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Abstract

Developing machine learning methods that are
privacy preserving is today a central topic of
research, with huge practical impacts. Among
the numerous ways to address privacy-preserving
learning, we here take the perspective of com-
puting the divergences between distributions un-
der the Differential Privacy (DP) framework —
being able to compute divergences between dis-
tributions is pivotal for many machine learning
problems, such as learning generative models
or domain adaptation problems. Instead of re-
sorting to the popular gradient-based sanitization
method for DP, we tackle the problem at its roots
by focusing on the Sliced Wasserstein Distance
and seamlessly making it differentially private.
Our main contribution is as follows: we ana-
lyze the property of adding a Gaussian pertur-
bation to the intrinsic randomized mechanism of
the Sliced Wasserstein Distance, and we establish
the sensitivity of the resulting differentially pri-
vate mechanism. One of our important findings
is that this DP mechanism transforms the Sliced
Wasserstein distance into another distance, that
we call the Smoothed Sliced Wasserstein Dis-
tance. This new differentially private distribution
distance can be plugged into generative models
and domain adaptation algorithms in a transpar-
ent way, and we empirically show that it yields
highly competitive performance compared with
gradient-based DP approaches from the litera-
ture, with almost no loss in accuracy for the do-
main adaptation problems that we consider.

1. Introduction

Healthcare and computational advertising are examples of
domains that could find a tremendous benefit from the con-
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tinous advances made in Machine Learning (ML). How-
ever, as ethical and regulatory concerns become prominent
in these areas, there is the need to devise privacy preserving
mechanisms allowing i) to prevent the access to individual
and critical data and ii) to still leave the door open to the
use of elaborate ML methods. Differential privacy (DP)
offers a sound privacy-preserving framework to tackle both
issues and effective DP mechanisms have been designed
for, e.g., logistic regression and Support Vector Machines
(Rubinstein et al., 2009; Chaudhuri et al., 2011).

Here, we address the problem of devising a differentially
private distribution distance with, in the hindsight, tasks
such as learning generative models and domain adaptation
—which both may rely on a relevant distribution distance
(Lee et al., 2019; Deshpande et al., 2018). In particular,
we propose and analyze a mechanism that transforms the
sliced Wasserstein distance (SWD) (Rabin et al., 2011) into
a differentially private distance while retaining the scalabil-
ity advantages and metric properties of the base SWD. The
key ingredient to our contribution: to take advantage of the
combination of the embedded sampling process of SWD
and the so-called Gaussian mechanism.

Our contributions are as follows: i) we analyze the effect of
a Gaussian mechanism on the sliced Wasserstein distance
and we establish the DP-compliance of the resulting mech-
anism DP-SWD; ii) we show that DP-SWD boils down to
what we call Gaussian smoothed SWD, that inherits some
of the key properties of a distance, a novel result that has
value on its own; iii) extensive empirical analysis on do-
main adaptation and generative modeling tasks show that
the proposed DP-SWD is competitive, as we achieve DP
guarantees without almost no loss in accuracy in domain
adaptation, while being the first to present a DP generative
model on the 64 x 64 RGB CelebA dataset.

Outline. Section 2 states the problem we are interested
in and provides background on differential privacy and the
sliced Wasserstein distance. In Section 3, we analyze the
DP guarantee of random direction projections and we char-
acterize the resulting Gaussian Smoothed Sliced Wasser-
stein distance. Section 4 discusses how this distance can
be plugged into domain adaptation and generative model
algorithms. After discussing related works in Section 5,
Section 6 presents empirical results, showing our ability to
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effectively learn under DP constraints.

2. Problem Statement and Background

2.1. Privacy, Gaussian Mechanism and Random
Direction Projections

We start by stating the main problem we are interested in:
to show the privacy properties of the random mechanism

M(X) = XU +V,

where X € R"*? is a matrix (a dataset), U € R** 3
random matrix made of k uniformly distributed unit-norm
vectors of R? and V € R™** a matrix of k zero-mean
Gaussian vectors (also called the Gaussian Mechanism).

We show that M is differentially private and that it is the
core component of the Sliced Wassertein Distance (SWD)
computed thanks to random projection directions (the unit-
norm matrix U) and, in turn, SWD inherits' the differential
private property of M. In the way, we show that the popu-
lation version of the resulting differentially private SWD is
a distance, that we dub the Gaussian Smoothed SWD.

2.2. Differential Privacy (DP)

DP is a theoretical framework to analyze the privacy guar-
antees of algorithms. It rests on the following definitions.

Definition 1 (Neighboring datasets). Let X (e.g. X = R%)
be a domain and D = U2, X™. D, D’ € D are neighbor-
ing datasets if | D| = | D’| and they differ from one record.

Definition 2 (Dwork (2008)). Lete,0 > 0. Let A : D —
Im A be a randomized algorithm, where Im A is the image
of D through A. A'is (e, d)-differentially private, or (g, 9)-
DP, if for all neighboring datasets D, D’ € D and for all
sets of outputs O € Im A, the following inequality holds:

PLA(D) € O] < ePlA(D') € O] +§

where the probability relates to the randomness of A.

Remark 1. Note that given D € D and a randomized
algorithm A : D — Im A, A(D) defines a distribution
wp : Im A — [0,1] on (a subspace of) Im A with

VO € Im A, mp(0) x PLA(D) € O],
where < means equality up to a normalizing factor.

The following notion of privacy, proposed by Mironov
(2017), which is based on Rényi a-divergences and its con-
nections to (g, ¢)-differential privacy will ease the exposi-
tion of our results (see also (Asoodeh et al., 2020; Balle &
Wang, 2018; Wang et al., 2019)):

IThis is a slight abuse of vocabulary as the Sliced Wasserstein
Distance takes two inputs and not only one.

Definition 3 (Mironov (2017)). Lete > Qand oo > 1. A
randomized algorithm A is (o, €)-Rényi differential private
or (a,)-RDP, if for any neighboring datasets D, D’ € D,

Do (A(D)|A(D")) <€
where D, (-||-) is the Rényi a-divergence (Rényi, 1961) be-
tween two distributions (cf. Remark 1).
Proposition 1 (Mironov (2017), Prop. 3). An (a,&)-RDP
mechanism is also (¢ + %, 0)-DP, V4§ € (0,1).

Remark 2. A folk method to make up an (R)DP algorithm
based a function f : X — R? is the Gaussian mechanism
M, defined as follows:

Mo f()=Ff()+v
where v ~ N(0,0%1,). If f has Aq- (or {3-) sensitivity

Aof = 1£(D) = F(D')l2,

max
D, D’neighbors

then M, is (a, Qﬁ%f)—RDP.

As we shall see, the role of f will be played by the Ran-
dom Direction Projections operation or the Sliced Wasser-
stein Distance (SWD), a randomized algorithm itself, and
the mechanism to be studied is the composition of two ran-
dom algorithms, SWD and the Gaussian mechanism. Prov-
ing the (R)DP nature of this mechanism will rely on a high
probability bound on the sensitivy of the Random Direction
Projections/SWD combined with the result of Remark 2.

2.3. Sliced Wasserstein Distance

Let Q € R? be a probability space and P(2) the set of all
probability measures over 2. The Wasserstein distance be-
tween two measures i, v € P(€) is based on the so-called
Kantorovitch relaxation of the optimal transport problem,
which consists in finding a joint probability distribution
v* € P(Q x Q) such that

v = argmin/ c(z,2")dy(z,2") (1)
yEII(p,v) JOAXQ

where c¢(-,-) is a metric on 2, known as the ground
cost (which in our case will be the Euclidean distance),
M(p,v) = {y € P(Q x Q)|mpy = p,mxy = v} and
w1, mo are the marginal projectors of « on each of its co-
ordinates. The minimizer of this problem is the optimal
transport plan and for ¢ > 1, the g-Wasserstein distance is

W)= (i

[ cmayaea)” @
QxQ

A case of prominent interest for our work is that of one-
dimensional measures, for which it was shown by Rabin
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etal. (2011); Bonneel et al. (2015) that the Wasserstein dis-
tance admits a closed-form solution which is

- (/01 Pt —1(z>|de)%

where F~! is the inverse cumulative distribution function
of the related distribution. This combines well with the
idea of projecting high-dimensional probability distribu-
tions onto random 1-dimensional spaces and then comput-
ing the Wasserstein distance, an operation which can be
theoretically formalized through the use of the Radon trans-
form (Bonneel et al., 2015), leading to the so-called Sliced
Wasserstein Distance
SWD{ (i, v) = /SUF1 Wi(Rupt, Ruv)uq(u)du

where R, is the Radon transform of a probability distribu-
tion so that

Rupl") = / u()5(- — sTu)ds 3

withu € S¥ ! = {u € R? : |ullz = 1} be the d-
dimensional hypersphere and w4 the uniform distribution
on S4-1,

In practice, we only have access to p and v through sam-
ples, and the proxy distributions of x and v to handle are
fr =130 0y, and 2 = L 37T 5, By plugging those
distributions into Equation 3, it is easy to show that the
Radon transform depends only the projection of x on u.
Hence, computing the sliced Wasserstein distance amounts
to computing the average of 1D Wasserstein distances over
a set of random directions {u;}¥_,, with each 1D prob-
ability distribution obtained by projecting a sample (of [
or ¥) on u; by x'u;. This gives the following empirical
approximation of SWD

k

1 1

~ e Wi <n
j=1

Rdxk

SWD?

n
E 6x1;Tuja

1 m

given U a matrix of of unit-norm column u;.

3. Private and Smoothed Sliced Wasserstein
Distance

We now introduce how we obtain a differentially private
approximation of the Sliced Wasserstein Distance. To
achieve this goal, we take advantage of the intrinsic ran-
domization process that is embedded in the Sliced Wasser-
stein distance.

3.1. Sensitivity of Random Direction Projections

In order to uncover its (¢, §)-DP , we analyze the sensitivity
of the random direction projection in SWD. Let us consider

Algorithm 1 Private and Smoothed Sliced Wasserstein
Distance
Input: A public {X,} and private {X;} matrix both in
R™*4 4 the standard deviation of a Gaussian distribu-
tion, k the number of direction in SWD, ¢ the power in
the SWD.
1: // random projection
2: construct random projection matrix U € R%** with
unit-norm columns.
3: construct two random Gaussian, with standard devia-
tion o noise, matrices Vg and V; of size n X k
4: // Gaussian mechanism
5: compute M(X;) = X, U+V,, M(X;) = X, U+V,
6: DP,SWD!  « compute Equation (4) using
M(X;) and M(X) as the locations of the Diracs.
7: return DPUSWD?I

the matrix X € R™*? representing a dataset composed of
n examples in dimension d organized in row (each sample
being randomly drawn from the distribution 1). One mech-
anism of interest is

Mo(X) =X 4.
[[all2
where v is a vector whose entries are drawn from a zero-
mean Gaussian distribution. Let X and X’ be two matrices
in R"*¢ that differ only on one row, say 7 and such that
[Xi: — Xj.ll2 <1, where X;; € R? and X, € R? are
the i-th row of X and X' respectlvely For ease of notation,

we will from now on use
. I\ T
z = (Xi# - Xi,:)

Lemma 1. Assume that z € R? is a unit-norm vector and

u € R? a vector where each entry is drawn independently
from N'(0,02). Then

Y = (z—rﬁ)2

where B(«

B(1/2,(d—1)/2)
, B) is the beta distribution of parameters «, .
Proof. See appendix. O

Instead of considering a randomized mechanism that
projects only according to a single random direction, we
are interested in the whole set of projected (private) data
according to the random directions sampled through the
Monte-Carlo approximation of the Sliced Wasserstein dis-
tance computation (4). Our key interest is therefore in the
mechanism

M(X)

and in the sensitivity of XU. Because of its randomness,
we are interested in a probabilistic tail-bound of || XU —

=XU+V
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X'U||r, where the matrix U has columns independently
drawn from S4—1.

Lemma 2. Let X and X' be two matrices in R™*? that dif-
fer only in one row, and for that row, say i, || X; . —X; |2 <
1. Denote U € R¥** and U has columns independently
drawn from S, With probability at least 1 — §, we have

IXU - X'U|% <w(k,6), (5)

with

In % (6)

Proof. See appendix. O

The above bound on the squared sensitivity has been
obtained by first showing that the random variable
|IXU - X' U||§7 is the sum of k iid Beta-distributed ran-
dom variables and then by using a Bernstein inequality.
This bound, referred to as the Bernstein bound, is very con-
servative as soon as J is very small. By calling the Cen-
tral Limit Theorem (CLT), assuming that & is large enough
(k > 30), we get under the same hypotheses (proof is in
the appendix) that

k z1—s [2k(d—1
wik,6) = 5+ V c(l+2)

where z;_5s = ®1(1 — §) and ® is the cumulative dis-
tribution function of a zero-mean unit variance Gaussian
distribution. This bound is far tighter but is not rigourous
due to the CLT approximation. Figure 1 presents an ex-
ample of the probability distribution histogram of ||(X —
X)TU|% = [I(Xi, — X],) "UJ|3 for two fixed arbitrary
X, X; . and for 10000 random draws of U. It shows
that the CLT bound is numerically far smaller than the
Bernstein bound of Lemma 2. Then, using the w(k,J)-
based bounds jointly with the Gaussian mechanism prop-
erty gives us the following proposition.

Proposition 2. Let o > 1 and ¢ € [0,1/2], given a ran-
dom direction projection matrix U € R4*% | then the Gaus-
sian mechanism M(X) = XU + V, where V is a Gaus-
sian matrix in R"** with entries drawn from N'(0,0?) is

aw(k,d log é
(awikd/2) | 109@19) 5y pp

Proof. The claim derives immediately by the relation be-
tween RDP and DP and by Lemma 2 with %. O

The above DP guarantees apply to the full dataset. Hence,
when learning through mini-batches, we benefit from the
so-called privacy amplification by the “subsampling” prin-
ciple, which ensures that a differentially private mecha-
nism run on a random subsample of a population leads to
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Figure 1. Estimated density probability of Zf Y and the Normal
distribution of same mean and standard deviation. Here, we have
k = 200 and d = 784 which corresponds to the dimensionality
of MNIST digits and the number of random projections we use in
the experiments. We illustrate also some bounds (on the squared
sensitivity) that can be derived from this Normal distribution as
well as our CLT bound. Note that the Bernstein bound is above
1 and in this example, that the CLT bound, which is numerically
equal to the inverse CDF of the Normal distribution at desired .

higher privacy guarantees than when run on the full popu-
lation (Balle et al., 2018). On the contrary, gradient clip-
ping/sanitization acts individually one each gradient and
thus do not fully benefit from the subsampling amplifica-
tion, as its DP property may still depend on the batch size
(Chen et al., 2020).

This Gaussian mechanism on the random direction projec-
tions M (X) can be related to the definition of the empir-
ical SWD as each x;uj corresponds to one entry of XU.
Hence, by adding a Gaussian noise to each projection, we
naturally derive our empirical DP Sliced Wasserstein dis-
tance, which inherits the differential property of M (X),
owing to the post-processing proposition (Dwork et al.,
2014).

3.2. Metric Properties of DP-SWD

We have analyzed the sensitivity of the random direction
projection central to SWD and we have proposed a Gaus-
sian mechanism to obtain a differentially private SWD
(DP-SWD) which steps are depicted in Algorithm 1. In
our use-cases, DP-SWD is used in a context of learning to
match two distributions (one of them requiring to be pri-
vately protected). Hence, the utility guarantees of our DP-
SWD is more related to the ability of the mechanism to dis-
tinguish two different distributions rather than on the equiv-
alence between SWD and DP-SWD. Our goal in this sec-
tion is to investigate the impact of adding Gaussian noise to
the source p and target v distributions in terms of distance
property in the population case.
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Since Ry, as defined in Equation (3), is a push-forward
operator of probability distributions, the Gaussian mecha-
nism process implies that the Wasserstein distance involved
in SWD compares two 1D probability distributions which
are respectively the convolution of a Gaussian distribution
and Ry and Ryv. Hence, we can consider DP-SWD uses
as a building block the 1D smoothed Wasserstein distance
between R, and R, with the smoothing being ensured
by N, and its formal definition being

DP,SWD{ (1, v) = / W (Rup*No, RuvsNg Juq(u)du
gd—1

While some works have analyzed the theoretical proper-
ties of the Smoothed Wasserstein distance (Goldfeld et al.,
2020; Goldfeld & Greenewald, 2020), as far as we know,
no theoretical result is available for the smoothed Sliced
Wasserstein distance, and we provide in the sequel some
insights that help its understanding. The following prop-
erty shows that DP-SWD preserves the identity of indis-
cernibles.

Property 1. For continuous probability distributions . and
v, we have DP;SWD{ (1, v) =0 & p=v VYo > 0.

Proof. Showing that 4 = v = DP,SWD](u,v) =
0 is trivial as the Radon transform and the convolution
are two well-defined maps. We essentially would like
to show that DP,SWD{(u,v) = 0 implies p = v. If
DP,SWD{ (1, v) = 0 then Rup x N, = Ruv x N, for
almost every u € S?~!. As convolution yields to multi-
plication in the Fourier domain and because, the Fourier
transform of a Gaussian is also a Gaussian and thus is al-
ways positive, one can show that we have for all u equality
of the Fourier transforms of R, and Ryv. Then, owing
to the continuity of x and v and by the Fourier inversion
theorem, we have Ry = Ryv. Finally, as for the SWD
proof (Bonnotte, 2013, Prop 5.1.2), this implies that 4 = v,
owing to the projection nature of the Radon Transform and
because the Fourier transform is injective. O

Property 2. DP,SWD{(u,v) is symmetric and satisfies
the triangle inequality.

Proof. The proof easily derives from the metric proper-
ties of Smoothed Wasserstein distance (Goldfeld & Gree-
newald, 2020) and details are in the appendix. O

These properties are strongly relevant in the context of our
machine learning applications. Indeed, while they do not
tell us how the value of DP-SWD compares with SWD,
at fixed o > 0 or when o — 0, they show that they can
properly act as (for any o > 0) loss functions to minimize
if we aim to match distributions (at least in the population

Algorithm 2 Differentially private DANN with DP-SWD
Imput: {X,,ys}, {X:}, respectively the public and pri-
vate domain, o standard deviation of the Gaussian
mechanism
1: Initialize representation mapping g, the classifier h
with parameters 6, 0,

2: repeat

3:  sample minibatches {z%, y5 } from {«?, y7}

4:  compute g(x%)

5. compute the classification loss L, =
> ien L(yi, hg(27)))

6: 0y, < 05, — Oé}LVQhLC

7: // Private steps : g(z'3) is computed in a private
way. g(-) is either transferred or has shared weights
between public and private clients.

8:  sample minibatches {z%;} from {z%;}

9:  compute g(zy)

10:  normalize each sample g(z%) wrt
2max; [lg(z ;)2
11:  normalize each sample g(zt) wrt

2max; [|g(z7 ;)2
12:  compute DP,SWD(g(z%), g(z))
13:  publish Vo DP,SWD
14:  // public step
15: 99 — 99 — agVQch - agVQHDPUSWD
16: until a convergence condition is met

case). Naturally, there are still several theoretical proper-
ties of DPUSWDZ that are worth investigating but that are
beyond the scope of this work.

4. DP-Distribution Matching Problems

There exists several machine learning problems where dis-
tance between distributions is the key part of the loss func-
tion to optimize. In domain adaptation, one learns a classi-
fier from public source dataset but looks to adapt it to pri-
vate target dataset (target domain examples are available
only through a privacy-preserving mechanism). In gen-
erative modelling, the goal is to generate samples similar
to true data which are accessible only through a privacy-
preserving mechanism. In the sequel, we describe how our
DP-SWD distance, with ¢ = 1, can be instantiated into
these two learning paradigms for measuring adaptation or
for measuring similarity between generated an true sam-
ples.

For unsupervised domain adaptation, given source exam-
ples X, and their label y, and unlabeled private target
examples X, the goal is to learn a classifier A(-) trained
on the source examples that generalizes well on the tar-
get ones. One usual technique is to learn a representation
mapping g(-) that leads to invariant latent representations,
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invariance being measured as some distance between em-
pirical distributions of mapped source and target samples.
Formally, this leads to the following learning problem

I;igch(h(g(Xs)),ys) + DP,SWD(g(X), 9(X:)) (D)

where L. can be any loss function of interest and
DP,SWD = DP(,SWD}. We solve this problem through
stochastic gradient descent, similarly to many approaches
that use Sliced Wasserstein Distance as a distribution dis-
tance (Lee et al., 2019), except that in our case, the gradient
of DP,SWD involving the target dataset is (¢, 0)-DP. Note
that in order to compute the DP,SWD, one needs the pub-
lic dataset X4 and the public generator. In practice, this
generator can either be transferred, after each update, from
the private client curating X, or can be duplicated on that
client. The resulting algorithm is presented in Algorithm 2.

In the context of generative modeling, we follow the same
steps as Deshpande et al. (2018) but use our DP,SWD in-
stead of SWD. Assuming that we have some examples of
data X, sampled from a given distribution, the goal of the
learning problem is to learn a generator g(-) to output sam-
ples similar to those of the target distribution, with at its
input a given noise vector. This is usually achieved by solv-
ing

mgin DP,SWD(X4, g(2)) (8)

where z is for instance a Gaussian vector. In practice, we
solve this problem using a mini-batching stochastic gradi-
ent descent strategy, following a similar algorithm than the
one for domain adaptation. The main difference is that the
private target dataset does not pass through the generator.

Tracking the privacy loss Given that we consider the
privacy mechanism within a stochastic gradient descent
framework, we keep track of the privacy loss through the
RDP accountant proposed by Wang et al. (2019) for com-
posing subsampled private mechanisms. Hence, we used
the PyTorch package (Xiang, 2020) that they made avail-
able for estimating the noise standard deviation o given the
(e,0) budget, a number of epoch, a fixed batch size, the
number of private samples, the dimension d of the distribu-
tions to be compared and the number k of projections used
for DP,SWD. Some examples of Gaussian noise standard
deviation are reported in Table 4 in the appendix.

5. Related Works
5.1. DP Generative Models

Most recent approaches (Fan, 2020) that proposed DP
generative models considered it from a GAN perspective
and applied DP-SGD (Abadi et al., 2016) for training the
model. The main idea for introducing privacy is to appro-
priately clip the gradient and to add calibrated noise into the

model’s parameter gradient during training (Torkzadehma-
hani et al., 2019; Chen et al., 2020; Xie et al., 2018). This
added noise make those models even harder to train. Fur-
thermore, since the DP mechanism applies to each sin-
gle gradient, those approaches do not fully benefit from
the amplification induced by subsampling (mini-batching)
mechanism (Balle et al., 2018). The work of Chen et al.
(2020) uses gradient sanitization and achieves privacy am-
plification by training multiple discriminators, as in (Jordon
et al., 2018), and sampling on them for adversarial training.
While their approach is competitive in term of quality of
generated data, it is hardly tractable for large scale dataset,
due to the multiple (up to 1000 in their experiments) dis-
criminator trainings.

Instead of considering adversarial training, some DP gen-
erative model works have investigated the use of distance
on distributions. Harder et al. (2020) proposed random fea-
ture based maximum-mean embedding distance for com-
puting distance between empirical distributions. Cao et al.
(2021) considered the Sinkhorn divergence for computing
distance between true and generated data and used gradient
clipping and noise addition for privacy preservation. Their
approach is then very similar to DP-SGD in the privacy
mechanism. Instead, we perturb the Sliced Wasserstein
distance by smoothing the distributions to compare. This
yields a privacy mechanism that benefits subsampling am-
plification, as its sensitivity does not depend on the number
of samples, and that preserves its utility as the smoothed
Sliced Wasserstein distance is still a distance.

5.2. Differential Privacy with Random Projections

Sliced Wasserstein Distance leverages on Radon transform
for mapping high-dimensional distributions into 1D distri-
butions. This is related to projection on random directions
and the sensitivity analysis of those projections on unit-
norm random vector is key. The first use of random pro-
jection for differential privacy has been introduced by Ken-
thapadi et al. (2013). Their approach was linked to the dis-
tance preserving property of random projections induced
by the Johnson-Lindenstrauss Lemma. As a natural ex-
tension, LeTien et al. (2019) and Gondara & Wang (2020)
have applied this idea in the context of optimal transport
and classification. The fact that we project on unit-norm
random vector, instead of any random vector as in Kentha-
padi et al. (2013), requires a novel sensitivity analysis and
we show that this sensitivity scales gracefully with ratio of
the number of projections and dimension of the distribu-
tions.

6. Numerical Experiments

In this section, we provide some numerical results show-
ing how our differentially private Sliced Wasserstein Dis-
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Figure 2. Comparing SWD and DP-SWD by measuring the dis-
tance between two normal distributions (averaged over 5 draws
of all samples). The comparison holds when the distance between
the means of the Gaussians increases linearly, for different noise
amplitudes of the Gaussian mechanism and different number of
samples. (left) o = 1. (right) 0 = 3.

tance works in practice. The code for reproducing some
of the results is available in https://github.com/
arakotom/dp_swd.

6.1. Toy Experiment

The goal of this experiment is to illustrate the behaviour
of the DP-SWD compared with the SWD in controlled
situations. We consider the source and target distribu-
tions as isotropic Normal distributions of unit variance with
added privacy-inducing Gaussian noise of different vari-
ances. Both distributions are Gaussian of dimension 5 and
the means of the source and target are respectively m,, = 0
and m, = cl with ¢ € [0, 1]. Figure 2 presents the evo-
lution of the distances averaged over 5 random draws of
the Gaussian and noise. When source and target distri-
butions are different, this experiment shows that DP-SWD
follows the same increasing trend as SWD. This suggests
that the order relation between distributions as evaluated
using SWD is preserved by DP-SWD, and that the distance
DP-SWD is minimized when ¢ = v, which are important
features when using DP-SWD as a loss.

6.2. Domain Adaptation

We conduct experiments for evaluating our DP-SWD dis-
tance in the context of classical unsupervised domain adap-
tation (UDA) problems such as handwritten digit recogni-
tions (MNIST/USPS), synthetic to real object data (VisDA
2017) and Office 31 datasets. Our goal is to analyze how
DP-SWD performs compared with its public counterpart
SWD (Lee et al., 2019), with one DP deep domain adap-
tation algorithm DP-DANN that is based on gradient clip-
ping (Wang et al., 2020) and with the classical non-private
DANN algorithm. Note that we need not compare with
(LeTien et al., 2019) as their algorithm does not learn rep-
resentation and does not handle large-scale problems, as the
OT transport matrix coupling need be computed on the full
dataset. For all methods and for each dataset, we used the
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Figure 3. Evolution of the target domain accuracy in UDA with
respect to the £ parameter for fixed value of ¢, for 3 different
datasets. Sensitivity of DP-SWD has been computed using the
Bernstein bound.

same neural network architecture for representation map-
ping and for classification. Approaches differ only on how
distance between distributions have been computed. De-
tails of problem configurations as well as model architec-
ture and training procedure can be found in the appendix.
Sensitivity has been computed using the Bernstein bound
of Lemma 2.

Table 1 presents the accuracy on the target domain for all
methods averaged over 10 iterations. We remark that our
private model outperforms the DP-DANN approach on all
problems except on two difficult ones. Interestingly, our
method does not incur a loss of performance despite the
private mechanism. This finding is confirmed in Figure 3
where we plot the performance of the model with respect
to the noise level o (and thus the privacy parameter ¢).
Our model is able to keep accuracy almost constant for
e € [3,10].

6.3. Generative Models

In the context of generative models, our first task is to gen-
erate synthetic samples for MNIST and Fashion MNIST
dataset that will be afterwards used for learning a classifier.
We compare with different gradient-sanitization strategies
like DP-CGAN (Torkzadehmahani et al., 2019), and GS-
WGAN (Chen et al., 2020) and a model MERF (Harder
etal., 2020) that uses MMD as distribution distance. We re-
port results for our DP-SWD using two ways for computing
the sensitivity, by using the CLT bound and the Bernstein
bound, respectively noted as DP-SWD-c and DP-SWD-b.
All models are compared with the same fixed budget of
privacy (¢,8) = (10,107°). Our implementation is based
on the one of MERF (Harder et al., 2020), in which we
just plugged our DP-SWD loss in place of the MMD loss.
The architecture of ours and MERF’s generative model is
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Table 1. Table of accuracy on the private target domain for dif-
ferent domain adaptation problems M-U, U-M refers to MNIST-
USPS and USPS-MNIST the first listed data being the source do-
main. (D,W,A) refers to domains in the Office31 dataset. For all
the problems, ¢ = 10 and ¢ depends on the number of examples
in target domain. & has been respectively set to 107%,107°,107°
for Office31, MNIST-USPS and VisDA.

Methods
Data DANN SWD \ DP-DANN DP-SWD
M-U 939+0 95541 | 87.1£2 94.0+ 0
U-M 862 +2 84.842 735+2 83.4+2
VisDA | 574+ 1 53.841 49.0 £ 1 47.0+ 1
D-W | 909+1 9071 | 88.0&1 90.9+ 1
D-A | 5861 594+1 | 56.5+1 552+ 2
A-W | 704+3 745+1 | 68.7+1 72.6+ 1
A-D | 7862 785+1 | 7371 79.8+ 1
W-A [ 547+3 59.1£0 | 56.0+ 1 59.0+ 1
W-D [ 91.1£40 957+1 | 63443 92.6+ 1

composed of few layers of convolutional neural networks
and upsampling layers with approximately 180K parame-
ters while the one of GS-WGAN is based on a ResNet with
about 4M parameters. MERF’s and our models have been
trained over 100 epochs with an Adam optimizer and batch
size of 100. For our DP-SWD we have used 1000 ran-
dom projections and the output dimension is the classical
28 x 28 = 784.

Table 2 reports some quantitative results on the task. We
note that MERF and our DP-SWD perform on par on these
problems (with a slight advantage for MERF on FashionM-
NIST and for DP-SWD on MNIST). Note that our results
on MERF are better than those reported in (Chen et al.,
2020). We also remark that GS-WGAN performs the best
at the expense of a model with 20-fold more parameters and
a very expensive training time (few hours just for training
the 1000 discriminators, while our model and MERF’s take
less than 10min). Figure 4 and 5 present some examples
of generated samples for MNIST and FashionMNIST. We
can note that the samples generated by DP-SWD present
some diversity and are visually more relevant than those of
MERE, although they do not lead to better performance in
the classification task. Our samples are a bit blurry com-
pared to the ones generated by the non-private SWD: this
is an expected effect of smoothing.

We also evaluate our DP-SWD distance for training gener-
ative models on large RGB datasets such as the 64 x 64 x 3
CelebA dataset. To the best of our knowledge, no DP
generative approaches have been experimented on such a
dataset. For instance, the GS-WGAN of (Chen et al., 2020)
has been evaluated only on grayscale MNIST-like prob-

Figure 4. Examples of generate MNIST samples from (top) non-
private SWD (middle) DP-SWD-b (bottom) MERF.

Table 2. Comparison of DP generative models on MNIST and
FashionMNIST at privacy level (g,8) = (10,107°). The down-
stream task is a 10-class classification problems using the syn-
thetic generated dataset. We report the accuracy of different clas-
sifiers. Results are averaged over 5 runs of generation. SWD is
the non-private version of our generative model.

MNIST FashionMNIST
Method MLP LogReg MLP LogReg
SWD 87 82 77 76
GS-WGAN 79 79 65 68
DP-CGAN 60 60 50 51
DP-MERF 76 75 72 71
DP-SWD-c 77 78 67 66
DP-SWD-b 76 77 67 66

lems. For training the model, we followed the same ap-
proach (architecture and optimizer) as the one described
in Nguyen et al. (2020). In that work, in order to reduce
the dimension of the problems, distributions are compared
in a latent space of dimension d = 8192. We have used
k = 2000 projections which leads to a ratio % < 0.25.
Noise variance o and privacy loss over 100 iterations have
been evaluated using the PyTorch package of (Wang et al.,
2019) and have been calibrated for ¢ = 10 and § = 109,
since the number of training samples is of the order of
170K. Details are in the appendix. Figure 6 presents some
examples of samples generated from our DP-SWD and
SWD. We note that in this high-dimensional context, the
sensitivity bound plays a key role, as we get a FID score
of 97 vs 158 respectively using CLT bound and Bernstein
bound, the former being smaller than the latter.
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Figure 5. Examples of generate FashionMNIST samples from
(top) non-private SWD (middle) DP-SWD-b (bottom) MERF.

7. Conclusion

This paper presents a differentially private distance on dis-
tributions based on the sliced Wasserstein distance. We
applied a Gaussian mechanism on the random projection
inherent to SWD and analyzed its properties. We proved
that a bound (a la Bernstein) on sensitivity of the mecha-
nism as an inverse dependence on the problem dimension
and that a Central limit theorem bound, although approx-
imate, gives a tighter bound. One of our key findings is
that the privacy-inducing mechanism we proposed turns the
SWD into a smoothed sliced Wasserstein distance, which
inherits all the properties of a distance. Hence, our privacy-
preserving distance can be plugged seamlessly into domain
adaptation or generative model algorithms to give effective
privacy-preserving learning procedures.
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