MSA Transformer

A. Appendix
A.1. Unsupervised Contact Prediction

For unsupervised contact prediction, we adopt the methodol-
ogy from Rao et al. (2021), which shows that sparse logistic
regression trained on the attention maps of a single-sequence
transformer is sufficient to predict protein contacts using a
small number (between 1 — 20) of training structures. To
predict the probability of contact between amino acids at
position % and j, the attention maps from each layer and
head are independently symmetrized and corrected with
APC (Dunn et al., 2008). The input features are then the
values agp;; for each layer [ and head h. The models have
12 layers and 12 heads for a total of 144 attention heads.
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Figure A.1. Weight values of learned sparse logistic regression
trained on 20 structures. A sparse subset (55 / 144) of contact
heads, largely in the final layers, are predictive of protein contacts.

An L1-regularization coefficient of 0.15 is applied. The
regression is trained on all contacts with sequence separation
> 6. 20 structures are used for training. Trained regression
weights are shown in Fig. A.1.

A.2. Dataset Generation

For the unsupervised training set we retrieve the UniRef-50
(Suzek et al., 2007) database dated 2018-03. The UniRef50
clusters are partitioned randomly in 90% train and 10%
test sets. For each sequence, we construct an MSA using
HHblits, version 3.1.0. (Steinegger et al., 2019) against the
UniClust305917_19 database (Mirdita et al., 2017). Default
settings are used for HHblits except for the the number of
search iterations (—n), which we set to 3.

A.3. Ablation Studies

Ablation studies are conducted over a set of seven hyperpa-
rameters listed in Table A.2. Since the cost of an exhaustive
search over all combinations of hyperparameters is pro-
hibitive, we instead train an exhaustive search over four of
the hyperparameters (embedding size, block order, tied at-
tention, and masking pattern) for 10k updates. The best run
is then selected as the base hyperparameter setting for the
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Figure A.2. Distribution of MSA depths in the MSA Transformer
training set. Average MSA depth is 1192 and median MSA depth
is 1101.

Table A.1. Validation perplexity and denoising accuracy on
UniRef50 validation MSAs. PSSM probabilities and nearest-
neighbor matching are used as baselines. To compute perplexity
under the PSSM, we construct PSSMs using the input MSA, taking
the cross-entropy between the PSSM and a one-hot encoding of
the masked amino acid. When calculating PSSM probabilities,
we search over pseudocounts in the range [107'°, 10), and select
10~2, which minimizes perplexity. For denoising accuracy, the
argmax for each column is used. For nearest-neighbor matching,
masked tokens are predicted using the values from the sequence
with minimum hamming distance to the masked sequence. This
does not provide a probability distribution, so perplexity cannot
be calculated. MSAs with depth 1 are ignored, since the baselines
fail in this condition. Perplexity ranges from 1 for a perfect model
to 21 for a uniform model selecting over the common amino acids
and gap token.

Model Perplexity Denoising Accuracy
PSSM 14.1 41.4
Nearest-Neighbor - 46.7
MSA Transformer 2.44 64.0

full ablation study, in which only one parameter is changed
at a time.

For the full ablation study, each model is trained for 100k
updates using a batch size of 512. The four best performing
models are then further trained to 150k updates. Contact
prediction on the trRosetta dataset (Yang et al., 2019) is
used as a validation task. Precision after 100k updates (and
150k for the best models) is reported in Table A.2 and the
full training curves are shown in Fig. A.3. The model with
best hyperparameters is then further trained to 450k updates.
The performance of this model is reported in Table A.3.
Validation perplexity is also reported in Table A.2. In gen-
eral we find limited correspondence between perplexity and
contact prediction performance across models.
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Table A.2. Hyperparameter search on MSA Transformer. P@L is long-range (s > 24) precision on unsupervised contact prediction
following Rao et al. (2021). Perplexity is reported after 100k updates and precision is reported after 100k and 150k updates.

P@L P@L  Ppl

D Block Tied Masking Maskp MSA PosEmb  Subsample (100k)  (150k)  (100K)
768 Row-Column  Sqrt  Uniform 0.15 No Log-uniform  56.3 56.3 3.01
384 52.8 - 3.10

Column-Row 55.7 - 3.01
None 42.1 - 3.03

Mean 50.1 - 3.00

Column 38.8 - 3.54

0.2 56.6 56.3 3.04

Yes 56.5 571 3.00

Full 56.5 56.1 291

Table A.3. Average precision on 14842 test structures for MSA and single-sequence models trained on 20 structures.

6 <sep <12 12 <sep < 24 24 < sep
Model L L2 L/5 L L2 L/5 L L2 L/5
Potts 172 267 444 21.1 333 523 393 522 628
TAPE 99 123 164 100 126 166 11.2 140 179
ProtBERT-BFD 204 307 484 243 355 520 341 450 574
ProTrans-T5 20.1 30.6 485 246 36.1 524 356 46.1 578
ESM-1b 21.6 332 527 262 386 564 41.1 533 66.1

MSA Transformer 25.6 41.0 64.6 319 489 711 574 717 82.1

Table A.4. Supervised Contact Prediction performance on CASP13-FM and CAMEO-hard targets. Reported numbers are long-range
(s > 24) contact precision. Three variants of the MSA Transformer are included for comparison: *unsupervised model, supervised
model using final hidden representations of the reference sequence as input, *supervised model using final hidden representations of
reference sequence and all attention maps as input. Baseline and final trRosetta models are also included for comparison. L is defined as
the number of valid residues.

CASP13-FM CAMEO

Model L L2 L/5 L L2 L/5
Co-evolutionary 40.1 525 652 473 609 721
Unirep 112 145 166 17.8 23.0 308
SeqVec 13.8 183 219 225 303 398
TAPE 123 144 178 159 206 26
ProtBERT-BFD 247 32.1 406 37.0 48.1 60.0
ProTrans-T5 25.0 329 414 40.8 525 633
ESM-1b 282 374 502 444 572 684
trRosettay . 457 584 69.6 - - -
trRosettag 51.8 66.6 80.1 532 67.1 775

MSA Transformer* 434 582 71.1 434 56.0 66.2
MSA Transformer! 54.5 70.0 80.2 536 684 78.0
MSA Transformer! 54.6 684 775 55.8 69.8 79.1
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Potts (Balakrishnan et al., 2011), TAPE transformer (Rao
et al., 2019), ESM-1b (Rives et al., 2020), ProtBERT-BFD,
and ProTrans-T5 (Elnaggar et al., 2020) are used as unsu-
pervised contact prediction comparisons. The best MSA
Transformer outperforms all other methods by a wide mar-
gin, increasing long-range precision at L by a full 16 points.
See below for a discussion of all seven hyperparameters.

A.3.1. EMBEDDING SIZE (D)

Since the MSA Transformer is provided with more infor-
mation than single sequence protein language models, it is
possible that many fewer parameters are needed to learn the
data distribution. To test this hypothesis we train a model
with half the embedding size (384 instead of 768) resulting
in 30M total parameters. The resulting model achieves a
Top-L long-range precision of 52.8 after 100k updates, 3.5
points lower than the baseline model. This suggests that
model size is still an important factor in contact precision,
although also shows that a model with fewer than 30M
parameters can still outperform 650M and 3B parameter
single-sequence models.

A.3.2. MASKING PATTERN

We consider two strategies for applying BERT masking
to the MSA: uniform and column. Uniform masking ap-
plies masking uniformly at random across the MSA. Col-
umn masking always masks full columns of the MSA. This
makes the training objective substantially more difficult
since the model cannot look within a column of an MSA
for information about masked tokens. We find that column
masking is significantly worse (by almost 20 points) than
uniform masking.

A.3.3. BLOCK ORDERING

Row attention followed by column attention slightly outper-
forms column attention followed by row attention.

A.3.4. TIED ATTENTION

We consider three strategies for row attention: untied, mean
normalization, and square root normalization (see Section 3).
We find that tied attention substantially outperforms untied
attention and that square root normalization outperforms
mean normalization.

A.3.5. MASKING PERCENTAGE

As the MSA Transformer has more context than single se-
quence models, its training objective is substantially easier
than that of single sequence models. Therefore, we explore
whether increasing the masking percentage (and thereby
increasing task difficulty) would improve the model. How-
ever, we do not find a statistically significant difference
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Figure A.3. Training curves for MSA Transformer with different
hyperparameters. See Section 4.4 for a description of each hyper-
parameter searched over. ESM-1b training curve, ESM-1b final
performance (after 505k updates), and average Potts performance
are included as dashed lines for comparison.

between masking 15% or 20% of the positions. Therefore,
we use a masking percentage of 15% in all other studies for
consistency with ESM-1b and previous masked language
models.

A.3.6. MSA POSITIONAL EMBEDDING

An MSA is an unordered set of sequences. However, due to
the tools used to construct MSAs, there may be some pat-
tern to the ordering of sequences in the MSA. We therefore
examine the use of a learned MSA positional embedding
in addition to the existing learned sequence positional em-
bedding. The positional embedding for a sequence is then
a learned function of its position in the input MSA (not in
the full MSA). Subsampled sequences in the input MSA are
sorted according to their relative ordering in the full MSA.
We find that the inclusion of an MSA positional embedding
does modestly increase model performance, and therefore
include it in our final model.
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Figure A.4. KL Divergence between distribution of row attention
across amino acids and background distribution of amino acids.
The fraction of attention on an amino acid k is defined as the aver-
age over the dataset of a!"1{x; == k}, where x; is a particular
token in the input MSA and a'" is the attention in a particular layer
and head. KL Divergence is large for early layers but decreases in
later layers.

A.3.7. SUBSAMPLE STRATEGY

At training time we explore two subsampling strategies. The
first strategy is adapted from Yang et al. (2019): we sam-
ple the number of output sequences from a log-uniform
distribution, with a maximum of N/L sequences to avoid
exceeding the maximum tokens we are able to fit in GPU
memory. Then, we sample that number of sequences uni-
formly from the MSA, ensuring that the reference sequence
is always chosen. In the second strategy, we always sample
the full N/L sequences from the MSA. In our hyperparame-
ter search, most models use the first strategy, while our final
model uses the second. We find no statistically significant
difference in performance between the two strategies. How-
ever, it is possible that the log-uniform strategy would help
prevent overfitting and ultimately perform better after more
training.

The CCMpred implementation of Potts (Balakrishnan et al.,
2011; Ekeberg et al., 2013), UniRep (Alley et al., 2019), Se-
qVec (Heinzinger et al., 2019), TAPE transformer (Rao et al.,
2019), ESM-1b (Rives et al., 2020), ProtBERT-BFD, and
ProTrans-T5 (Elnaggar et al., 2020) are used as supervised
contact prediction comparisons. In Table A.4 we show the
complete results for long-range precision over the CASP-13
FM targets and CAMEO-hard domains referenced in (Yang
et al., 2019). All baseline models are trained for 200 epochs
with a batch size of 4.

A.4. Attention to Amino Acids

Vig et al. (2020) examine the distribution of amino acids
attended to by single-sequence models. The attention in
single-sequence models is roughly equivalent to the row-
attention in our model, but there is no column-attention
analogue. We therefore examine the distribution of amino

acids attended to by the column attention heads. In Fig. A.4
we show the KL-divergence between the distribution of
attention across amino acids and the background distribution
of amino acids. The divergence is large for earlier layers
in the model but decreases in later layers, suggesting the
model stops focusing on the amino acid identities in favor
of focusing on other properties.

A.5. Sequence Weights

Sequence reweighting is a common technique used for fit-
ting Potts models which helps to compensate for data bias in
MSAs (Morcos et al., 2011). Informally, sequence reweight-
ing downweights groups of highly similar sequences to
prevent them from having as large of an effect on the model.
The sequence weight w; is defined as,

1
w; = <1 + Z]l{dhamming(mhmj) < O2}> 3)

J#i

where z;, z; are the i-th and j-th sequences in the MSA,
dhamming 15 the hamming distance between two sequences
normalized by sequence length, and w; is the sequence
weight of the ¢-th sequence.



