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Abstract

We investigate the problem of hierarchically clus-
tering data streams containing metric data in
Rd. We introduce a desirable invariance prop-
erty for such algorithms, describe a general fam-
ily of hyperplane-based methods enjoying this
property, and analyze two scalable instances of
this general family against recently popularized
similarity/dissimilarity-based metrics for hierar-
chical clustering. We prove a number of new
results related to the approximation ratios of these
algorithms, improving in various ways over the
literature on this subject. Finally, since our al-
gorithms are principled but also very practical,
we carry out an experimental comparison on both
synthetic and real-world datasets showing com-
petitive results against known baselines.

1. Introduction
Hierarchical clustering (HC) is a fundamental tool of data
analysis by which data items are grouped together based on
some notion of (semantic) similarity working at different lev-
els of granularity. The goal of a HC algorithm operating on
a dataset X is then to construct a tree whose leaves host the
data items in X , and whose internal nodes encode subsets
of X (that is, the clusters) at increasing levels of resolution
from root to leaves. Applications are ubiquitous, ranging
from phylogeny (e.g., (Eisen et al., 1998)) to data mining
and information retrieval (e.g., (Manning et al., 2008)), to
social network analysis (e.g., (Gilbert et al., 2011)), and
beyond.

In practice, HC methods are often deployed in data-intensive
applications, where massive datasets have to be hierarchi-
cally organized and connected to data-acquisition pipelines
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within highly dynamic (and typically non-stationary) en-
vironments. In these contexts, it is crucial to devise adap-
tive HC solutions that enable the handling of massive data
streams in a robust and efficient manner. In HC for data
streams, it is a common desideratum to have a fast way of
updating the hierarchy with the newly acquired data with-
out recomputing everything from scratch. Yet, at the same
time, we would like to do so without exposing ourselves to
unexpected temporal behaviors of the data stream that skew
the hierarchy towards undesirable configurations.

Contributions. In this paper, we present the general algo-
rithmic framework of hyperplane-based HC for data streams
containing metric data. The (randomized) algorithms origi-
nating from this framework are purely geometric algorithms
that can interchangeably be described as batch HC solutions
(the dataset X is given up front in its entirety) or dynamic
(aka sequential) HC solutions (the data points in X are dis-
closed one by one or in small batches). Crucially, within
our framework, the two solutions turn out to be statistically
equivalent, in that the statistical properties of the trees com-
puted in the batch mode are the same as those for trees
computed in the sequential mode. This means that the spe-
cific ordering of data by which the tree structure is grown
does not affect the properties of the final tree, thereby giving
our HC solutions a desirable robustness. We call this the
sequential property of HC algorithms (see Section 2 for a
formal definition). Moreover, the computed hierarchy is
fully online in the sense that points are inserted as siblings
of existing nodes, without changing the tree topology.

Quality measures: In order to evaluate the quality of our HC
solutions, we follow the recent trend initiated by Dasgupta
(2016), and further developed by a number of more recent
works (e.g., (Charikar & Chatziafratis, 2017; Cohen-addad
et al., 2019; Charikar et al., 2019b; Cohen-addad et al.,
2019; Naumov et al., 2020; Alon et al., 2020; Vainstein
et al., 2021)), who framed the HC problem as a combi-
natorial optimization problem over hierarchical structures
against exogenous pairwise similarity/dissimilarity informa-
tion on individual data points. In practice, as emphasized,
e.g., by Charikar et al. (2019b); Naumov et al. (2020), data
are often described by feature vectors, so that this pairwise
information can be naturally delivered by the underlying
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metric structure (e.g., `1 or `2) where data lies. In this
paper we consider several quality measures: CKMM Rev-
enue (Cohen-addad et al., 2019), MW Revenue (Moseley
& Wang, 2017), Dasgupta Cost (Dasgupta, 2016) and MW
Cost (a natural dissimilarity metric that, to our knowledge,
has not been investigated before).

From the general hyperplane-based HC framework, we fo-
cus on two scalable algorithms: the Random Cut Tree
(RCT) algorithm, originally proposed by Guha et al. (2016),
and the Uniform Radial Random Hyperplane (URRH) al-
gorithm, which is novel. We prove a number of new approx-
imation guarantees for these two algorithms, including the
following:

(i) For the CKMM Revenue, we prove that RCT (resp.
URRH) has a 0.9-approximation ratio when using the
`1 (resp. `2) distances as dissimilarities, which im-
proves on the 0.74 approximation ratio recently shown
by Naumov et al. (2020) for a computationally more
demanding algorithm;

(ii) For MW Revenue, when the similarity weights are de-
fined through inverse `1-distances 1/||x − y||1 (resp.
`2-distances) , we provide a 0.8-approximation ratio
for RCT (resp. URRH), while for the `2 Gaussian kernel
similarity, URRH improves (Figure 2) on the approxi-
mation guarantee contained in (Charikar et al., 2019b);

(iii) When similarity weights are defined in terms of `2-
distances in Rd, we show that URRH achieves an ap-
proximation of 1

3 + O(1/d3) for the MW Revenue,
yielding the first > 1

3 approximation for non-constant
d (in contrast to Charikar et al. (2019b) and Vainstein
et al. (2021)).

(iv) For the MW Cost, we provide a 2-approximation ratio
for RCT (resp. URRH) in the case when dissimilarities
are defined as `1-distances (resp. `2-distances).

We refer the reader to Table 2 in Section 4 for a summary
of results on RCT as well as to Theorems 5.2 and 5.3 in
Section 5 for the approximation guarantee of URRH.

Finally, we perform preliminary experiments on both syn-
thetic and real-world datasets, where we compare RCT and
URRH to known dynamic HC baselines. These experiments
show that, in terms of approximation quality, our algorithms
are on par with these baselines when the cluster separation
in the data is moderate, tend to outperform the baselines
in the presence of high level of noise (harder clustering
instances), and vice versa for low noise levels.

Related work. Most of the existing hierarchical clustering
solutions for streaming data are heuristics, e.g., Rodrigues
et al. (2006); Loewenstein et al. (2008); Nguyen et al. (2014).
The approach in Kobren et al. (2017) optimizes for a dif-
ferent quality measure, the so-called dendogram purity. In

our experimental evaluation, we include three of the most
popular previous approaches: BIRCH, PERCH and GRINCH.

Introduced by Zhang et al. (1996), BIRCH is a dynamic al-
gorithm that maintains a hierarchical clustering tree such
that every internal node contains the metadata correspond-
ing to its subcluster (Clustering-Feature). PERCH (Kobren
et al., 2017) is a dynamic clustering algorithm that performs
rotations to enhance subtree purity and balance. GRINCH
(Monath et al., 2019) is a dynamic clustering algorithm
that employs two key operations, rotate and graft, which
respectively handle local and global rearrangements.

Orthogonally, many theoretical results exist for the batch
case, wherein the dataset is given up front in its entirety.
This line of work may be divided into general instances and
metric-based instances.

General weights. Paving the way, Dasgupta (2016) first
framed the HC problem as an optimization problem. Cur-
rently the best known approximation to the Dasgupta Cost
is achieved through iterative sparsest cut, yielding an ap-
proximation factor of O(

√
log n) (Charikar & Chatziafratis,

2017; Cohen-addad et al., 2019). Furthermore, a constant
approximation does not exist assuming the Small Set Ex-
pansion (SSE) Hypothesis (Charikar & Chatziafratis, 2017).
Moseley & Wang (2017) introduced a maximization variant
of the problem. Under this objective (MW Revenue), state
of the art results include a 0.585 approximation factor (Alon
et al., 2020). Dissimilarity information is considered in
Cohen-addad et al. (2019) (CKMM Revenue). In this case,
the best approximation is known to be 0.74 (Naumov et al.,
2020). We note that both objectives (MW and CKMM) are
APX-hard assuming the SSE Hypothesis.

Metric-based weights. The MW objective has also been
studied in connection to metric-based instances. Charikar
et al. (2019b) considered the case where the similarity
weights are defined through a non-increasing function
g : R → [0, 1] applied to pairwise distances defined via
a metric. Vainstein et al. (2021) showed that if g admits
certain “nice properties” and the metric has constant dou-
bling dimension then there exists a 1− ε approximation for
any constant ε > 0. We note however, that this algorithm’s
running time is double exponentially dependent on 1

ε . Fur-
thermore, in order to handle data streams the tree must be
computed from scratch at each new insertion. Thus, the
algorithm is impractical in many real-world applications,
especially in dynamic settings.

We note that these objectives have been researched in many
more flavours: Structural constraints (Chatziafratis et al.,
2018), HC through hyperbolic embeddings (Chami et al.,
2020), and many others (Wang & Moseley, 2020; Charikar
et al., 2019a; Chatziafratis et al., 2020a).

Finally, it is worth mentioning that there has been work on
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Figure 1: Left: A hierarchical clustering T on the set X =
{x1, . . . , x8} made up of eight points laying on a line. Inter-
nal node i encodes the cluster {x1, . . . , x5} ⊆ X . Tree T1,4 is the
subtree rooted at lcaT (x1, x4) = i, with |T1,4| = 5. Notice that
i = lcaT (xj , xk) for j = 1, 2, 3, and k = 4, 5. Right: T ′ is the
restriction of T to triplet {x3, x4, x6}.

clustering of data streams when one is instead interested in
optimizing flat clusters of the data. Most relevant to us is the
work by Schmidt & Sohler (2019) on hierarchical diameter
k-clustering. Here, the data are first hierarchically clustered
and then each pointwise flat cluster (corresponding to a cut
in the hierarchical clustering tree) is considered. The goal
is to simultaneously minimize the median of each resulting
flat clustering. Though operating in a dynamic setting, the
resulting algorithms are of different flavor than ours due to
the significant difference in objectives. Further work on flat
clustering of data streams includes, e.g., Lin et al. (2010);
Chen (2009).

2. Preliminaries and basic notation
In its standard formulation, in the HC problem we are given
a set1 of n items X = {x1, . . . , xn}, and the goal is to
construct a (binary) tree T whose leaves are the n items
above so as to optimize some criterion. The tree encodes
a clustering of X at different levels of granularity. Each
internal node i of T can be naturally viewed as the cluster
(that is, the subset of X) made up of all the leaves in the
subtree rooted at i. Given leaves xi and xj of T , we denote
by Ti,j the subtree rooted at the lowest common ancestor
lcaT (xi, xj) of xi and xj in T , while |Ti,j | denotes the
number of leaves in Ti,j . See Figure 1 (left) for a simple
illustration.

Following the recent trend in the HC literature, we cast
the problem as an optimization problem (e.g., (Dasgupta,
2016; Moseley & Wang, 2017; Wang & Wang, 2018; Cohen-
addad et al., 2019; Alon et al., 2020; Charikar et al., 2019a;b;
Chatziafratis et al., 2020b; Wang & Moseley, 2020; Naumov
et al., 2020)), where an objective function is constructed that
only depends on information about the pairwise similarity
or pairwise dissimilarity over the points in X . Moreover,
we assume the data are described by suitable feature vectors,
so that the items in X lie within a suitably bounded subset
of Rd, for some input dimension d ≥ 1, and the pairwise

1 This set may actually contain repeated items.

information is then a function of the feature vectors alone.
This pairwise information may be encoded either through
a similarity function sim : Rd × Rd → R, for instance:
sim(xi, xj) = xi · xj , the inner product between xi and xj ;
or sim(xi, xj) = exp (−||xi − xj ||22/2σ2), the Gaussian
kernel between xi and xj at scale σ > 0; or sim(xi, xj) =
D−||xi−xj ||, where || · || is some norm over Rd, and D is
some notion of diameter of the set of points X; or through
a dissimilarity function, dissim : Rd × Rd → R, e.g.,
dissim(xi, xj) = ||xi − xj ||. A meaningful definition that
connects sim(·, ·) to dissim(·, ·) is simply sim(xi, xj) =
−dissim(xi, xj).

Notation-wise, when the pairwise information represents
similarity, we collectively denote it by a weight matrix
[wi,j ]

n
i,j=1; when it represent dissimilarity we use instead

matrix [di,j ]
n
i,j=1. A number of objectives can then be de-

fined, depending on whether we want to maximize similarity
or minimize dissimilarity (see Table 1 for reference). The
MW Revenue (Moseley & Wang, 2017) of tree T on sim-
ilarity matrix [wi,j ], denoted here as2 RevS(T ), is defined
as

RevS(T ) =

n∑
i,j=1

wi,j(n− |Ti,j |) ,

and the goal is to find a tree T such that the approxima-
tion ratio RevS(T )/OptRevS

is as large as possible, where
OptRevS

= maxT RevS(T ) is the largest (“optimal”) pos-
sible revenue any tree T can achieve on the given [wi,j ].
The other objectives (CKMM Revenue (Cohen-addad et al.,
2019), Dasgupta Cost (Dasgupta, 2016), and MW Cost3)
are defined analogously – please refer to Table 1 – and so
are the corresponding optima and approximation ratios. For
instance, when dealing with dissimilarity information and
costs, we have OptCostD = minT CostD(T ) and the goal
is to find T so as to make the ratio CostD(T )/OptCostD as
small as possible.

Optimizing the above objectives exactly is know to be NP-
hard (Dasgupta, 2016; Cohen-addad et al., 2019), hence the
recent flurry of papers (e.g., (Dasgupta, 2016; Cohen-addad
et al., 2019; Charikar et al., 2019a;b; Alon et al., 2020;
Chatziafratis et al., 2020b; Naumov et al., 2020)) looking
for fast approximation algorithms.

In this paper, we are specifically interested in HC algorithms
having the sequential property, as defined next.

Definition 2.1. Given a set of n items X = {x1, . . . , xn},
denote by Ti = A(〈x1, . . . , xi〉) the (random) output of
a HC algorithm A having input {x1, . . . , xi}, and let
T ′ = Ins(T, x) denote a (randomized) insertion operation

2 In these notations, we leave the dependence on [wi,j ] or [di,j ]
implicit, no ambiguity will arise.

3 This is a natural dissimilarity metric, although it does not
seem to have been investigated previously.
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Objective Type Name Symbol
max

∑
i,j wij(n− |Tij |) Sim. Rev. MW Rev. RevS

max
∑
i,j dij |Tij | Diss. Rev. CKMM Rev. RevD

min
∑
i,j wij |Tij | Sim. Cost Dasgupta Cost CostS

min
∑
i,j dij(n− |Tij |) Diss. Cost MW Cost CostD

Table 1: HC objectives. In the above, we abbreviated “similarity”
by “Sim.”, “Dissimilarity” by “Diss., and “Revenue” by “Rev”.
The type of objective refers to whether it deals with similarity or
dissimilarity information and that the goal is to maximize (revenue)
or minimize (cost).

that adds a new leaf x to tree T , producing in output the
augmented tree T ′. We say that A has the sequential prop-
erty w.r.t. Ins if, for all item sets X , and all i = 1, . . . , n,
the random variable Ti has the same distribution over trees
as the random variable Ins(Ti−1, xi), where T0 is the empty
tree.

In other words, A has the sequential property if it admits
an exogenous insertion procedure Ins such that building
the tree incrementally by inserting one leaf after the other
through Ins yields the same statistical properties as if the
tree were constructed by A looking at all data in batch.
Hence, if the tree constructed by A has approximation ra-
tio r (in expectation over the internal randomization of A)
then so does the tree incrementally constructed by Ins (in
expectation over the internal randomization of Ins). Also,
observe that this equivalence holds independent of the order
in which Ins processes the n items.

In the next section (Section 3), we develop a general frame-
work for hyperplane-based hierarchical clustering which
encompasses a family of dynamic algorithms for that task.
Then, in the two subsequent sections, we shall describe and
analyze two members of this family. The first one (Random
Cut Tree Algorithm, Section 4) operates with axis-aligned
hyperplanes, and is suited to the `1-based objectives con-
tained in Table 1, on a variety of definitions for wi,j and
di,j . The second one (Uniform Radial Random Hyperplane
Algorithm, Section 5) operates with general hyperplanes,
and is suited to the analogous `2-based objectives (Theorem
5.2). In addition, it enjoys an unconditional approximation
guarantee (Theorem 5.3) for the weights defined by case 1
of Table 1. For both algorithms, we show that they can (i) be
implemented efficiently, (ii) cater to `1-based and `2-based
geometry respectively, and (iii) enjoy good approximation
guarantees.

3. Hyperplane-based hierarchical clustering
Let Graffd−1(Rd) be the manifold of all (d − 1)-
dimensional affine subspaces (that is, hyperplanes) of Rd.
Let µ be a nonnegative measure on Graffd−1(Rd) that is
finite on compact sets. With such a µ, we associate a HC
algorithm Aµ, as described next.

Objective Metric (L1) Approx. Random
1. MW Rev* L1-similarity 0.73 5/9
2. Dasgupta Cost* L1-similarity 2 ∞
3. CKMM Rev L1-distance 0.90 2/3
4. MW Cost L1-distance 2 ∞
5. MW Rev Inverse distance 0.80 1/3
6. Dasgupta Cost Inverse distance 1.5 ∞
7. MW Rev Gauss. Kernel Figure 2 1+2δ

3

8. MW Rev Abs. Exp. Kernel Figure 2 1+2δ
3

Table 2: RCT approximation guarantees for different objectives
and metrics. All metrics are L1-based. Only the first two cases
(*) require Assumption 4.4. The last two cases assume that the
weights are in [δ, 1], for some δ ∈ (0, 1]. The last column is the
approximation achieved by the baseline RANDOM that returns a
binary tree on the leaves, which is chosen uniformly at random.

Given finite X ⊂ Rd as input, denote by Conv(X) the
convex hull of X . Then the set HX of hyperplanes of
Graffd−1(Rd) that intersect Conv(X) is compact, and
hence µ(HX) < ∞. Let µX = µ/µ(HX) be the prob-
ability measure induced on HX by restricting to HX and
normalizing to 1. On input X , algorithm Aµ:

1. Samples a random hyperplane HX ∼ µX ;

2. Partitions X into Y and Z according to HX (points
lying on HX can be arbitrarily assigned to either Y or
Z).

3. Recurses on Y and Z using the probability measures
µY and µZ , respectively.

Applying the above until we arrive at singleton sets, we
construct a (random) binary tree T with leaves the points
in X , based on the partitions induced by the sampled hy-
perplanes. Such T is the output of Aµ on input X . The
key observation now is that for any set of points Y ′ with
Conv(Y ) ⊆ Conv(Y ′), we have HY ⊆ HY ′ , and thus
µY = µY ′ |Y , the probability measure of µY ′ conditioned
on Y . Thus we may rephrase Step 3 above as rejection-
sampling from µY ′ conditioned on the sampled hyperplane
intersecting Conv(Y ) (resp. Conv(Z)).

If we have a way of sampling efficiently from the hyperplane
probability measures, the main property of algorithm Aµ is
that it leads to a natural algorithm for HC with the sequential
property.4

Theorem 3.1. Let µ be a nonnegative measure on
Graffd−1(Rd) which is finite on compact sets, and suppose
there is an efficient way to sample from µX for all finite sets
X . Then, there is an efficient insertion operation Insµ such
that Aµ has the sequential property w.r.t. Insµ.

In particular, recall that this means that the (random) tree
generated by Insµ is independent of the order in which Ins
processes the inserted items. The general pseudocode for

4 All proofs are given in the supplementary material.
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Insµ is given in Appendix A. In the following sections, we
specify particular measures µ from which hyperplanes can
be efficiently sampled and which additionally give rise to
HC algorithms having the sequential property, and exhibit-
ing good approximation ratios for the metrics of Section
2. The associated insertion operations are presented in the
corresponding sections of the appendix.

Remark 3.2. It is important to stress that the above algo-
rithm, as well as its by-products in later sections, do not take
as input the pairwise information encoded by [wi,j ] or [di,j ].
These algorithms are purely geometric algorithms that will
exhibit strong approximation properties, provided the pair-
wise information we use at evaluation time to compute the
metrics in Table 1 is reasonably aligned with the geometry
these algorithms rely upon. Further examples of this sort
are the Projected Random Cut algorithm in (Charikar et al.,
2019b), as well as the dynamic algorithms we compare to
in our experimental investigation (Section 6).

4. Random Cut Tree approximation
In this section we discuss a special case of hyperplane-based
clustering known as the Random Cut Tree (RCT) which has
been introduced by Guha et al. (2016) in the context of
anomaly detection. We provide approximation results for
related similarity and dissimilarity objectives (from Table 1).
In the case of dissimilarity objectives, we use the distances
themselves as the dissimilarity measure.

An RCT (batch algorithm) T (X) on item set X ⊆ Rd is a
tree-valued random variable generated as follows:

• Draw random index I ∈ [d] with probability P[I =
i] = li∑d

i=1 li
, where

li = max
x∈X

(x)i −min
x∈X

(x)i ,

with (x)i denoting the i-th component of vector x.
Hence the above probability is proportional to the side
lengths of the (axis-parallel minimum) bounding box
of X;

• Draw threshold θ uniformly at random in the interval
[minx∈X xI ,maxx∈X xI ];

• Let X1 = {x |x ∈ X, (x)I ≤ θ} and X2 = X\X1

correspond to the left and right subtrees of the root
of T (X), and recurse on X1 and X2, until T (X) is a
(singleton) leaf.

We have the following characterization of RCT:

Fact 4.1. Fix dimension d, and let Hi,v = {x ∈ Rd |xi =
v}, where xi is the i-th component of vector x. Let then
H = {Hi,v | i ∈ [d], v ∈ R} be the set of axis-parallel

hyperplanes. For H′ ⊂ H, define µRCT by µRCT(H′) =∑d
i=1 µL({v ∈ R |Hi,v ∈ H′}), where L is the standard

Lebesgue measure on R. Then AµRCT
(resp. InsµRCT

) is the
offline (resp. dynamic) RCT algorithm.

In (Guha et al., 2016), it is shown (Theorem 3 therein)
that an RCT can be maintained over a set of points X that
is dynamically updated with streaming data in sub-linear
update time and O(dn) space. The pseudocode for the
insertion operation (adapted from (Guha et al., 2016)) is
given in Appendix B.

The analysis of RCT with respect to the HC objectives in
Table 1 rests on an important restriction property that this
algorithm enjoys.

Definition 4.2. Given tree T on the set of leaves X , and
R ⊆ X , the restriction of T to R is the tree obtained by
deleting the leaves of T in X \R (along with their edges),
and contracting edges to obtain a binary tree whose leaves
are identified with R. In particular, if R is a triplet R =
{xi, xj , xk}, the restriction of T to R when lcaT (xi, xj) is
a descendant of lcaT (xi, xk) is the tree where xi, xj are
siblings, and xk is a sibling of their parent (and similarly
for the other cases). See Figure 1 (right) for an illustration.

Lemma 4.3. LetX ⊆ Rd be a set of items. For anyR ⊆ X ,
the restriction of the RCT T (X) (that is, the output of RCT
on input X) to subset R has the same distribution as T (R).

In fact all algorithms from the familyAµ enjoy this property
(see the supplementary material for a proof). We will use
this result in the particular case of R being a generic triplet
{xi, xj , xk}.

RCT as characterized in Fact 4.1 can be seen as naturally
operating in an `1 geometry. We now introduce a necessary
assumption in order to obtain competitive approximation
guarantees for RCT in the case of similarity-based objec-
tives (MW Revenue and Dasgupta Cost) for the `1 similarity
measure wi,j = D − di,j , where di,j = ||xi − xj ||1 and
D = maxi,j di,j . As we shall see momentarily, this assump-
tion will not be required by dissimilarity-based objectives
(CKMM Revenue and MW Cost).

Assumption 4.4. We assume
(
n
3

)−1∑
i<j<k(di,j + di,k +

dj,k)/2 ≤ D = maxi,j di,j . Observe that we have
maxi,j,k(di,j + di,k + dj,k)/2 ≤ 3D

2 always, so this also
follows under the modified similarity wi,j = 3

2D − di,j .
The weights are now in the range [D2 ,

3D
2 ], and in this

case, RANDOM gives a baseline revenue approximation
of 3D/2+D/2+D/2

3(3D/2) = 5
9 .

The reason for Assumption 4.4 is the following. RCT is
a geometric algorithm whose cuts of triplets {xi, xj , xk}
depend on the distances di,j , di,k, and dj,k. Allowing the
similarity weights wi,j to have ratios substantially differ-
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ent from the corresponding ratios of the di,j’s can lead to
adversarial situations, as we illustrate next.
Example 4.5. Let V ⊂ R3 consist of the points x1 =
(1 + ε, 0, 0), x2 = (0, 1, 0), and x3 = (0, 0, 1). We have
D = d1,2 = d1,3 = 2 + ε, d2,3 = 2, w1,2 = w1,3 = 0, and
w2,3 = ε. Thus RevOptS = ε. On the other hand, being
based on the `1 geometry, RCT makes the cuts with approxi-
mately equal probabilities, which leads to an approximation
ratio of 1/3 +O(ε), that is, very close to the trivial approx-
imation ratio of 1/3 achieved on RevS by a random binary
tree (Moseley & Wang, 2017).

Theorem 4.6. RCT satisfies the approximation guarantees
for the combination of objectives and metrics listed in Table
2. In detail, for each combination of revenue (resp. cost)
objective Obj, metric m, and approximation factor α in
Table 2, we have the approximation guarantee that for all
X ⊆ Rd endowed with metric m, E[Obj(RCT(X))] ≥
αOptObj(X) (resp. ≤), where the expectation is over the
internal randomization of RCT, and X satisfies Assumption
4.4 in the first two cases.

While Theorem 4.6 covers a diverse range of objectives and
metrics, the proof technique is similar. We sketch the main
idea in the case of MW Revenue with `1-similarity.

The following length-proportional cut property of the RCT
algorithm is a main ingredient of our approximation results.

Lemma 4.7. Given input X and a cut HX sampled from
µX , the probability pi,j that xi and xj are split by H is
proportional to their `1 distance di,j .

A consequence of Lemma 4.7 which we need for the proof
of Theorem 4.6 is the following lemma.
Lemma 4.8. Fix a triplet {xi, xj , xk} of X . Then the prob-
ability, pi,j|k, that RCT T (X) separates xi and xj from xk
is given by

pi,j|k =
di,k + dj,k − di,j
di,j + di,k + dj,k

,

and similarly for pi,k|j and pj,k|i.

We use below the cyclic sum notation
∑

cyc f(i, j, k) =

f(i, j, k) + f(j, k, i) + f(k, i, j). For a tree T , and a triplet
of leaves i, j, k, we write ij|k to mean that lcaT (i, j) is a
descendant of lcaT (i, k).

Proof of Theorem 4.6– sketch. Fix input X =
{x1, . . . , xn}. Given a tree T on X , note that we
can rewrite the MW Revenue

∑
i,j wi,j(n − |Ti,j |) as the

triplet-wise sum
∑
i<j<k Revi,j,k(T ), where

Revi,j,k(T ) =


wi,j if ij|k in T
wi,k if ik|j in T
wj,k if jk|i in T .

(1)

Figure 2: Approximation ratio for absolute exponential kernel and
Gaussian kernel with weights wi,j ∈ [δ, 1]. RCT (resp. URRH)
satisfy these guarantees with the `1 (resp. `2) distances in these
kernels.

Now, from Lemma 4.8, for tree TRCT(X) computed by RCT
on X we can write

E[Revi,j,k(T (X))] =
∑
cyc

di,k + dj,k − di,j
di,j + di,k + dj,k

(D − di,j) .

On the other hand, we also have the upper bound
Revi,j,k(TOpt(X)) ≤ max{D− di,j , D− di,k, D− dj,k},
where TOpt(X) is the optimal tree on X . It now remains
to use these expressions to prove the required approxima-
tion bound, which reduces to a tractable optimization prob-
lem.

We have shown that RCT enjoys good approximation guar-
antees for `1-based measures. In the following section, we
introduce a new algorithm URRH that matches RCT ’s ap-
proximation guarantees for `2-based similarity measures.
To conclude this section, we introduce a simple extension
of RCT that achieves weaker guarantees than URRH, but
is of theoretical interest. Namely, we define the Projected
Random Cut Tree (PRCT) algorithm as follows:

Definition 4.9. Given input X and projection dimension
k, PRCT(k) applies RCT to (Pxi)

n
i=1, where P is a k × d

Gaussian projection matrix with i.i.d. entries.

We remark that when k = 1, PRCT reduces to the projected
random cut algorithm from (Charikar et al., 2019b).

We have the following guarantees for PRCT:

Theorem 4.10. Fix ε, δ > 0. Consider a revenue case
from Table 2 (cases 1, 3, 5, 7, 8) but with the correspond-
ing `2 metric. Let α be the corresponding approximation
guarantee of RCT under `1 metric. Then there exists an ab-
solute constant c such that with probability 1−δ, PRCT with
k = c log(n/δ)/ε2 achieves an expected approximation of
α− ε in the `2 metric.
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Theorem 4.11. Fix ε, δ > 0. Consider a cost case from
Table 2 (cases 2, 4, 6) but with the corresponding `2 metric.
Let α be the corresponding approximation guarantee of
RCT under `1 metric and assume that the weights lie in
the range [γ, 1] for arbitrarily small but positive γ. Then
there exists an absolute constant c such that with probability
1− δ, PRCT with k = c log(n/δ)/ε2 achieves an expected
approximation of α+ ε in the `2 metric.

5. Uniform radial random hyperplane
approximation

The second hyperplane-based HC algorithm we present
is the URRH (Uniform Radial Random Hyperplane) Algo-
rithm.

At each recursive step, URRH takes as input a subset C ⊆ X
of the input items X , and any (d − 1)-sphere S(C) con-
taining all points of C. The algorithm randomly cuts S(C)
to split C into C ′ and C ′′. Whenever the cut makes either
C ′ or C ′′ empty, the hyperplane is rejected, and a new cut
is drawn until C ′, C ′′ 6= ∅. Finally, as in RCT, the URRH
algorithm recurses on C ′ and C ′′ until the input becomes a
singleton.

The details (pseudocode) of URRH are given in Appendix C.
Below we give an idea of the key steps.

Each random hyperplane is selected through a two-step
process: (i) A direction in Rd is selected by choosing a
unit vector p uniformly at random, and (ii) a hyperplane
orthogonal to p is selected among those intersecting S(C).
More precisely, at each recursive step, URRH operates as
follows:

• Direction p is selected uniformly at random from Sd−1,
the unit (d− 1)-sphere;

• Let S(C) be any (d−1)-sphere containing all items in
C (e.g., S(C) is the circumsphere of Conv(C)).5 Let r
and c be the radius and the center of S(C). Hyperplane
Hp,b(S(C)) := {x ∈ Rd : x · p = b} is generated
by drawing b uniformly at random from the interval
[c · p− r, c · p+ r].

• If Hp,b(S(C)) cuts C, i.e., it splits C into C ′ and C ′′

such that C ′, C ′′ 6= ∅, then we recurse on C ′ and C ′′,
otherwise we reject Hp,b(S(C)) and generate it again
(by re-drawing p and b)).

From the above, a clear computational trade-off emerges
between calculating a (d − 1)-sphere S(C) having small
radius, and the number of hyperplanes that get rejected. As
mentioned in Appendix C, there are several strategies to

5 That is, the smallest sphere enclosing all the points of
Conv(X).

resolve this trade-off. For now, we just anticipate that, for
any d ∈ N and any C, the probability that Hp,b(S(C)) is
not rejected is at least c√

d
for a constant c, and decreases

linearly in the radius of the sphere S currently used by URRH
(see the formal statement in Lemma C.5 in Appendix C).

We have the following characterization of URRH as a mem-
ber of the general hyperplane-based family.

Fact 5.1. Fix dimension d, letHu,v = {x ∈ Rd |x ·u = v},
and H = {Hu,v |u ∈ Sd−1, v ∈ R} be the set of all
hyperplanes in Rd. Define µURRH(H′) =

∫
u∈Sd−1 µL({v ∈

R |Hu,v ∈ H′}dν for H′ ⊂ H, where µL is the Lebesgue
measure on R and ν is the uniform measure on Sd−1. Then
AµURRH

(resp. InsµURRH
) is the offline (resp. dynamic) URRH

algorithm.

In fact, URRH satisfies Lemma 4.7 with di,j now represent-
ing `2 distances. The same proof machinery for Theorem
4.6 thus applies to URRH for the case that all measures are
`2-based, and we have the following result.

Theorem 5.2. URRH satisfies the same approximation guar-
antees as RCT given in Theorem 4.6, with `2-based mea-
sures under the equivalent `2 analog of Assumption 4.4 for
the first two cases.

We also have the following unconditional approximation
ratio guarantees, for the case of RevS and similarity weights
defined as wi,j := D − di,j , where di,j is the Euclidean
distance between xi and xj , and D = max1≤i<j≤n di,j is
the maximal distance over all pairs of points inX . The result
states that the MW Revenue of URRH is strictly larger than
the trivial 1

3 approximation ratio6 for any input dimension
d > 3, whenever n is not too small w.r.t. to d.

Theorem 5.3. Given any input set X = {x1, . . . , xn} ⊆
Rd, with d > 3, the approximation ratio E[RevS(URRH(X))]

OptRevS

is

lower bounded by 1
3 + g(d, n), where g(d, n) is a function

of d and n such that g(d, n) > 0 for all n > 605
116d ≈ 5.22d.

In particular, if n ≥
(

9 + 38
d−3.98

)
d and d > 3, we have

E[RevS(URRH(X))] ≥
(

1

3
+

1

31d3

)
OptRevS

.

In the above, the expectation is over the internal randomiza-
tion of URRH.

Notice that condition d > 3 does not really limit the scope
of Theorem 5.3, since one can always pad the input vectors
with dummy components that do not alter pairwise distances,
so as to force d ≥ 4. Moreover, it is also worth observing
that for all d < 8, the requirement n ≥

(
9 + 38

d−3.98

)
d

6 Recall that approximation ratio 1/3 can be trivially achieved
in expectation by a randomly generated tree (Moseley & Wang,
2017).
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becomes less stringent if one pads the input so as to force
d = 8. This implies that 148 =

⌈(
9 + 38

8−3.98

)
8
⌉

input
points are always sufficient when d ≤ 8. Finally, the special
case d = 1 can be treated separately (see Theorem D.1 in
the appendix) obtaining an expected MW revenue larger
than the one of Theorem 5.3.

As mentioned in Fact 5.1, URRH has the sequential property
(Definition 2.1). The pseudocode of the insertion procedure
is detailed in Algorithm 5 in Appendix C.

6. Experiments
In this section, we demonstrate experimentally that RCT
and URRH perform competitively compared to other well-
known dynamic HC algorithms. In particular, we compare
to BIRCH (Zhang et al., 1996), PERCH (Kobren et al., 2017),
and GRINCH (Monath et al., 2019). Additionally, we com-
pare all algorithms to the RANDOM baseline that builds a
tree at random, and to PROJECTED RANDOM CUT (Charikar
et al., 2019b) on a line, which can be made dynamic by
applying RCT to the projected dataset. The objectives con-
sidered are MW Revenue, MW Cost, CKMM Revenue and
Dasgupta Cost.

We evaluate these algorithms on both synthetic and real-
world datasets. For synthetic datasets, we evaluate the
performance of these algorithms in both noisy and well-
separated settings. In particular, we draw 10K examples
from standard Gaussians in R2. In the noisy setting, we
draw from one Gaussian, and in the well-separated setting,
we draw from two Gaussians with centers separated by
four standard deviations in one direction. We denote these
datasets by OneG, resp. TwoG. For real-world datasets,
we compare the algorithms on the following data of vary-
ing scale: MNIST, ALOI (Geusebroek et al. (2005)), and
ILSVRC12 (Deng et al. (2009)) trained with ResNet34
architecture. We note that when considering our (four) ob-
jectives, the resulting trees must be binary. All algorithms
other than BIRCH output binary trees and thus do not need
to be modified. In order to handle BIRCH, we follow the
methodology of (Naumov et al., 2020) and simply assign
the value of a random partitioning to all data point triplets
that share the same lca in the tree. For an extended explana-
tion see (Naumov et al., 2020), Appendix B.1 therein. For
hardware, we used machines with a maximum of 125GB of
RAM and 16 CPUs.

Methodology. For each of these experiments, we
randomly permute the datasets and stream each one
in the preprocessed order consistently across algo-
rithms. We evaluate each of the aforementioned mea-
sures on the produced hierarchies, as follows: We
sample 10K triplets T ′ from each dataset, then com-
pute the measures restricted to these triplets. For the

MW Revenue, this is
∑

(i,j,k)∈T ′ Revi,j,k(T ) (see Equa-
tion 1). We also report the measures for RANDOM :∑

(i,j,k)∈T ′(wi,j + wj,k + wi,k)/3 and an upper (resp.
lower) bound for the optimal revenue (resp. cost):∑

(i,j,k)∈T ′ max (resp. min )(wi,j , wj,k, wi,k) (see (Nau-
mov et al., 2020)).7 Finally, for RCT, URRH and PROJECTED
RANDOM CUT, the output trees are non-deterministic, so
we report the average over 10 different runs.

Table 3 compares MW Revenue using RBF kernel sim-
ilarity RBF(x, y) = e−||x−y||

2
2/2σ

2

across all algorithms.
Note that this is a function of the `2 distance, which we
have chosen for uniform comparison across all algorithms.
We choose σ as the mean `2 distance between pairs of
points. This is to ensure a reasonable distribution of simi-
larity weights. We defer the results for MW Cost, CKMM
Revenue and Dasgupta Cost to the appendix, but note that
they show similar trends. The following conclusions can be
drawn:

(1) RCT and URRH achieve the highest revenue for OneG, a
noisy setting in which there is no obvious way to split
the data into two clusters at the root level. By contrast,
they are outperformed by BIRCH, PERCH and GRINCH
on TwoG, where the two clusters are well separated. We
believe this can be explained by the fact that the base-
line approaches rely heavily on clusters and/or nearest
neighbor information to build the trees. On the other
hand, RCT and URRH split the data by random cuts that
are less sensitive to local data densities. Thus, the base-
lines take advantage of well-separated datasets, while
RCT and URRH are more robust on noisy data.

(2) BIRCH, PERCH and GRINCH perform reasonably well
for these objectives even though they are not explicitly
designed to do so. We offer two reasons for this. First,
in many of our experiments, RANDOM turned out to per-
form reasonably (and sometimes surprisingly) well; a
similar phenomenon has been experimentally observed
in (Naumov et al., 2020). When this happens, there
is not much room for improvement across the various
algorithms. Second, in order to ensure a fair compar-
ison, in our experiments each dataset was randomly
shuffled. This does not affect RCT and URRH, but it
might have potentially eliminated unfavorable orderings
of data for BIRCH, PERCH and GRINCH, thereby giving
these competitors some advantage.

(3) RCT and URRH perform competitively compared to all
other algorithms on the real-world datasets we tested,
where clusters are moderately well-separated. Unlike
BIRCH, PERCH and GRINCH, the practical relevance of
RCT and URRH is complemented by their approximation

7 These metrics are computed by sampling triplets, since exact
computation would be unwieldy. The extra variance generated in
the results turns out to be negligible.
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MNIST ILSVRC12 ALOI OneG TwoG

RCT 0.93±0.01 0.94±0.0 0.91±0.01 0.9±0.01 0.9±0.06
URRH 0.93±0.0 0.94±0.0 0.9±0.01 0.9±0.01 0.9±0.03
BIRCH 0.93 0.94 0.91 0.87 0.98
PERCH 0.92 0.94 0.91 0.87 0.90

GRINCH 0.93 0.93 0.89 0.88 0.97
PROJECTED RANDOM CUT 0.92±0.0 0.94±0.0 0.88±0.01 0.87±0.0 0.86±0.07

RANDOM 0.92 0.93 0.85 0.74 0.71
UPPER BOUND 1.0 1.0 1.0 1.0 1.0

Table 3: MW Revenue approximation factors using RBF kernel similarity; ↑ is better. Each revenue is shown as a percentage of the
corresponding upper bound for that dataset.

guarantees.

7. Conclusions and ongoing activity
We have introduced the general framework of hyperplane-
based HC for data streams in metric spaces. We have given a
general family of algorithms indexed by a sampling probabil-
ity over hyperplanes. Each algorithm in this family admits
two formulations, batch and sequential, whose (statistical)
equivalence ensures a desirable robustness to data arrival
order. We have studied two fast HC algorithms originating
from this general family, and provided a number of approxi-
mation guarantees w.r.t. known objective functions, some of
which improve on the available literature on HC. In addition,
the algorithms are simple to implement, requiring only the
selection of a splitting hyperplane in each node. New points
are inserted as siblings of existing nodes, without the need
to perform other changes in the tree structure.

We have run initial experiments on synthetic and real-world
metric data, where the trend that seems to emerge is that our
randomized algorithms are on par with celebrated dynamic
HC baselines in the presence of moderate noise levels, tend
to outperform these baselines with higher noise rate and be
outperformed in the opposite case of clear cluster separation.

An interesting research direction is to generalize the family
of hyperplane-based HC to richer separation classes, which
would give us higher flexibility, while still retaining the
crucial benefits of the dynamic solutions.

We conclude by mentioning a couple of additional results
we obtained for the MW Revenue maximization problem
on one-dimensional data, with weights wi,j := D − di,j ,
and n→∞. We proved (see Appendix D) that the approxi-
mation ratio of RCT is at least 0.8303. We also developed
two very fast deterministic algorithms for the batch setting,
achieving approximation ratios of 3

4 and 1
2 , respectively. In-

terestingly enough, the latter is always obtained by simply
building a caterpillar tree, and has also a 3

4 -approximation
ratio for the CKMM Revenue.
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