
Appendix for Generative Particle Variational Inference via Estimation of Functional Gradients

A. Proofs
The summation convention is used on all repeated indices (e.g. aibi :=

∑
i a
ibi) in the following proofs.
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the following identities are used in step 1 and 2 ,
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A.2. Proof of Lemma 3.2
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By definition of the gradient,
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where x = f(z) and x′ = f(z′).

A.3. Directly computing the gradient J (θ)

As a completion of the discussion, we also derive the gradient of J (θ) = Ez
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where 〈·, ·〉E denotes the Euclidean inner product. Therefore,
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Computation of the second term in the expectation involves second derivatives of fθ, which is not amenable in large-scale
problems. As a result, we avoid this direct approach and choose to pullback the functional gradient (2) instead.



A.4. Proof of Injectivity of f
We parameterize f as follows,

f(z) = g
(
z(:k)

)
+ λz, ∀z ∈ Rd, (6)

where z(:k) ∈ Rk denotes the vector consisting of the first k(� d) components of z, and g : Rk → Rd is a much slimmer
neural network. For any experimental setting, our parameterization of g uses a dimension k less than 30% the size of d.
For our high dimensional open-category experiments where d > 60000, we use a k of less than 2% of d. The Jacobian is,[
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We now show that our practical choice of f is indeed injective.

From (6), for sufficiently large λ, the Jacobian Jf given by (7) is positive definite. Since the domain of z is convex, it is
straightforward to show f is injective,

For any two different points z1, z2 ∈ Z , consider the line segment z1 + t(z2 − z1), t ∈ [0, 1], which lies in Z given the
convexity of Z . From the Fundamental Theorem of calculus,
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the last inequality is due to the positive definiteness of Jf on Z . Therefore, f(z1) 6= f(z2), f is injective.

B. Method Details
We provide architectures and computational details of our generator and helper networks.

B.1. Helper Network

The helper network hη takes z′ and∇z′k(z′, z) as inputs and outputs
(
∂f(z′)
∂z′

)−1
∇z′k(z′, z). Given the specific param-

eterization of f defined by (6), the Jacobian (7) only depends on z
′(:k), the first k components of z′. The helper network

applies a fully connected layer with ReLU activation to the input z
′(:k) and∇z′k(z′, z) respectively, then the outputs from

these two branches are concatenated and sent to a three-layer fully connected network. We optimize the helper network
with the Adam optimizer Kingma & Ba (2014) and a learning rate of 1e− 4. We found that regularization techniques like
batchnorm and weight decay hurt performance, presumably because we are optimizing for an exact solution and thus do not
want a smoothed estimate. While our helper network makes computation of the Jacobian inverse tractable, it nonetheless
adds the complexity of an extra optimization problem per training step of f . To mitigate the increased training time we
update hη just once per training step of f ; taking one step also keeps the network from over-committing to a single input.

B.2. Kernel Selection
We follow Liu & Wang (2016) and use an RBF kernel k(x, x′) = exp ( 1

h ||x− x
′||22) for all kernel-based methods including

GPVI, SVGD, GFSF, and their amortized variants. The bandwidth h is computed using the median method also proposed
by Liu & Wang (2016): h = med2/ log n, where med is the median of pairwise distances between samples {xi}ni=1.

C. Comparing with an Alternative Solver for
(
∂f
∂z′

)−1∇z′k(z′, z)
Here we justify the use of our helper network hη , by comparing its performance to a more traditional linear solver:
the stabilized biconjugate gradient method (BiCGSTAB) (Saad, 2003). BiCGSTAB is a well-known iterative algorithm for
solving systems of the formAx = b. It is similar to the conjugate gradient method, but does not requireA to be self-adjoint,
giving BiCGSTAB wider applicability. In figure 1, we compare our helper network (”Network”) against BiCGSTAB in the
Bayesian linear regression setting from section 4.2 in the main text. For BiCGSTAB, we solve B ∗B systems of the form
JJ−1∇z′k(z′, z) = ∇z′k(z′, z) for each iteration of training our generator, where J = ∂f

∂z′ and B ∗ B is the effective
batch size of∇z′k(z′, z). Due to the greatly increased training time from solvingB ∗B independent problems per training



iteration, we only run BiCGSTAB for one step, and warm start from the previous solution at each new generator training
iteration. In addition to increased training time, BiCGSTAB suffers from instability due to the constantly changing ∂f(z′)

∂z′

as well as∇z′k(z′, z), due to the resampling of z and z′ at each step. As seen in figure 1, when using BiCGSTAB, GPVI
is unable to fit the target distribution, while using our helper network (”Network”) we are able to efficiently minimize the
mean and covariance error.

We also considered using a normalizing flow as a replacement for our generator network, as normalizing flows are invertible
with lower triangular Jacobians. Unfortunately, the efficiency of normalizing flows comes from setting the input-output
dimensionality to be equal to force the Jacobian to be square. When using our method for BNNs, as explained in Section
B, we cannot afford to store a generator with equal input-output dimensionality, making normalizing flows an inefficient
choice at best for our own method. Our helper network stands as an efficient, novel solution for explicitly estimating the
Jacobian inverse vector product when needed. Nevertheless, we compare GPVI with normalizing flow method for density
estimation in the next section.

(a) Mean Error (b) Cov Error

Figure 1: Comparing our helper network with BiCGSTAB in the Bayesian linear regression setting.

D. Additional Results
We show additional results on density estimation and classification.

D.1. Density Estimation
Here we provide additional results in the density estimation setting.

COMPARISON WITH EXPLICIT JACOBIAN

Here we perform the experiments from section 4.1 of the main paper, and compare GPVI with a variant where the Ja-
cobian and its inverse are explicitly computed. The inverse is computed with the PyTorch (Paszke et al., 2019) function
torch.inverse, which uses LAPACK routines getrf and getri. We can see in table 1 that GPVI is competitive
with the “Exact-Jac” variant in the 2D setting, and even performs better in the 5D setting. This is unexpected, as explicitly
computing the Jacobian and its inverse should be the correct way to compute the functional gradient. We hypothesize
that the Jacobian of our generator network is ill-conditioned. In this case any inversion algorithm is more prone to large
numerical error. Because our helper network is updated once per training iteration, we may avoid the large gradients that
come from numerical error. The increased performance of GPVI over the “Exact-Jac” variant in the 5D setting may be due
to this smoother training.

ENERGY POTENTIALS

We use the four non-Gaussian energy potentials defined in Rezende & Mohamed (2015), and train GPVI as a sampler.
In figures 2-5, we see (from left to right) the target density, GPVI, amortized SVGD, and normalizing flows (Rezende
& Mohamed, 2015). We found that while our method has more parameters, we don’t need nearly as deep a model as
with normalizing flows. We used just 2 hidden layers for GPVI, while we needed a flow of depth 32 to get comparable



Method Σ error (2d) ↓ Σ error (5d) ↓
Amortized SVGD 0.10 ± .09 0.37 ± .32

GPVI 0.14 ± .08 0.14 ± .04
GPVI Exact Jac 0.15 ± .09 0.49 ± .17

Table 1: Comparison of generative Particle VI approaches for density estimation of 2d and 5d Gaussian distributions.

performance. We trained each method for 200000 steps with a batch size of 100. To generate plots, we sampled 20000
points from each model. We detail the rest of the hyperparameters in section F. In figures 3, 4, 5 we see that GPVI is
able to capture the variance of the target distribution, while amortized SVGD samples mostly from the mean. For the Sin
Bisect setting, GPVI is the only method that captures some of both halves of the middle section. But in Sin Split, only
normalizing flows capture both halves of the split section.

(a) Twin Moons Target (b) GPVI (c) Amortized SVGD (d) Normalizing Flow

Figure 2: Twin Moons

(a) Sinusoid Target (b) GPVI (c) Amortized SVGD (d) Normalizing Flow

Figure 3: Sinusoid

(a) Sin Bisect Target (b) GPVI (c) Amortized SVGD (d) Normalizing Flow

Figure 4: Sin Bisect

D.2. Classification
In figure 6 we show the results of all evaluated methods on the four-class classification problem from section 4.3 of the
main text.

In addition to the four-class classification problem we presented in the main paper, we show results on a simpler two class
variant. In this setting, we generate data in the same way as in the four-class setting, but we use a mixture distribution
with two components. Specifically, the mixture distribution is defined as p(x) =

∑2
i=1N (µi, 0.3), with means µi ∈

{(−2,−2), (2, 2)}. We assigned labels yi ∈ {1, 2} according to the index of the mixture component the samples were



(a) Sin Split Target (b) GPVI (c) Amortized SVGD (d) Normalizing Flow

Figure 5: Sin Split

drawn from. We show the results of each method in figure 7. We can see that GPVI again gives better uncertainty estimates
than other sampling based approaches. Again, we do not know what the true posterior over classifications looks like, but
GPVI and RKHS-based ParVI approaches give uncertainty estimates that closely match our intuition for this problem.

E. Experimental Details
Here we provide some additional details regarding the setup and reporting of our experiments and their results.

HMC Details We use the same settings for HMC for the Bayesian linear regression and 2/4 class classification tasks.
We sampled the momentum from a standard normal distribution, and used 25 leap-frog steps per sample. We ran each
experiment for 25K steps in total, with a burn-in of 20K steps, and a step size of 0.0005. We thinned each chain after
burn-in, and tuned the number of leapfrog steps and step-size for each experiment. To check for convergence, we checked
that the means of each chain were similar, indicating mixing.

1D Regression For our 1D regression task (figure 1 of the main paper), we generate a dataset of 80 samples X with targets
Y . We draw 76 samples of X uniformly from [−6,−2] ∪ [2, 6], and draw the 4 remaining samples from [−2, 2]. The
targets Y are computed as Y = −(1 + X) sin(1.2X) + ε, where ε ∼ N (0, 0.04). For all methods we use 100 posterior
samples, and train for 50K iterations. For GPVI and amortized SVGD we use a generator with two linear layers [32, 32]
and Gaussian input noise of the same dimension.

Density Estimation
In the density estimation setting (section 4.1 of the main text), we randomly generate 2d and 5d target covariance matrices.
Specifically, the target covariance we wish to fit is computed as Σ∗ = ΣΣT ,Σ ∼ N (0, Id), d ∈ {2, 5}. We use an MLP
with 1 hidden layer of width 2 to approximately sample from a unimodal Gaussian distribution with covariance Σ∗. Given
Gaussian input noise, the variance of the output distribution of the linear generator is computed as WTW , which should
match Σ∗ after training.

Open Category Tasks
For the open-category tasks, we computed two metrics to evaluate each method: AUROC (AUC) and ECE. In this context,
AUC measures how well a binary classifier can discriminate between predictions made on inlier vs outlier test inputs. An
AUC score of 1.0 indicates that the predictions made by a model are perfectly separable, meaning that we could set a
threshold on predicted probabilities to detect every outlier test input. In practice we first make predictions on the inlier and
outlier test sets, then compute the variance of the predictions over the sampled predictors. The AUC score is then computed
against the predictive variance using the scikit-learn library.

Expected Calibration Error (ECE) measures how well calibrated a model’s predictions are. Given predictions on inlier
test inputs, ECE partitions predictions into M = 15 equally sized bins according to their confidence. For each bin bm
we compute the difference between their accuracy 1/|bm|

∑
xi∈bm(ŷ − y) and confidence 1/bm

∑
xi∈m p̂. Where p̂, ŷ are

predicted probabilities and associated label with respect to a data-point xi and true label y. This difference in expected
accuracy and confidence between each bin represents the bin’s calibration error.

For all experiments we report an average of three runs using the hyperparameter settings given in section F.

F. Hyperparameter Settings
In tables 2 - 6 we detail the hyperparameters chosen for each method in each experimental setting. We refer to the sampler
network as f , and the predicting classifier as g. We generally use the same structure of f and input noise for GPVI and



(a) GPVI (b) SVGD (c) GFSF

(d) KSD (e) HMC (f) Amortized SVGD

(g) Amortized GFSF (h) Amortized KSD (i) MF-VI

(j) Deep Ensembles

Figure 6: Predictive uncertainty of each method on the 4-class classification task, as measured by the standard deviation
between predictions of sampled functions.

amortized ParVI methods.

Density Estimation (energy potentials)

Hyperparameter Value

Common
Posterior Samples 20000

Learning Rate 1e− 4



f Hidden Layers 2
f Hidden Width [500, 500]

f Input Noise Stdev σ ∈ {1.0, 2.0, 6.0}
Training Steps 200e3

Minibatch Size 100

GPVI
Optimizer Adam

hη Hidden Width 500
hη Hidden Layers 3
hη Learning Rate 1e− 4

Normalizing Flow
Optimizer RMSProp

Flow Length 32
Weight Decay 1e− 3

Base Dist Stdev σ ∈ {1.0, 2.0, 6.0}
Flow Architecture Planar Flow

Table 2: Hyperparameters for density estimation of energy potentials.
.

Bayesian Linear Regression

Hyperparameter Value

Common
Optimizer (all) Adam

Posterior Samples 100
Learning Rate 1e− 3

f Hidden Layers None
f Input Noise z N (0, I3)
g Hidden Layers None

Training Steps 50e3
Minibatch Size 10

GPVI
hη Hidden Width 10
hη Hidden Layers 3
hη Learning Rate 1e− 4

KSD (Amortized and ParVI)
Critic Hidden Layers 1
Critic Hidden Width 100
Critic Learning Rate 1e− 3

Critic L2 Weight 10

MF-VI (Bayes by Backprop)
Weight Prior Scale Mixture

Mixture Weight π 0.5
σ1 1.0
σ2 0

Table 3: Hyperparameters for Bayesian linear regression task
.



(a) GPVI (b) SVGD (c) GFSF

(d) KSD (e) HMC (f) Amortized SVGD

(g) Amortized GFSF (h) Amortized KSD (i) MF-VI

(j) Deep Ensembles

Figure 7: Predictive uncertainty of each method on the 2-class classification task, as measured by the standard deviation
between predictions of sampled functions.

4/2-class Classification

Hyperparameter Value

Common
Optimizer (all) Adam

Posterior Samples 100



Learning Rate 1e− 3
Training Steps 500e3

Minibatch Size 100
f Hidden Layers 2
f Hidden Width 64
f Nonlinearity ReLU
f Input Noise z N (0, I64)
g Hidden Layers 2
g Hidden Width 10
g Nonlinearity ReLU

GPVI
hη Hidden Width 544
hη Hidden Layers 3
hη Learning Rate 1e− 4

KSD (Amortized and ParVI)
Critic Hidden Layers 2
Critic Hidden Width 100
Critic Learning Rate 1e− 3

Critic L2 Weight 10

MF-VI (Bayes by Backprop)
Weight Prior Scale Mixture

Mixture Weight π 0.5
σ1 1.0
σ2 exp (−6)

Table 4: Hyperparameters for 2/4 class classification task
.

Open-Category (MNIST)

Common
Optimizer (all) Adam

Posterior Samples 10
Training Epochs 100

Minibatch Size 50
f Learning Rate 1e− 5
f Hidden Layers 3
f Hidden Width [256, 512, 1024]
f Nonlinearity ReLU
f Input Noise z N (0, I256)
g Learning Rate 1e− 5
g Architecture LeNet-5
g Nonlinearity ReLU

GPVI
hη Hidden Width 512
hη Hidden Layers 3
hη Learning Rate 1e− 4

KSD (Amortized and ParVI)
Critic Hidden Layers 2
Critic Hidden Width 512
Critic Learning Rate 1e− 4

Critic L2 Weight 1.0



MF-VI (Bayes by Backprop)
Weight Prior Scale Mixture

Mixture Weight π 0.5
σ1 1.0
σ2 exp (−6)

Table 5: Hyperparameters for MNIST open category task
.

Open-Category (CIFAR-10)

Common
Optimizer (all) Adam

Posterior Samples 10
Training Epochs 200

Minibatch Size 50
f Learning Rate 1e− 5
f Hidden Layers 3
f Hidden Width [400, 600, 1000]
f Nonlinearity ReLU
f Input Noise z N (0, I400)
g Hidden Layers 3 conv, 2 linear
g Hidden Width [32, 64, 64, 128, 10]
g Nonlinearity ReLU

GPVI
hη Hidden Width 512
hη Hidden Layers 3
hη Learning Rate 1e− 4

KSD (Amortized and ParVI)
Critic Hidden Layers 2
Critic Hidden Width 512
Critic Learning Rate 1e− 4

Critic L2 Weight 1.0

MF-VI (Bayes by Backprop)
Weight Prior Scale Mixture

Mixture Weight π 0.5
σ1 1.0
σ2 exp (−6)

Table 6: Hyperparameters for CIFAR-10 open category task
.
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