
Differentially Private Sliced Wasserstein Distance

Supplementary material
Differentially Private Sliced Wasserstein

Distance

8. Appendix
8.1. Lemma 1 and its proof

Lemma 1. Assume that z ∈ Rd is a unit-norm vector and
u ∈ Rd a vector where each entry is drawn independently
from N (0, σ2

u). Then

Y
.
=
(
z>

u

‖u‖2

)2

∼ B(1/2, (d− 1)/2)

where B(α, β) is the beta distribution of parameters α, β.

Proof. At first, consider a vector of unit-length in Rd, say
e1, that can be completed to an orthogonal basis. A change
of basis from the canonical one does not change the length
of a vector as the transformation is orthogonal. Thus the
distribution of

(e>1 u)2

‖u‖22
=

(e>1 u)2∑d
i u

2
i

does not depend on e1. e1 can be either the vector
(1, 0, · · · , 0) in Rd or z (as z is an unit-norm vector). How-
ever, for simplicity, let us consider e1 as (1, 0, · · · , 0), we
thus have

(e>1 u)2

‖u‖22
=

u2
1∑d
i u

2
i

where the ui are iid from a normal distribution of standard
deviation σu. Hence, because u1 and the {ui}di=2 are inde-
pendent, the above distribution is equal to the one of

σ2
uV

σ2
uV + σ2

uZ

where V = u2
1/σ

2
u ∼ Γ(1/2) (and is a chi-square distribu-

tion)) and Z = (
∑d
i=2 u

2
i)/σ

2
u ∼ Γ((d − 1)/2) and thus

V/(V + Z) follows a beta distribution B(1/2, (d− 1)/2).
And the fact that z is also a unit-norm vector concludes the
proof.

A simulation of the random Y and resulting histogram is
depicted in Figure 7.

Remark 3. From the properties of the beta distribution,
expectation and variances are given by

EY =
1

d
and VY =

2(d− 1)

d2(d+ 2)

Remark 4. Note that if z is not of unit-length then Y fol-
lows ‖z‖B(1/2, (d− 1)/2)

Figure 7. Estimation of the pdf of Y in Lemma 1, for a fixed z,
based on a histogram over 100000 samples of u. Here, we have
d = 5.

8.2. Lemma 2 and its proof

Lemma 2. Suppose again that z is unit norm. With proba-
bility at least 1− δ, we have

‖XU−X′U‖2F ≤ w(k, δ), (9)

with

w(k, δ)
.
=
k

d
+

2

3
ln

1

δ
+

2

d

√
k
d− 1

d+ 2
ln

1

δ
(10)

Proof. First observe that:

H
.
= ‖XU−X′U‖2F = ‖(X−X′)U‖2F

=
∥∥z>U∥∥2

2
=

k∑
j=1

(
z>

uj
‖uj‖

)2

=

k∑
j=1

Yj , where Yj
.
=

(
z>

uj
‖uj‖

)2

.

Therefore, H is the sum of k iid B(1/2, (d − 1)/2)-
distributed random variables.

It is thus possible to use any inequality boundingH from its
mean to state a highly probable interval forH . We here use
inequality, that is tighter than Hoeffding inequality, when-
ever some knowledge is provided on the variance of the
random variables considered. Recall that it states that if
Y1, . . . , Yk and zero-mean independent RV with such that
|Yi| ≤M a.s:

P

 k∑
j=1

Yj ≥ t

 ≤ exp

(
− t2

2
∑k
j=1 EY

2
j + 2

3Mt

)

For H , we have

EH =

k∑
j=1

E

(
z>

uj
‖uj‖

)2

=

k∑
j=1

1

d
=
k

d

Differentially Private Sliced Wasserstein Distance

and Bernstein’s inequality gives

P

(
H ≥ k

d
+ t

)
≤ exp

(
− t2

2kvd + 2
3 t

)
,

where

vd =
2(d− 1)

d2(d+ 2)

is the variance of each (z>uj/‖uj‖)2 beta distributed vari-
able. Making the right hand side be equal to δ, solving the
second-order equation for t give that, with probability at
least 1− δ

H ≤ k

d
+

2

3
ln

1

δ
+

√
2kvd ln

1

δ

The proof follows directly from Lemma 1 and the fact

From the above lemma, we have a probabilistic bound on
the sensitivity of the random direction projection and SWD
. The lower this bound is the better it is, as less noise needed
for achieving a certain (ε, δ)-DP. Interestingly, the first and
last terms in this bound have an inverse dependency on the
dimension. Hence, if the dimension of space in which the
DP-SWD has to be chosen, for instance, when consider-
ing latent representation, a practical compromise has to be
performed between a smaller bound and a better estima-
tion. Also remark that if k < d, the bound is mostly dom-
inated by the term log(1/δ). Compared to other random-
projection bounds (Tu) which have a linear dependency in
k. For our bound, dimension also help in mitigating this
dependency.

8.3. Proof of the Central Limit Theorem based bound

Proof. Proof with the Central Limit Theorem According
to the Central Limit Theorem — whenever k > 30 is the
accepted rule of thumb — we may consider that

H

k
∼ N

(
1

d
,
vd
k

)
i.e. (

H

k
− 1

d

)√
k

vd
∼ N (0, 1)

and thus

P

((
H

k
− 1

d

)√
k

vd
≥ t

)
≤ 1− Φ(t)

Setting 1 − Φ(t) = δ gives t = Φ−1(1 − δ) .
= z1−δ , and

thus with probability at least 1− δ

H ≤ k

d
+ z1−δ

√
kvd

=
k

d
+
z1−δ

d

√
2k(d− 1)

d+ 2

8.4. Proof of Property 2.

Property 2. DPσSWDqq(µ, ν) is symmetric and satisfies
the triangle inequality for q = 1.

Proof. The symmetry trivially comes from the definition of
DPσSWDqq(µ, ν) that is

DPσSWDqq(µ, ν) = Eu∼Sd−1W q
q (Ruµ ∗ Nσ,Ruν ∗ Nσ)

and the fact the Wasserstein distance is itself symmetric.

Regarding the triangle inequality for q ≥ 1, our result is
based on a very recent result showing that the smoothed
Wasserstein for q ≥ 1 is also a metric (Nietert et al., 2021)
(Our proof is indeed valid for q ≥ 1, as this recent result
generalizes the one of (Goldfeld & Greenewald, 2020)).
Hence, we have

DPσSWDq(µ, ν) =
[
Eu∼Sd−1W q

q (Ruµ ∗ Nσ,Ruν ∗ Nσ)
]1/q

≤
[
Eu∼Sd−1

(
Wq(Ruµ ∗ Nσ,Ruξ ∗ Nσ)

+Wq(Ruξ ∗ Nσ,Ruν ∗ Nσ)
)q]1/q

≤
[
Eu∼Sd−1W q

q (Ruµ ∗ Nσ,Ruξ ∗ Nσ)
]1/q

+
[
Eu∼Sd−1W q

q (Ruξ ∗ Nσ,Ruν ∗ Nσ)
]1/q

≤ DPσSWDq(µ, ξ) + DPσSWDq(ξ, ν)

where the first inequality comes from the fact that the
smoothed Wassertein distanceWq(µ∗Nσ, ν∗Nσ) is a met-
ric and satisfies the triangle inequality and the second one
follows from the application of the Minkowski inequality.

8.5. Experimental set-up

8.5.1. DATASET DETAILS

We have considered 3 families of domain adaptation prob-
lems based on Digits, VisDA, Office-31. For all these
datasets, we have considered the natural train/test number
of examples.

For the digits problem, we have used the MNIST and the
USPS datasets. For MNIST-USPS and USPS-MNIST, we
have respectively used 60000-7438, 7438-10000 samples.
The VisDA 2017 problem is a 12-class classification prob-
lem with source and target domains being simulated and
real images. The Office-31 is an object categorization prob-
lem involving 31 classes with a total of 4652 samples.
There exists 3 domains in the problem based on the source
of the images : Amazon (A), DSLR (D) and WebCam (W).
We have considered all possible pairwise source-target do-
mains.

Differentially Private Sliced Wasserstein Distance

For the VisDA and Office datasets, we have considered
Imagenet pre-trained ResNet-50 features and our feature
extractor (which is a fully-connected feedforword net-
works) aims at adapting those features. We have used pre-
trained features freely available at https://github.
com/jindongwang/transferlearning/blob/
master/data/dataset.md.

8.5.2. ARCHITECTURE DETAILS FOR DOMAIN
ADAPTATIONS

Digits For the MNIST-USPS problem, the architecture of
our feature extractor is composed of the two CNN layers
with 32 and 20 filters of size 5 × 5. The feature extractor
uses a ReLU activation function a max pooling at the first
layer and a sigmoid activation function at the second one.
For the classification head, we have used a 2-layer fully
connected networks as a classifier with 100 and 10 units.

VisDA For the VisDA dataset, we have considered pre-
trained 2048 features obtained from a ResNet-50 followed
by 2 fully connected networks with 100 units and ReLU
activations. The latent space is thus of dimension 100.
Discriminators and classifiers are also a 2 layer fully con-
nected networks with 100 and respectively 1 and “number
of class” units.

Office 31 For the Office dataset, we have considered pre-
trained 2048 features obtained from a ResNet-50 followed
by two fully connected networks with output of 100 and
50 units and ReLU activations. The latent space is thus of
dimension 50. Discriminators and classifiers are also a 2
layer fully connected networks with 50 and respectively 1
and “number of class” units.

For Digits, VisDA and Office 31 problems, all models have
been trained using Adam with learning rate validated on the
non-private model.

8.5.3. ARCHITECTURE DETAILS FOR GENERATIVE
MODELLING.

For the MNIST, FashionMNIST generative modelling
problems, we have used the implementation of MERF
available at https://github.com/frhrdr/
dp-merf and plugged in our DPσSWD distance. The
generator architecture we used is the same as theirs and
detailed in Table 3. The optimizer is an Adam optimizer
with the default 0.0001 learning rate. The code dimension
is 10 and is concatenated with the one-hot encoding of the
10 class label, leading to an overall input distribution of
20.

For the CelebA generative modelling, we used the imple-
mentation of Nguyen et al. (2021) available at https:
//github.com/VinAIResearch/DSW. The genera-

Table 3. Description of the generator for the MNIST and Fash-
ionMNIST dataset.

Module Parameters
FC 20 - 200
BatchNorm ε = 10−5, momentum=0.1
FC 200 - 784
BatchNorm ε = 10−5, momentum=0.1
Reshape 28 x 28
upsampling factor = 2
Convolution 5 x 5 + ReLU
Upsampling factor = 2
Convolution 5 x 5 + Sigmoid

tor mixes transpose convolution and batch normalization as
described in Table 5. The optimizer is an Adam optimizer
with a learning rate of 0.0005. Again, we have just plugged
in our DPσSWD distance.

Differentially Private Sliced Wasserstein Distance

Table 4. Model hyperparameters and privacy for achieving a ε−δ privacy with ε = 10 and δ depending on the size of the private dataset.
The four first lines refers to the domain adaptation problems and the data to protect is the private one. The last two rows refer to the
generative modelling problems. The noise σ has been obtained using the RDP based moment accountant of Xiang (2020).

data δ d k N #epoch batch size σ
U-M 10−5 784 200 10000 100 128 4.74
M-U 10−5 784 200 7438 100 128 5.34
VisDA 10−5 100 1000 55387 50 128 6.40
Office 10−3 50 100 497 50 32 8.05
MNIST (b) 10−5 784 1000 60000 100 100 2.94
MNIST (c) 10−5 784 1000 60000 100 100 0.84
CelebA (b) 10−6 8192 2000 162K 100 256 2.392
CelebA (c) 10−6 8192 2000 162K 100 256 0.37

Table 5. Description of the generator for the CelebA dataset. The
input code is of size 32 and the output is 64× 64× 3.

Module Parameters
Transpose Convolution 32 - 512, kernel = 4x4, stride = 1
BatchNorm ε = 10−5, momentum=0.1
ReLU
Transpose Convolution 512 - 256, kernel = 4x4, stride = 1
BatchNorm ε = 10−5, momentum=0.1
ReLU
Transpose Convolution 256 - 128, kernel = 4x4, stride = 1
BatchNorm ε = 10−5, momentum=0.1
ReLU
Transpose Convolution 128 - 64, kernel = 4x4, stride = 1
BatchNorm ε = 10−5, momentum=0.1
ReLU
Transpose Convolution 64 - 3, kernel = 4x4, stride = 1
BatchNorm ε = 10−5, momentum=0.1
Tanh

