p-value function based on this method is given by

log qfis(t) = log r(Q) =
∑
q∈Q

log q, (10)

where Q is one of the sets Qp | ĉ or Qs | c defined in Eq. (1),
and t is the corresponding test statistic vector 7. An apparent
weakness of Fisher’s method is its assumption of indepen-
dent p-values. We briefly provide the aggregate p-value
function for an alternate harmonic mean p-value (HMP)
method for combining p-values from multiple dependent
tests (Wilson, 2019), and discuss its details in Appendix B.

qhmp(t)−1 = r(Q)−1 =
∑
q∈Q

q−1. (11)

4.4. Scoring for Adversarial and OOD Detection

We propose different score functions for detecting adversar-
ial and general OOD inputs. An adversarial input predicted

7qlpe(·), qfis(·), and qhmp(·) are specific instances of qagg(·).

into class ĉ by the DNN is expected to be anomalous at
one or more of its layer representations relative to the dis-
tribution of natural inputs predicted into the same class.
This implies that its aggregate p-value conditioned on the
predicted class, qagg(tp | ĉ), should have a small value. More-
over, since the adversarial input was created from a source
class different from ĉ, it is expected to be a typical sample
relative to the distribution of natural inputs from the un-
known source class c 6= ĉ. This implies that its aggregate
p-value conditioned on a candidate true class (different from
ĉ) should have a relatively large value. Combining these
ideas, we define the score function for adversarial inputs as

S(qagg(tp | ĉ), qagg(ts | 1), · · · , qagg(ts |m), ĉ)

= log

 max
c∈[m]\{ĉ}

qagg(ts | c)

qagg(tp | ĉ)

 . (12)

The table below provides additional insight on this score
function by considering the numerator and denominator
terms (inside the log) for different categories of input.

Input type & prediction Numerator Denominator Score

x natural, Ĉ(x) = c Low High Low
x natural, Ĉ(x) 6= c High High Medium
x adversarial, Ĉ(x) 6= c High Low High

Similar to adversarial inputs, OOD inputs are also expected
to exhibit anomalous patterns at the layers of the DNN rela-
tive to the distribution of natural inputs predicted into the
same class. Since OOD inputs are not created by inten-
tionally perturbing natural inputs from a true class different
from the predicted class, we simplify score function (12) for
OOD detection as follows

S(qagg(tp | ĉ), qagg(ts | 1), · · · , qagg(ts |m), ĉ) = − log qagg(tp | ĉ).

OOD inputs are expected to have a low aggregate p-value
qagg(tp | ĉ), and hence a high value for the above score.

4.5. Implementation and Computational Complexity

We briefly discuss some practical aspects of implementing
JTLA efficiently. We apply the neighborhood preserving
projection method (He et al., 2005) to perform dimensional-
ity reduction on the DNN layer representations since they
can be very high dimensional (details in Appendix D.3). In
order to efficiently construct and query from kNN graphs
at the layer representations, we use the fast approximate
nearest neighbors method NNDescent (Dong et al., 2011)
8. Together, these two techniques significantly reduce the
memory utilization and running time of JTLA.

The computational complexity of the proposed instantia-
tion of JTLA at prediction (test) time can be expressed as

8We use the following implementation of NNDescent: https:
//github.com/lmcinnes/pynndescent

https://github.com/lmcinnes/pynndescent
https://github.com/lmcinnes/pynndescent

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

O
(
L (dmaxN

ρ + m2 + BN)
)

when layer pairs are not
used, and O

(
L2 (dmaxN

ρ + m2 + BN)
)

when layer
pairs are used. Here dmax is the maximum dimension of the
projected layer representations, m is the number of classes,
N is the number of samples, B is the number of bootstrap
replications used for estimating p-values, and ρ ∈ (0, 1) is
an unknown factor associated with the approximate nearest
neighbor queries (that are sub-linear in N). The p-value
calculation can be made faster and independent of N by
pre-computing the empirical class-conditional CDFs. A
comparison of the running time of JTLA with other detec-
tion methods can be found in Appendix E.6.

5. Defense-Aware Adaptive Attack
The importance of evaluating adversarial detection methods
against an adaptive, defense-aware adversary has been high-
lighted in prior works (Carlini & Wagner, 2017a; Athalye
et al., 2018; Tramèr et al., 2020). We consider a gray-box
adversary that is assumed to have full knowledge of the
DNN architecture and parameters, and partial knowledge of
the detection method 9.

Consider a clean input sample x from class c that is correctly
classified by the DNN. Let η` denote the distance between
x(`) = f`(x) and its k-th nearest neighbor from layer `.
The number of samples from any class i among the kNNs
of x(`), relative to the dataset Da, can be expressed as

k
(`)
i =

N∑
n=1 : cn=i

u(η`−d(f`(x), f`(xn))), i = 1, · · · ,m,

where u(·) is the unit step function. Consider the fol-
lowing probability mass function over the class labels:
pi = ki /

∑m
j=1 kj , i ∈ [m] , where ki =

∑L
`=0 k

(`)
i

is the cumulative kNN count from class i across the layers.
In order to fool a defense method relying on the kNN class
counts from the layer representations, our attack finds an
adversarial input x′ = x + δ with target class c′ 6= c that
minimizes the following log-ratio of probabilities:

log
pc
pc′

= log kc − log kc′ = log

L∑
`=0

k(`)c − log

L∑
`=0

k
(`)
c′ ,

(13)
subject to a penalty on the norm of the perturbation δ 10.
To address the non-smoothness arising from the step func-
tion in the class counts, we use the Gaussian (RBF) kernel
hσ(x,y) = e−

1
σ2

d(x,y)2 to obtain a smooth approxima-
tion of the class counts k(`)i . The attack objective function
to minimize is a weighted sum of the `2-perturbation norm
and the kernel-smoothed log-ratio of probabilities, given by

9For example, the detection threshold and specific layers of the
DNN used may be unknown.

10A similar type of attack on kNN-based models has been recently
proposed in (Sitawarin & Wagner, 2020).

J(δ) = ‖δ‖22 + λ log

L∑
`=0

N∑
n=1 :
cn=c

hσ`(f`(x + δ), f`(xn))

− λ log

L∑
`=0

N∑
n=1 :
cn=c

′

hσ`(f`(x + δ), f`(xn)). (14)

Here σ` > 0 is the kernel scale for layer ` and λ > 0 is a
constant that sets the relative importance of the terms in the
objective function. The method used for setting the kernel
scale per layer and minor extensions of the proposed attack
are described in Appendix C. Details of the optimization
method and the choice of λ are given in Appendix D.4. In
our experiments, we chose the class with the second highest
probability predicted by the DNN as the target attack class.

6. Experimental Results
We evaluated JTLA on the following well-known image
classification datasets: CIFAR-10 (Krizhevsky et al., 2009),
SVHN (Netzer et al., 2011), and MNIST (LeCun et al.,
1998). We used the training partition provided by the
datasets for training standard CNN architectures, includ-
ing a Resnet for CIFAR-10. We performed class-stratified
5-folds cross-validation on the test partition provided by the
datasets; the training folds are used for estimating the detec-
tor parameters, and the test folds are used solely for calcu-
lating performance metrics (which are then averaged across
the test folds). We used the Foolbox library (Rauber et al.,
2017) for generating adversarial samples from the following
attack methods: (i) Projected Gradient Descent (PGD) with
`∞ norm (Madry et al., 2018), (ii) Carlini-Wagner (CW) at-
tack with `2 norm (Carlini & Wagner, 2017b), and (iii) Fast
gradient sign method (FGSM) with `∞ norm (Goodfellow
et al., 2015). We also implement and generate adversarial
samples from the adaptive attack proposed in § 5. More
details on the datasets, DNN architectures, and the attack
parameters used are provided in Appendix D.

Methods Compared. We evaluated the following two vari-
ants of JTLA using the multinomial test statistic: 1) p-value
normalization at the layers and layer pairs using Fisher’s
method for aggregation, 2) multivariate p-value normaliza-
tion based on the aK-LPE method. The score functions from
§ 4.4 for adversarial and OOD detection are used for the re-
spective tasks. The number of nearest neighbors is the only
hyperparameter of the proposed instantiation of JTLA.
This is set to be a function of the number of in-distribution
training samples n using the heuristic k =

⌈
n0.4

⌉
.

We compared against the following recently-proposed meth-
ods: (i) Deep Mahalanobis detector (Mahalanobis) (Lee
et al., 2018), (ii) Local Intrinsic Dimensionality detector
(LID) (Ma et al., 2018), (iii) The odds are odd detector
(Odds) (Roth et al., 2019), (iv) Deep kNN (DKNN) (Paper-

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

(a) CW, confidence = 0 (b) Adaptive attack (c) PGD, ε = 1/255

Figure 2: Adversarial detection performance on CIFAR-10 under different attacks.

(a) CW, confidence = 0 (b) Adaptive attack (c) PGD, ε = 1/255

Figure 3: Adversarial detection performance on SVHN under different attacks.

not & McDaniel, 2018), and (v) Trust Score (Trust) (Jiang
et al., 2018). Mahalanobis and LID are supervised (they
utilize adversarial or outlier data from the training folds),
while the remaining methods are unsupervised. LID and
Odds are excluded from the OOD detection experiment be-
cause they specifically address adversarial samples. Details
on the implementation, hyperparameters, and layer represen-
tations used by the methods can be found in Appendix D.3.

Performance metrics. We evaluate detection performance
using the precision-recall (PR) curve (Davis & Goadrich,
2006; Flach & Kull, 2015) and the receiver operating char-
acteristic (ROC) curve (Fawcett, 2006). We use average pre-
cision as a threshold-independent metric to summarize the
PR curve, and partial area under the ROC curve below FPR
α (pAUC-α) as the metric to summarize low-FPR region of
the ROC curve. Note that both the metrics do not require the
selection of a threshold. We do not report the area under the
entire ROC curve because it is skew-insensitive and tends
to have optimistic values when the fraction of anomalies is
very small (Ahmed & Courville, 2020).

6.1. Detecting Adversarial Samples

Figures 2 and 3 show the average precision of the detection
methods as a function of the perturbation `2 norm of the ad-
versarial samples generated by the CW (confidence = 0) and

adaptive attack methods. For the PGD attack (ε = 1 / 255),
the proportion of adversarial samples is shown on the x-
axis instead of the perturbation norm because most of the
samples from this attack have the same norm value. We ob-
serve that in almost all cases, JTLA outperforms the other
baselines. Methods such as Mahalanobis, Odds, and
DKNN perform well in some cases but fail on others, while
LID performs poorly in nearly all scenarios. We observe an
outlying trend in Figure 3b, where Odds outperforms JTLA
on the adaptive attack applied to SVHN. However, a com-
parison of the pAUC-0.2 metric for this scenario (Figure 10
in Appendix E.4) reveals that JTLA has higher pAUC-0.2
for low perturbation norm (where adversarial samples are
likely to be more realistic and harder to detect). We pro-
vide additional results in Appendix E that include: (i) attack
transfer and attacks of varying strength, (ii) evaluation of
the pAUC-0.2 metric, (iii) results on the MNIST dataset,
and (iv) results on the FGSM attack.

6.2. Detecting Out-Of-Distribution Samples

We evaluated OOD detection using the following image
dataset pairs, with the first dataset used as in-distribution
(inliers) and the second dataset used as out-distribution
(outliers): 1) MNIST vs. Not-MNIST (Bulatov, 2011), 2)
CIFAR-10 vs. SVHN. While a majority of papers on OOD

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

(a) CIFAR-10 vs. SVHN (b) MNIST vs. not-MNIST (c) CIFAR-10 vs. CIFAR-100
Figure 4: Comparison of OOD detection performance.

detection evaluate using such dataset pairs, the importance
of evaluating against outliers that are semantically mean-
ingful has been emphasized by Ahmed & Courville (2020).
Therefore, we performed an experiment where object classes
from the CIFAR-100 dataset (not in CIFAR-10) are treated
as outliers relative to CIFAR-10. This is a more realistic and
challenging task since novel object categories can be consid-
ered semantically-meaningful anomalies. Using the same
5-fold cross-validation setup, we compared the performance
of JTLA with Mahalanobis, DKNN, and Trust (Odds
and LID are excluded because they focus on adversarial
examples). Since Mahalanobis is a supervised method,
it uses both inlier and outlier data from the training folds,
while the remaining methods (all unsupervised) use only the
inlier data from the training folds. To promote fairness in
the comparison, we excluded outlier data corresponding to
one half of the classes from the training folds, and included
outlier data from only the excluded classes in the test folds.
Additionally, in the test folds we included image samples
with random pixel values uniformly selected from the same
range as valid images. The number of random samples is
set equal to the average number of test-fold samples from
a single class. Figure 4 shows the average precision and
pAUC-0.05 as a function of the proportion of OOD samples
on the OOD detection tasks 11. We observe that JTLA out-
performs the unsupervised methods DKNN and Trust in
all cases, but does not achieve the very good performance
of Mahalanobis. This should be considered in light of
the fact that Mahalanobis uses outlier samples from the
training folds to train a classifier and tune a noise parame-
ter (Lee et al., 2018). However, in real-world settings, one is
unlikely to have the prior knowledge and sufficient number
(and variety) of outlier samples for training.
11We report pAUC below 5% FPR because the methods achieve

high detection rates at very low FPR.

6.3. Ablation Studies

We performed ablation studies to gain a better understand-
ing of the different components of the proposed method.
Specifically, we evaluated 1) the relative performance of
the proposed p-value based normalization and aggregation
methods, 2) the performance improvement from testing at
layer pairs in addition to the individual layers, 3) the relative
performance of using only the last few layers compared to
using all the layer representations, and 4) the relative perfor-
mance of the two scoring methods in § 4.4. These results
are discussed in Appendix E.2.

7. Conclusions
We presented JTLA, a general framework for detecting
anomalous inputs to a DNN classifier based on joint sta-
tistical testing of its layer representations. We presented a
general meta-algorithm for this problem, and proposed spe-
cific methods for realizing the components of this algorithm
in a principled way. The construction of JTLA is modular,
allowing it to be used with a variety of test statistics pro-
posed in prior works. Extensive experiments with strong
adversarial attacks (including an adaptive defense-aware
attack we proposed) and anomalous inputs to DNN image
classifiers demonstrate the effectiveness of our method.

Acknowledgements
We thank the anonymous reviewers for their useful feed-
back that helped improve the paper. VC, JR, and SB
were supported in part through the following US NSF
grants: CNS-1838733, CNS-1719336, CNS-1647152, CNS-
1629833, CNS-1942014, CNS-2003129, and an award
from the US Department of Commerce with award number
70NANB21H043. SJ was partially supported by Air Force
Grant FA9550-18-1-0166, the NSF Grants CCF-FMitF-
1836978, SaTC-Frontiers-1804648 and CCF-1652140, and
ARO grant number W911NF-17-1-0405.

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

References
Ahmed, F. and Courville, A. C. Detecting semantic anoma-

lies. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, New York, NY, USA, February 7-12, 2020,
pp. 3154–3162. AAAI Press, 2020.

Akhtar, N. and Mian, A. S. Threat of adversarial attacks on
deep learning in computer vision: A survey. IEEE Access,
6:14410–14430, 2018.

Amsaleg, L., Chelly, O., Furon, T., Girard, S., Houle, M. E.,
Kawarabayashi, K.-i., and Nett, M. Estimating local in-
trinsic dimensionality. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 29–38. ACM, 2015.

Athalye, A., Carlini, N., and Wagner, D. A. Obfuscated
gradients give a false sense of security: Circumventing de-
fenses to adversarial examples. In Proceedings of the 35th
International Conference on Machine Learning, ICML,
volume 80 of Proceedings of Machine Learning Research,
pp. 274–283. PMLR, 2018.

Barber, D. Bayesian reasoning and machine learning. Cam-
bridge University Press, 2012. ISBN 0521518148.

Barreno, M., Nelson, B., Sears, R., Joseph, A. D., and Tygar,
J. D. Can machine learning be secure? In Proceedings of
the 2006 ACM Symposium on Information, Computer and
Communications Security (ASIACCS), pp. 16–25. ACM,
2006. doi: 10.1145/1128817.1128824.

Biggio, B. and Roli, F. Wild patterns: Ten years after the
rise of adversarial machine learning. Pattern Recognition,
84:317–331, 2018. doi: 10.1016/j.patcog.2018.07.023.

Biggio, B., Nelson, B., and Laskov, P. Poisoning attacks
against support vector machines. In Proceedings of
the 29th International Conference on Machine Learning,
ICML. icml.cc / Omnipress, 2012.

Bulatov, Y. NotMNIST dataset. http://yaroslavvb.
com/upload/notMNIST/, 2011.

Bulusu, S., Kailkhura, B., Li, B., Varshney, P. K., and Song,
D. Anomalous instance detection in deep learning: A
survey. CoRR, abs/2003.06979, 2020. URL https:
//arxiv.org/abs/2003.06979.

Carlini, N. and Wagner, D. A. Adversarial examples are
not easily detected: Bypassing ten detection methods.
In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, AISec@CCS, pp. 3–14. ACM,
2017a. doi: 10.1145/3128572.3140444.

Carlini, N. and Wagner, D. A. Towards evaluating the
robustness of neural networks. In IEEE Symposium on
Security and Privacy (S&P), pp. 39–57. IEEE Computer
Society, 2017b. doi: 10.1109/SP.2017.49.

Chandola, V., Banerjee, A., and Kumar, V. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):
1–58, 2009.

Davis, J. and Goadrich, M. The relationship between
Precision-Recall and ROC curves. In Proceedings of
the 23rd international conference on Machine learning,
pp. 233–240, 2006.

Dong, W., Moses, C., and Li, K. Efficient k-nearest neigh-
bor graph construction for generic similarity measures.
In Proceedings of the 20th international conference on
World wide web, pp. 577–586, 2011.

Dudoit, S. and Van Der Laan, M. J. Multiple testing proce-
dures with applications to genomics. Springer Science &
Business Media, 2007.

Fawcett, T. An introduction to ROC analysis. Pattern
recognition letters, 27(8):861–874, 2006.

Fawzi, A., Moosavi-Dezfooli, S., and Frossard, P. Robust-
ness of classifiers: from adversarial to random noise. In
Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing
Systems, pp. 1624–1632, 2016.

Fawzi, A., Fawzi, O., and Frossard, P. Analysis of classi-
fiers’ robustness to adversarial perturbations. Machine
Learning, 107(3):481–508, 2018.

Feinman, R., Curtin, R. R., Shintre, S., and Gardner, A. B.
Detecting adversarial samples from artifacts. CoRR,
abs/1703.00410, 2017. URL http://arxiv.org/
abs/1703.00410.

Fisher, R. A. Statistical methods for research workers. In
Breakthroughs in statistics, pp. 66–70. Springer, 1992.

Flach, P. and Kull, M. Precision-recall-gain curves: PR
analysis done right. In Advances in neural information
processing systems, pp. 838–846, 2015.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In 3rd Interna-
tional Conference on Learning Representations, Confer-
ence Track Proceedings, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into
rectifiers: Surpassing human-level performance on ima-
genet classification. In IEEE International Conference
on Computer Vision (ICCV), pp. 1026–1034. IEEE Com-
puter Society, 2015. doi: 10.1109/ICCV.2015.123.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

http://yaroslavvb.com/upload/notMNIST/
http://yaroslavvb.com/upload/notMNIST/
https://arxiv.org/abs/2003.06979
https://arxiv.org/abs/2003.06979
http://arxiv.org/abs/1703.00410
http://arxiv.org/abs/1703.00410

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

He, X., Cai, D., Yan, S., and Zhang, H.-J. Neighborhood pre-
serving embedding. In Tenth IEEE International Confer-
ence on Computer Vision (ICCV’05) Volume 1, volume 2,
pp. 1208–1213. IEEE, 2005.

Hein, M., Andriushchenko, M., and Bitterwolf, J. Why
relu networks yield high-confidence predictions far away
from the training data and how to mitigate the problem. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 41–50. Computer Vision Foundation /
IEEE, 2019. doi: 10.1109/CVPR.2019.00013.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. In 5th International Conference on Learning
Representations, Conference Track Proceedings. Open-
Review.net, 2017.

Jha, S., Raj, S., Fernandes, S. L., Jha, S. K., Jha, S., Jalaian,
B., Verma, G., and Swami, A. Attribution-based con-
fidence metric for deep neural networks. In Advances
in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems,
pp. 11826–11837, 2019.

Jiang, H., Kim, B., Guan, M. Y., and Gupta, M. R. To trust or
not to trust a classifier. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems, pp. 5546–5557, 2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet
classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversar-
ial machine learning at scale. In 5th International Con-
ference on Learning Representations, Conference Track
Proceedings. OpenReview.net, 2017.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lee, K., Lee, K., Lee, H., and Shin, J. A simple unified
framework for detecting out-of-distribution samples and
adversarial attacks. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems, pp. 7167–7177, 2018.

Li, X. and Li, F. Adversarial examples detection in deep
networks with convolutional filter statistics. In IEEE
International Conference on Computer Vision (ICCV), pp.
5775–5783. IEEE Computer Society, 2017.

Ma, X., Li, B., Wang, Y., Erfani, S. M., Wijewickrema, S.
N. R., Schoenebeck, G., Song, D., Houle, M. E., and
Bailey, J. Characterizing adversarial subspaces using
local intrinsic dimensionality. In 6th International Con-
ference on Learning Representations, Conference Track
Proceedings. OpenReview.net, 2018.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In 6th International Conference on
Learning Representations, Conference Track Proceedings.
OpenReview.net, 2018.

Meng, D. and Chen, H. MagNet: A two-pronged defense
against adversarial examples. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), pp. 135–147. ACM, 2017.

Miller, D. J., Wang, Y., and Kesidis, G. When not to clas-
sify: Anomaly detection of attacks (ADA) on DNN classi-
fiers at test time. Neural Computation, 31(8):1624–1670,
2019.

Miller, D. J., Xiang, Z., and Kesidis, G. Adversarial learning
targeting deep neural network classification: A compre-
hensive review of defenses against attacks. Proceedings
of the IEEE, 108(3):402–433, 2020.

Moosavi-Dezfooli, S., Fawzi, A., and Frossard, P. Deep-
fool: A simple and accurate method to fool deep neural
networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2574–2582. IEEE Com-
puter Society, 2016. doi: 10.1109/CVPR.2016.282.

Moosavi-Dezfooli, S., Fawzi, A., Fawzi, O., and Frossard, P.
Universal adversarial perturbations. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
86–94. IEEE Computer Society, 2017.

Muñoz-González, L., Biggio, B., Demontis, A., Paudice,
A., Wongrassamee, V., Lupu, E. C., and Roli, F. Towards
poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, AISec@CCS, pp.
27–38. ACM, 2017. doi: 10.1145/3128572.3140451.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

Nguyen, A. M., Yosinski, J., and Clune, J. Deep neural
networks are easily fooled: High confidence predictions
for unrecognizable images. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 427–
436. IEEE Computer Society, 2015.

A General Framework For Detecting Anomalous Inputs to DNN Classifiers

Papernot, N. and McDaniel, P. D. Deep k-nearest neighbors:
Towards confident, interpretable and robust deep learning.
CoRR, abs/1803.04765, 2018. URL http://arxiv.
org/abs/1803.04765.

Papernot, N., McDaniel, P. D., Jha, S., Fredrikson, M., Celik,
Z. B., and Swami, A. The limitations of deep learning
in adversarial settings. In IEEE European Symposium
on Security and Privacy, EuroS&P, pp. 372–387. IEEE,
2016. doi: 10.1109/EuroSP.2016.36.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. 2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in Python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

Qian, J. and Saligrama, V. New statistic in p-value estima-
tion for anomaly detection. In IEEE Statistical Signal
Processing Workshop (SSP), pp. 393–396. IEEE, 2012.
doi: 10.1109/SSP.2012.6319713.

Rauber, J., Brendel, W., and Bethge, M. Foolbox: A python
toolbox to benchmark the robustness of machine learn-
ing models. In Reliable Machine Learning in the Wild
Workshop, 34th International Conference on Machine
Learning, 2017.

Read, T. R. and Cressie, N. A. Goodness-of-fit statistics for
discrete multivariate data. Springer Science & Business
Media, 2012.

Root, J., Saligrama, V., and Qian, J. Learning minimum
volume sets and anomaly detectors from KNN graphs.
CoRR, abs/1601.06105, 2016. URL http://arxiv.
org/abs/1601.06105.

Roth, K., Kilcher, Y., and Hofmann, T. The odds are odd:
A statistical test for detecting adversarial examples. In
Proceedings of the 36th International Conference on Ma-
chine Learning, ICML, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 5498–5507. PMLR, 2019.

Ruder, S. An overview of gradient descent optimization
algorithms. CoRR, abs/1609.04747, 2016. URL http:
//arxiv.org/abs/1609.04747.

Sastry, C. S. and Oore, S. Detecting out-of-distribution
examples with gram matrices. In Proceedings of the 37th
International Conference on Machine Learning (ICML),
volume 119 of Proceedings of Machine Learning Re-
search, pp. 8491–8501. PMLR, 2020.

Sitawarin, C. and Wagner, D. A. Minimum-norm adversarial
examples on KNN and KNN-based models. In IEEE
Security and Privacy Workshops, SP Workshops, pp. 34–
40. IEEE, 2020. doi: 10.1109/SPW50608.2020.00023.

Steinhardt, J., Koh, P. W., and Liang, P. Certified defenses
for data poisoning attacks. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on
Neural Information Processing Systems, pp. 3517–3529,
2017.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I. J., and Fergus, R. Intriguing proper-
ties of neural networks. In 2nd International Conference
on Learning Representations, Conference Track Proceed-
ings, 2014.

Tax, D. M. J. and Duin, R. P. W. Growing a multi-class
classifier with a reject option. Pattern Recognition Letters,
29(10):1565–1570, 2008.

Tramèr, F., Carlini, N., Brendel, W., and Madry, A. On adap-
tive attacks to adversarial example defenses. In Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems,
2020.

Wilson, D. J. The harmonic mean p-value for combining
dependent tests. Proceedings of the National Academy of
Sciences, 116(4):1195–1200, 2019.

Xu, W., Evans, D., and Qi, Y. Feature squeezing: Detect-
ing adversarial examples in deep neural networks. In
25th Annual Network and Distributed System Security
Symposium (NDSS). The Internet Society, 2018.

Yang, P., Chen, J., Hsieh, C., Wang, J., and Jordan, M. I.
ML-LOO: Detecting adversarial examples with feature
attribution. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, pp. 6639–6647. AAAI Press, 2020.

Yuan, X., He, P., Zhu, Q., and Li, X. Adversarial examples:
Attacks and defenses for deep learning. IEEE Transac-
tions on Neural Networks and Learning Systems, 30(9):
2805–2824, 2019. doi: 10.1109/TNNLS.2018.2886017.

Zhao, M. and Saligrama, V. Anomaly detection with score
functions based on nearest neighbor graphs. In Advances
in Neural Information Processing Systems 22: 23rd An-
nual Conference on Neural Information Processing Sys-
tems, pp. 2250–2258, 2009.

Zheng, Z. and Hong, P. Robust detection of adversarial
attacks by modeling the intrinsic properties of deep neural
networks. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information
Processing Systems, pp. 7924–7933, 2018.

http://arxiv.org/abs/1803.04765
http://arxiv.org/abs/1803.04765
http://arxiv.org/abs/1601.06105
http://arxiv.org/abs/1601.06105
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747

