Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning

Arrasy Rahman' Niklas Hopner? Filippos Christianos' Stefano V. Albrecht '

Abstract

Ad hoc teamwork is the challenging problem of
designing an autonomous agent which can adapt
quickly to collaborate with teammates without
prior coordination mechanisms, including joint
training. Prior work in this area has focused on
closed teams in which the number of agents is
fixed. In this work, we consider open teams by
allowing agents with different fixed policies to
enter and leave the environment without prior no-
tification. Our solution builds on graph neural
networks to learn agent models and joint-action
value models under varying team compositions.
We contribute a novel action-value computation
that integrates the agent model and joint-action
value model to produce action-value estimates.
We empirically demonstrate that our approach
successfully models the effects other agents have
on the learner, leading to policies that robustly
adapt to dynamic team compositions and signifi-
cantly outperform several alternative methods.

1. Introduction

Many real-world problems require autonomous agents to
perform tasks in the presence of other agents. Recent multi-
agent reinforcement learning (MARL) approaches (e.g.
Christianos et al., 2020; Foerster et al., 2018; Rashid et al.,
2018; Lowe et al., 2017) solve such problems by jointly
training a set of agents with shared learning procedures.
However, as agents become capable of long-term autonomy
and are used for a growing number of tasks, it is possible
that agents may have to interact with previously unknown
other agents, without the opportunity for prior joint training.
Thus, research in ad hoc teamwork (Stone et al., 2010) aims
to design a single autonomous agent, which we refer to as
the learner, that can interact effectively with other agents
without pre-coordination such as joint training.
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Prior ad hoc teamwork approaches (Barrett & Stone, 2015;
Albrecht et al., 2016; Barrett et al., 2017; Ravula et al.,
2019; Chen et al., 2020) achieved this aim by combining
single-agent RL and agent modeling techniques to learn
from direct interaction with other agents. These approaches
were designed for closed teams in which the number of
agents is fixed. In practice, however, many tasks also require
the learner to adapt to a changing number of agents in the
environment. For example, consider an autonomous car
that needs to drive differently depending on the number
of nearby vehicles, which may be driven by humans or
produced by different manufacturers, and their respective
driving styles (Albrecht et al., 2021).

We make a step towards the full ad hoc teamwork challenge
by considering open teams in which agents with various
fixed policies may enter and leave the team at any time and
without prior notification. Open ad hoc teamwork involves
three main challenges that must be addressed without pre-
coordination. First, the learner must quickly adapt its policy
to the unknown policies of other agents. Second, handling
openness requires the learner to adapt to changing team
sizes in addition to other agents’ types, which may affect the
policy and role a learner must adopt within the team (Tambe,
1997). Third, the changing number of agents results in a
state vector of variable length, which causes standard RL
approaches that require fixed-length state vectors to perform
poorly, as we show in our experiments.

We propose a novel algorithm designed for open ad hoc
teamwork, called Graph-based Policy Learning (GPL) 3,
which addresses the aforementioned challenges. GPL adapts
to dynamic teams by training a joint action value model
which allows the learner to disentangle the effect each
agent’s action has on the learner’s returns. To select optimal
actions from the joint action value model, we contribute a
novel action-value computation method which integrates
joint-action value estimates with action predictions learned
using an agent model. To handle dynamic team sizes, the
joint action value model and agent model are both based on
graph neural network (GNN) architectures (Tacchetti et al.,
2019; Bohmer et al., 2020) which have proven useful for
dealing with changing input sizes (Hamilton et al., 2017;

3Implementation code can be found at https://github.
com/uoe-agents/GPL
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Jiang et al., 2019). Our computed action values can be used
within different value-based single-agent RL algorithms; in
our experiments we test two versions of GPL, one based on
Q-learning (Mnih et al., 2015) and one based on soft policy
iteration (Haarnoja et al., 2018).

Our experiments evaluate GPL and various baselines in three
multi-agent environments (Level-based foraging (Albrecht
& Ramamoorthy, 2013), Wolfpack (Leibo et al., 2017), For-
tAttack (Deka & Sycara, 2020)) for which we use different
processes to specify when agents enter or leave the environ-
ment and their type assignments. We compare GPL against
ablations of GPL that integrate agent models using input con-
catenation, a common approach used by prior works (Grover
et al., 2018; Tacchetti et al., 2019); as well as two MARL
approaches (MADDPG (Lowe et al., 2017), DGN (Jiang
etal., 2019)). Our results show that both tested GPL variants
achieve significantly higher returns than all other baselines
in most learning tasks, and that GPL generalizes more ef-
fectively to previously unseen team sizes/compositions. We
also provide a detailed analysis of learned concepts within
GPL’s joint action value models.

2. Related Work

Ad hoc teamwork: Ad hoc teamwork is at its core a single-
agent learning problem in which the agent must learn a
policy that is robust to different teammate types (Stone
et al., 2010). Early approaches focused on matrix games in
which the teammate behavior was known (Agmon & Stone,
2012; Stone et al., 2009). A predominant approach in ad hoc
teamwork is to compute Bayesian posteriors over defined
teammate types and utilizing the posteriors in reinforce-
ment learning methods (such as Monte Carlo Tree Search)
to obtain optimal responses (Barrett et al., 2017; Albrecht
et al., 2016). Recent methods applied deep learning-based
techniques to handle switching agent types (Ravula et al.,
2019) and to pretrain and select policies for different team-
mate types (Chen et al., 2020). All of these methods were
designed for closed teams. In contrast, GPL is the first algo-
rithm designed for open ad hoc teamwork in which agents
of different types can dynamically enter and leave the team.

Agent modeling: An agent model takes a history of obser-
vations (e.g actions, states) as input and produces a predic-
tion about the modeled agent, such as its goals or future
actions (Albrecht & Stone, 2018). Recent agent model-
ing frameworks explored in deep reinforcement learning
(Raileanu et al., 2018; Rabinowitz et al., 2018; He et al.,
2016) are designed for closed environments. In contrast,
we consider open multi-agent environments in which the
number of active agents and their policies can vary in time.
Tacchetti et al. (2019) proposed to use graph neural networks
for modeling agent interactions in closed environments. Un-
like GPL, their method uses predicted probabilities of future

actions to augment the input into a policy network, which
did not lead to higher final returns in their empirical evalua-
tion. Our experiments also show that their method leads to
worse generalization to teams with different sizes.

Multi-agent reinforcement learning (MARL): MARL al-
gorithms use RL techniques to co-train a set of agents in a
multi-agent system (Papoudakis et al., 2019). In contrast,
ad hoc teamwork focuses on training a single agent to in-
teract with a set of agents of unknown types that are in
control over their own actions. One approach in MARL is
to learn factored action values to simplify the computation
of optimal joint actions for agents, using agent-wise action
values (Rashid et al., 2018; Sunehag et al., 2018) and co-
ordination graphs (CG) (Bohmer et al., 2020; Zhou et al.,
2019). Unlike these methods which use CGs to model joint
action values for fully cooperative setups, we use CGs in ad
hoc teamwork to model the impact of other agents’ actions
towards the learning agent’s returns. Jiang et al. (2019)
consider MARL in open systems by utilizing GNN-based
architectures as value networks. In our experiments we use
a baseline following their method and show that it performs
significantly worse than GPL.

3. Problem Formulation

The goal in open ad hoc teamwork is to train a learner agent
to interact with other agents that have unknown behavioural
models, called fypes, and which may enter or leave the en-
vironment at any timestep. We formalize the problem of
open ad hoc teamwork by extending the Stochastic Bayesian
Game model (Albrecht et al., 2016) to allow for openness.
The current formulation focuses on fully observable en-
vironments and extending the framework to the partially
observable case is left as future work.

3.1. Open Stochastic Bayesian Games (OSBG)

An OSBG is a tuple (N, S, A, 0, R, P), where N,5,A4,0
represent the set of agents, the state space, the action space,
and the type space, respectively. For simplicity we assume
a common action space for all agents, but this can be gen-
eralised to individual action spaces for each agent. Let P
denote the power set. To define joint actions under vari-
able number of agents, we define a joint agent-action space
AN = {ala € P(N x A),Y(i,a),(j,a’) € a : i =
j = a' = a’} and refer to the elements a € A as joint
agent-actions. Similarly, we define a joint agent-type space
On = {0|0 € P(N x ©),Y(i,0),(5,0) €0 :i=7=
0" = 07}, refer to 6 € O as the joint agent-type and use
9% to denote the type of agent i in 6. The conditions in
the definition of ® y and A constrain each agent to only
select one action while also being assigned to one type.

‘We assume the learner can observe the current state of the
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environment and the past actions of other agents but not
their types. The learner’s reward is determined by R : .S x
AN +— R. The transition function P : S x An — A(S X
©® v) determines the probability of the next state and joint
agent-types, given the current state and joint agent-actions,
where A(X) is the set of all probability distributions over
X. Although the transition function allows agents to have
changing types, our current work assumes that an agent’s
type is fixed between entering and leaving the environment.

Under an OSBG, the game starts by sampling an initial state,
S0, and an initial set of agents, Ny, with associated types, 96
with ¢ € Ny, from a starting distribution Py € A(S x On ).
At state s;, agents N; C N with types 0%,i € N, exist in the
environment and choose their actions a by sampling from
7. As a consequence of the selected joint agent-actions, the
learner receives a reward computed through RR. Finally, the
next state s;, 1 and the next set of existing agents Ny, 1 and
types are sampled from P given s; and joint agent-actions.

3.2. Optimal Policy for OSBG

Assuming that ¢ denotes the learning agent, the learning
objective in an OSBG is to estimate the optimal policy
defined below:

Definition 1. Let the joint actions and the joint policy of
agents other than 7 at time ¢ be denoted by a; * and 7, ",
respectively. Given a discount factor, 0 < v < 1, we define
the action-value of policy 7 , Qi (s, a’), as :

sozs,af):a”],

(D
which denotes the expected discounted return after the
learner executes a' at s. A policy, 7™, is optimal if :

vrt,s,al, Qi (s,a’) > Qri(s,ab). )

Given Q.- (s,a), an OSBG is solved by always choosing
a' with the highest action-value at s.

)
) ) E t
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4. Graph-based Policy Learning

We introduce the general components of GPL and their re-
spective role for estimating an OSBG’s optimal policy. We
also describe the neural network architectures and learn-
ing procedures used for implementing each component. A
general overview of GPL’s architecture is provided in Fig-
ure 1 while the complete learning pseudocode is given in
Appendix D.

4.1. Method Overview and Motivation

In an OSBG, agents’ joint actions inherently affect the
learner’s return through the rewards and next states it expe-
riences. A learner using common value-based RL methods

such as Q-Learning (Watkins & Dayan, 1992) will always
update the action-values of the learner’s previous action,
even if that action had minimal impact towards the observed
reward from an OSBG. In MARL, a similar credit assign-
ment problem is commonly addressed by using a centralized
critic (Lowe et al., 2017; Foerster et al., 2018) that disentan-
gles the effects of other agents’ actions to a learner’s return
by estimating a joint-action value function. Inspired by
the importance of joint-action value modeling for credit as-
signment, GPL includes a component for joint-action value
estimation. The joint-action value of a policy, Qi (s, a), is
defined as:

00
_ t
Eaiwﬂi,a:"wﬁ*ﬂP |:§ :fy R(St7 at)
t=0

sozs,aoza} 3)

In contrast to Equation (1), this joint-action value denotes
the learner’s expected return after the joint agent-action a at
s. Modeling joint-action values prevents the learner from
only crediting its own action if it has minimal contribution
towards rewards that it experienced.

Unlike centralized training for MARL (Lowe et al., 2017)
where the TD-error for training a joint-action value model
can be approximated by using other agents’ known policies,
in ad hoc teamwork using joint-action value models intro-
duces problems in computing optimal actions and temporal
difference errors. This results from the assumption in ad
hoc teamwork of not knowing other agents’ policies during
training and execution. Therefore, the uncertainty in other
agents’ actions must be accounted for in the action value
computation in ad hoc teamwork.

To perform joint-action value training and action selection
for ad hoc teamwork, we approximate the learner’s action
value function Q) by simultaneously learning a factorized
joint action value model and an agent model that that ap-
proximates 7; “(a; “|s;,0~°) (see Section 4.2). We can
then approximate the expectation in Equation 1 by weight-
ing the action value components with the likelihood of the
corresponding agents’ actions following :

eri' (Sfdai) = Ea;iww:i(,|st,a;‘707'i)[Q(Sta a)|a’i = ai]

“4)

Other strategies to deal with the uncertainty in other agents
actions are possible. Being optimistic one can choose a’
from the joint agent-action with maximum value, which
can yield in suboptimal policies for ad hoc teamwork since
other agents may choose actions that do not maximize the
learners returns. Given an agent model that predicts agents
next actions one could also sample other agents actions and
compute an average joint action value for each of the learn-
ers actions. During learning of the action value model, one
can even use information of joint actions taken at previous
state to compute the TD-error following SARSA (Rum-
mery & Niranjan, 1994). However, these sampling-based
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Figure 1. Overview of GPL. The joint action value model (red box) and agent model (blue box) receive type vectors produced by their
own type embedding networks (green box), which are parameterized by ag and a4 respectively. These type vectors are processed by the
joint-action value and agent model that are parameterized by (3, ¢) and (u, ) respectively. Output from joint action value model and
agent model is finally combined using Equation 9 to compute the action-value function, using which the learner chooses its action.

approaches may increase the variance of the action value
estimates, which may decrease learner’s performance.

GPL’s last component is the type inference component. In
an OSBG, types affect Q(s,a) and 7~ %(a"¢|s,0~*) by de-
termining other agent’s immediate and future actions. Esti-
mation of Q(s, a) and 7~*(a~%|s, #~%) must therefore take
agent types as input. However, agent types are unknown
and must be inferred from agents’ observed behavior, which
we detail in Section 4.2.

The aforementioned GPL components are finally imple-
mented using neural networks that facilitate an efficient
computation of Q™ " (s, a*) by imposing a simple factoriza-
tion of the joint action value based on coordination graphs
(Guestrin et al., 2002). Furthermore, environment openness
is handled by implementing the joint-action value and agent
modeling components with GNNs, which we describe in
the next section. This produces a flexible way of computing
Q™" (s, a’) for any team sizes.

4.2. The GPL Architecture

In this section, we outline the neural network architectures
used for implementing GPL’s three components (cf. Figure
1). This is followed by a description of the loss functions for
training the neural networks representing each component.

Type inference: Without knowledge of the type space of
an OSBG, GPL assumes types can be represented as fixed-
length vectors. Since type inference requires reasoning over
agent’s behavior over an extended period of time, we use
LSTMs (Hochreiter & Schmidhuber, 1997) for type infer-
ence. Our usage of LSTMs for type inference aligns with
previous approaches for creating fixed-length embeddings
of agents (Grover et al., 2018; Rabinowitz et al., 2018).

The LSTM takes the observation (u;) and agent-specific
information (:vi), which are both derived from s, to produce
a hidden-state vector as an agent’s type embedding. GPL
then uses the type embeddings as input for the joint action
value and agent modeling network. Although the joint action
value and agent modeling feature may use the same type
inference network, separate networks are used to prevent
both model’s gradients from interfering against each other
during training. Further details on the preprocessing method
to derive u; and m% from s;, along with the computation of
type vectors are provided in Appendix C.

Joint action value estimation: We implement GPL’s
joint action value model as fully connected Coordination
Graphs (Guestrin et al., 2002) (CGs) for three reasons. First,
CGs factorize the joint action value in a way that facilitates
efficient action-value computation, which we will elaborate
further when discussing GPL’s action-value computation.
Second, CGs can be implemented as GNNs (Bohmer et al.,
2020), which we demonstrate in Section 5.5 to be impor-
tant for handling environment openness. Third, the afore-
mentioned action value factorization also enables CGs to
model the contribution of other agents’ actions towards the
learner’s returns, which we show in Section 5.6 to be the
main reason behind GPL’s superior performance compared
to baselines.

Given a state, a fully connected CG factorizes the learner’s
joint action value as a sum of individual utility terms,
Q7 (af|s:), and pairwise utility terms, Q¥ (a]

| aF|sy), un-
der the following Equation:

Qpalsear) = Y Qhlalls) + > QF"(al,aflsy).
JEN, JkEN,
Jj#k

%)

Q%(aj |s) intuitively represents j’s contribution towards the
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learner’s returns by executing a’, while Q%" (a7, a*|s) de-
notes j and k’s contribution towards the learner’s returns by
jointly choosing a7 and a.

We implement Q’é(a{' |s¢) and ng’“(a{ ,af|s;) as multilayer
perceptrons (MLPs) parameterized by 3 and J to enable gen-
eralization across states. We then enable MLPg and MLP;
to model the contribution of agents’ individual and pairwise
joint actions towards the learner’s returns by providing type
vectors of agents associated to each utility term, along with
the the learner’s type vector as input to MLPgz and MLPs.
Given type vectors, 0} and 9{ , MLPg outputs a vector with
a length of | A| that estimates Qfé(aj |s¢) for each possible
actions of j following:

Q5 (a|s:) = MLP5(6],6;) (o). (6)

On the other hand, instead of outputting the pairwise utility
for the |A| x | A| possible pairwise actions of agent j and
k, MLP; outputs an K x |A| matrix (K < |A]) given its
type vector inputs. Assuming a low-rank factorization of the
pairwise utility terms, the output of MLP; is subsequently

used to compute Qg’k (al, ak|s,) following:

Q3" (af, af|se) = (MLPs(6],6;) TMLPs (6f, 0})) (i, af).
(N
Previous work from Zhou et al. (2019) demonstrated that
low-rank factorization enables scalable pairwise utility com-
putation even under thousands of possible pairwise actions.
Finally note that MLPg and MLP;s are shared between
agents to encourage knowledge reuse for utility term com-
putation, which importance to GPL’s superior performance
in open ad hoc teamwork is demonstrated in Section 5.6.

Agent modeling: GPL’s agent model assumes that other
agents choose their actions independently, but models the
effect other agents have on an agent’s actions by using the
Relational Forward Model (RFM) architecture (Tacchetti
et al.,, 2019). RFMs are a class of recurrent graph neural
networks that have demonstrated high accuracy in predicting
agents’ next actions (Tacchetti et al., 2019). The RFM
receives agent type embeddings, 0, as its node input to
compute a fixed-length embedding, n, for each agent and
is parameterized by (. Let a’ be the action taken by agent
j in the joint other agent-action a %, we use each agent’s
updated embedding to approximate 7~ %(a~%|s,0_;) as:

gen(a”’ls) = T acm.(a']s),
je—i ()

q¢,m, (aj |s) = Softmax(MLPn(ﬁj))(aj),

with 7 being the parameter of an MLP that transforms the
updated agent embeddings.

Action value computation: Evaluating Equation (4) can
be inefficient in larger teams. For instance, a team of k

agents which may choose from n possible actions requires
the evaluation of n* joint-action terms, which number grows
exponentially with the increase in team size. By contrast, a
more efficient action-value computation arises from factor-
izing the joint action value network and using RFM-based
agent modeling networks. By substituting the joint-action
value and agent models from Equation (5) and (8) into Equa-
tion (4), we obtain Equation (9) as our action-value estimate,
which we prove in Appendix A:

Qs a") = Qf(a’|sy)
+)(Q4(d!]s1) + Q57 (a0 |s1)) qc.(a”| 1)

al€Ay,j#i

+ZQ§ (a]7ak|5t)QC,n(aj|5t)qc,n(ak|5t)-
al€Aj,ar €Ay, j,k#i

©))

Unlike Equation (4), Equation (9) is defined in terms of sin-
gular and pairwise action terms. In this case, the number of
terms that need to be computed only increases quadratically
as the team size increases. The computation of the required
terms can be efficiently done in parallel with existing GNN
libraries (Wang et al., 2019).

Model optimization: As the learner interacts with team-
mates during learning, it stores a dataset of states, agents’
actions, and rewards that it observed. Given a dataset
of other agents’ actions it collected at different states,
{(s¢,a:)}2 1, the agent modeling network is trained to esti-
mate 7(a; ‘|s;, al) through supervised learning by minimiz-
ing the negative log likelihood loss defined below:

Ley = —log(qe .y (a;"[se))- (10)

On the other hand, the collected dataset is also used to up-
date GPL’s joint-action value network using value-based
reinforcement learning. Unlike standard value-based ap-
proaches (Mnih et al., 2015), we use the joint action value
as the predicted value. The loss function for the joint action
value network is then defined as:

1
Lps =5 Qs (stna) =y (rioseen))”, (A1)

with y(r¢, s;1+1) being a target value which computation
depends on the algorithm being used. We subsequently train
GPL with Q-Learning (GPL-Q) (Watkins & Dayan, 1992)
and Soft-Policy Iteration (GPL-SPI) (Haarnoja et al., 2018),
which produces a greedy and stochastic policy respectively.
The target value computations of both methods are defined
as the following:

yar (1, Se41) = 74 +ymax,: Q (se41,a’)

Yspr (re, Se41) =1 + VZPSPI(ai‘StJrl)Q (3t+17ai) )

at
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where GPL-SPI’s policy uses the Boltzmann distribution,

Q(Sha‘i)) (12)

pSPI(aﬂSt) X exp ( -

with 7 being the temperature parameter.

5. Experimental Evaluation

In this section, we describe our open ad hoc teamwork
experiments and demonstrate GPL’s performance in them.
This is followed by a detailed analysis of concepts learned
by GPL’s joint action value model.

5.1. Multi-Agent Environments

We conduct experiments in three fully observable multi-
agent environments with different game complexity:

Level-based foraging (LBF): In LBF (Albrecht & Ra-
mamoorthy, 2013), agents and objects with levels [ &€
{1,2, 3} are spread in a 8 x 8 grid world. The agents’ goal is
to collect all objects. Agent actions include actions to move
along the four cardinal directions, stay still, or to collect
objects in adjacent grid locations. An object is collected
if the sum of the levels of all agents involved in collecting
at the same time is equal to or higher than the level of the
object. Upon collecting an object, every agent that collects
an object is given a reward equal to the level of the object.
An episode finishes if all available objects are collected or
after 50 timesteps.

Wolfpack: In Wolfpack (Leibo et al., 2017), a team of
hunter agents must capture moving prey in a 10 x 10 grid
world. Episodes consist of 200 timesteps and prey are
trained to avoid capture using DQN (Mnih et al., 2015).
While the agents have full observability of the environment,
prey only observe a limited patch of grid cells ahead of them.
Agents in this environment can move along the four cardinal
directions or stay still at their current location. To capture a
prey, at least two hunters must form a pack by where every
pack members is located next to a prey’s grid location. Ev-
ery hunter in a pack that captured a prey is given a reward
of two times the size of the capturing pack. However, we
penalize agents by -0.5 for positioning themselves next to a
prey without teammates positioned in other adjacent grids
from the prey. Prey are respawned after they are captured.

FortAttack: FortAttack (Deka & Sycara, 2020) is situated
on a two-dimensional plane where a team of attackers aim
to reach a region, which we refer to as the fort, defended
by defenders whose aim is to prevent any attackers from
reaching the fort. Our learning agent assumes the role of a
defender. Agents are equipped with actions to move along
the four cardinal directions, rotate, and shoot any opposing
team members located in a triangular shooting range defined
by the agent’s angular orientation and location. An episode

ends when either an attacker reaches the fort, the learner
is shot by attackers, or 200 timesteps have elapsed. The
learner receives a reward of -3 for getting destroyed and 3
for destroying an attacker. On the other hand, a reward of
-10 is given when an attacker reaches the fort and a reward of
10 when guards manage to defend the fort for 200 timesteps.
A cost of -0.1 is also given for shooting.

5.2. Baselines

We design different learners, which can be categorized into
single-agent value-based RL and MARL-based learners,
to compare against GPL. Note that baselines that do not
use GNNs require fixed-length inputs. To enable these ap-
proaches to handle changing number of agents in their obser-
vations, we impose an upper limit on the number of agents
in the environment and preprocess the observation to ensure
a fixed-length input by adding placeholder values. Details
of this preprocessing method is provided in Appendix E.2.

Single-agent RL baselines: In line with GPL, all baselines
are trained with synchronous Q-learning (Mnih et al., 2016)
and take as input the type vectors from the type inference
network, but differ in their action-value computation and
their use of an agent model. QL takes the concatenation of
type vectors as input into a feedforward network to estimate
action values. GNN applies multi-head attention (Jiang
et al., 2019) to the type vectors and predicts action values
based on the learner’s node embedding. The agent model
used by QL-AM and GNN-AM is identical in architecture
and training procedure to GPL’s agent model. However, the
predicted action probabilities are concatenated to the indi-
vidual agent representations x; as explored by prior methods
(Tacchetti et al., 2019). An overview of baselines and their
components can be found in Table 1. These baselines will
allow us to investigate what advantage GNNs provide in
training and generalization performance, when action prob-
abilities help learning, which method of integrating action
probabilities is most useful, and how GPL’s approach to
computing action values compares to prior methods.

MARL baselines: While in principle our ad hoc teamwork
setting precludes joint training of agents via MARL (we only
control a single learner agent and may also not know rewards
of other agents), we use MARL approaches by assuming
that (during training) we control all teammates and all team-
mates are using the same reward function as the learner. We
compare with two MARL algorithms: MADDPG (Lowe
et al., 2017) and DGN (Jiang et al., 2019). MADDPG is
a MARL algorithm for closed environments, while DGN
is a GNN-based MARL approach designed for joint train-
ing in open environments. For evaluation in open ad hoc
teamwork, after MARL training completes, we select one
of the jointly trained agents and measure its performance
when interacting with the teammate types used in our ad
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hoc teamwork settings (see Sec. 5.4).

Table 1. Types of ablations based on value network architecture
and their use of agent modelling.
Models GNN | Agent Model
QL
QL-AM
GNN
GNN-AM
GPL-Q
GPL-SPI

Joint Action-Value

SNENENEN
SNENENEREN

5.3. Data Collection for Training

While type inference requires reasoning over consecutive
observations, we want to avoid increasing the storage and
computational resources required for training GPL and base-
lines. Therefore, we collect experiences across multiple
environments in parallel instead of using a single environ-
ment and storing experiences in an experience replay. This
resembles the data collection process of A3C (Mnih et al.,
2016). However, we collect experiences synchronously as
opposed to A3C’s asynchronous data collection process.

5.4. Experimental Setup

We construct environments for open ad hoc teamwork by
creating a diverse set of teammate types for each environ-
ment. Agent types are designed such that a learner must
adapt its policy to achieve optimal return when interacting
with the type. In LBF and Wolfpack, each type’s policy is
implemented either via different heuristics or reinforcement
learning-based policies. We vary the teammate policies in
terms of their efficiency in executing a task and their roles
in a team. Further details of the teammate policies and
diversity analysis for Wolfpack and LBF are provided in
Appendix B.4. We use pretrained policies provided by Deka
& Sycara (2020) for FortAttack.

We simulate openness by creating an open process that
determines how agents enter and leave during episodes,
for both training and testing. In LBF and Wolfpack, the
number of timesteps an agent can exist in the environment
is determined by uniformly sampling from a certain range
of integers. After staying for the predetermined number
of timesteps, agents are removed from the environment.
For FortAttack, agents are removed once they are shot by
opponents. After being removed, agents can reenter the
environment after a specific period of waiting time. The type
of an agent entering an environment is uniformly sampled
from all available types. Further details of the open process
for each environments are provided in Appendix E.1.

After every 160000 global training timesteps, GPL and base-
lines’ are stored and evaluated based on their achieved return
under the open process. To evaluate generalization capa-

bility in terms of number of agents, we impose different
limits to the maximum team size resulting from the open
process for training and testing. For testing, we increase the
upper limit on team size to expose the learner against team
configurations it has never encountered before. In all three
environments, we specifically limit the team size to three
agents during training time and increase this limit to five
agents for testing. Since FortAttack has two opposing teams
in its environment, these team size restriction is imposed on
both teams.

5.5. Open Ad Hoc Teamwork Results

Figure 2 shows the training performance of GPL-based ap-
proaches and the baselines. It shows that MARL-based
approaches produce similar or worse performance than our
worst performing single-agent RL baseline during train-
ing. While MARL policies performs better alongside other
jointly trained agents, it generalizes poorly against the ad
hoc teamwork teammates that cannot be jointly trained with
MARL. For completeness, we show MARL learner’s im-
proved performance when interacting with other jointly
trained agents in Appendix F.

Since results between GPL-Q and GPL-SPI are similar, we
use GPL to refer to both in comparison with baselines. Fig-
ure 2 also shows that GPL significantly outperforms other
baselines that use agent models, such as QL-AM and GNN-
AM, in terms of training performance. Despite both being
based on GNNs, GPL outperforming GNN-AM highlights
GPL’s action-value computation method over GNN-AM. As
further indicated by the similarity in performance between
QL/QL-AM or GNN/GNN-AM, concatenating action prob-
abilities towards observations also does not improve training
performance in most cases, which aligns with previous re-
sults from Grover et al. (2018) and Tacchetti et al. (2019).
The reason GPL significantly outperforms others in train-
ing is because the joint-action model learns to disentangle
the effects of other agents’ actions. We further elaborate
on GPL’s superiority over other methods in terms of train-
ing performance through an analysis over its resulting joint
action value estimates which we provide in Section 5.6.

The generalization performance of GPL and the baselines is
provided in Table 2. The way GPL, GNN and GNN-AM out-
perform single-agent RL baselines in generalization for LBF
despite having similar training performances shows that
GNN s are important components for generalizing between
different open processes. Furthermore, GPL outperforming
GNN-AM'’s generalization capability shows that using agent
models for action-value computation using Equation (9) also
plays a role in improving generalization capability between
open processes. In QL-AM and GNN-AM, the value net-
works must learn a model that integrates the predicted action
probabilities to compute good action-value estimates, which
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Figure 2. Open ad hoc teamwork results (training): Average and 95% confidence bounds of GPL & baseline returns during training
(up to 3 agents in a team for LBF, Wolfpack, and attacker & defender teams in FortAttack). For each algorithm, training is done using
eight different seeds and the resulting models are saved and evaluated every 160000 global steps.

Table 2. Open ad hoc teamwork results (testing): Average and 95% confidence bounds of GPL and baselines during testing (up to 5
agents in a team for LBF, Wolfpack, and attacker & defender teams in FortAttack). For each algorithm, data was gathered by running the
greedy policy resulting from the eight value networks stored at the checkpoint which achieved the highest average performance during
training. The asterisk indicates significant difference in returns compared to the single-agent RL baselines.

Env. GPL-Q GPL-SPI QL QL-AM GNN GNN-AM DGN MADDPG
LBF 2.32+0.22 2.40+0.16* 1.41+£0.14 1.2240.29 | 2.07+0.13 | 1.80%0.11 0.64 £0.9 091 +£0.10
Wolf. | 36.36+1.71* | 37.61+1.69* | 20.57£1.95 | 14.244+2.65 | 8.88+1.57 | 30.87£0.95 | 2.18 +£0.66 | 19.20 £2.22
Fort. 14.20+2.42% | 16.82+1.92*% | -3.51+£0.60 | -3.51+1.51 | 7.01£1.63 | 8.12£0.74 | -598 £0.82 | -4.83 +1.24

may not generalize well to teams with previously unseen as:

sizes.'By C(')nt'rast, QPL uses predicted 'action prqbabilities ~ S Qé k( al = shoot, a¥|s)

as weights in its action-value computation following Equa- Qi = . (13)

tion (9), which is proven in Appendix A to be correct for
any team size. Finally, the low generalization performance
of MARL-based baselines naturally follows from their low
performance during training.

5.6. Joint Action Value Analysis

We investigate how the joint action value model enables
GPL-Q to significantly outperform the single-agent RL base-
lines during training in FortAttack, which is our most com-
plex environment. For completeness, a similar analysis for
Wolfpack is provided in Appendix H.

When comparing the resulting behavior from learning with
GPL-Q and baselines, Figure 3a shows that GPL-Q’s shoot-
ing accuracy improves at a faster rate than baselines and
eventually converges at a higher value. Investigating the
way GPL components encourage faster and better shoot-
ing performance may therefore highlight why GPL-based
approaches outperform the baselines. We specifically inves-
tigate several shooting-related metrics derived from GPL’s
component, average their values over 480000 sample states
gathered at different training checkpoints, and measure their
correlation coefficient with GPL’s average return. Among
all metrics, the highest Pearson correlation coefficient of
0.85 is attained by Q; » when j is a defender and k is an
attacker in j’s shooting range. QM is specifically defined

| A¥]

Qjr is derived from GPL’s pairwise utility terms,
Qg’k(aj,aﬂs), and can be viewed as GPL’s estimate of
agent j’s average contribution towards the learner when j
decides to shoot k, averaged over all possible a*. There-
fore, this shows that GPL-Q’s return strongly correlates with
the pairwise utility terms assigned by the joint-action value
model when a defender chooses to shoot an attacker inside
its shooting range.

Rather than merely being strongly correlated to GPL’s re-
turns, we now elaborate why the pairwise utility terms pro-
duced by the joint-action value model is the main reason
behind GPL-based learner’s higher final returns. Consider
when M L Ps increases its pairwise utility terms associated
with shooting attackers inside a defender’s shooting range.
Since the learner itself is a defender, M L Ps will also in-
crease values of shooting-related pairwise utility terms when
an attacker is inside the learner’s shooting range. This en-
courages the learner to get attackers inside its shooting range
and shoot more. Eventually, the learner achieves a higher re-
turn and Q ;& becomes strongly correlated with the learner’s
return when j is a defender and & is an attacker inside j’s
shooting range. Furthermore, Figure 3b also shows that
M L Ps learns to associate negative values when defenders
enter an attacker’s shooting range, which enables the learner
to learn to avoid the shooting range of attackers.



Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning

Average Shooting Accuracy in FortAttack during Testing

Mean (), from Pairwise Utility Terms

Average Shooting Accuracy per Episode

25
—— 4) Not in attacker shooting range %

— Retums
0.0

20 10 0 80 100
Total Steps (x160000)

0 20 10 60 8
Total Steps (x160000)

100

(a) Shooting accuracy in FortAttack (b) Evolution of shooting metrics derived from GPL’s pairwise utilites.

Figure 3. Shooting-related metrics for FortAttack: (a) For GPL-Q and the baselines, we measure the percentage of times the learner
successfully shot an attacker at each checkpoint during FortAttack training (cf. Section 5.4). (b) We measure Q; i, which is a metric
derived from GPL-Q’s pairwise utility terms that represents GPL-Q’s estimate of the contribution towards the returns resulting from agent
7 shooting an opponent agent, k. Each line in the plot corresponds to a different scenario in which the pairwise utility term is measured.
Lines 1 and 2 represent Q; » when j is a defender and k is an attacker inside (1) or outside (2) j’s shooting range. Lines 3 and 4 contrast
the value of Q; 1. when j is an attacker and % is a defender inside (3) or outside (4) j’s shooting range. To provide an example pairwise
interaction where Q) » is computed from for each line, we visualize four sample pairwise interactions in FortAttack (white line in black
boxes). Each black box is numbered after the line plot it corresponds to. The fort is represented by the blue half circle, attackers by red
circles, defenders by green circles, the learner is marked with a white dot, and shooting ranges are indicated with dashed view cones. The
matrices represent the joint action space for an attacker and defender, where the yellow marked fields refer to the actions that are averaged
over to compute @, shown in the middle plot. This figure shows that the learner becomes increasingly aware of the benefits of shooting
attackers inside a defender’s shooting range and the negative consequences of a defender approaching an attacker’s shooting range as

training progresses, which causes GPL-Q’s strong performance.

Unlike GPL, we show in Appendix I that baselines that are
not equipped with M LPs will not be able to learn these
important concepts, which lead to their significantly worse
performances. Specifically, learning to shoot with the single-
agent RL baselines requires increasing the value network’s
estimate on shooting when an attacker ventures inside the
learner’s shooting range. In turn, agents can only increase
the action value estimate of shooting after experiencing the
positive rewards from successfully shooting an opposing
team’s agent. However, this can be especially difficult dur-
ing exploration since it requires the learner to position itself
at the right distance and orientation from an attacker. Even
if the learner manages to get to the right distance from an
attacker, a trained attacker can shoot a suboptimal learner
instead if it does not orient itself properly or if it does not
shoot the attacker first.

6. Conclusion and Future Work

This work addresses the challenging problem of open ad
hoc teamwork, in which the goal is to design an autonomous
agent capable of robust teamwork under dynamically chang-
ing team composition without pre-coordination mechanisms
such as joint training. Our proposed algorithm GPL uses
coordination graphs to learn joint action-value functions that
model the effects of other agents’ actions towards the learn-
ing agent’s returns, along with a GNN-based model trained
to predict actions of other teammates. We empirically tested
our approach in three multi-agent environments showing

that our learned policies can robustly adapt to dynamically
changing teams. We empirically show that GPL’s success
can be attributed to its ability to learn meaningful concepts
to explain the effects of other agents’ actions on the learning
agent’s returns. This enables GPL to produce action-values
that lead to significantly better training and generalization
performances than various baselines.

An interesting direction for future work is related to exten-
sions towards environments with partial observability and/or
continuous action spaces. On the other hand, GPL’s restric-
tive assumption that the learner’s joint action value function
must factorize following a fully connected CG can degrade
the learner’s returns for environments with certain reward
functions (Castellini et al., 2019). Thus, automatically learn-
ing the most appropriate joint action value factorization
through CG graph structure learning can potentially im-
prove GPL’s computational efficiency and return estimates.
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