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A. Proofs of Results in Body
Proof of Lemma 1. Observe that
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Proof of Lemma 2. Observe that
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Proof of Theorem 3. Let Gy,m(x)
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and ⇢yy0
.
= m · qy0 · wyy0 from Lemma 2. This implies that for sufficiently large m and for a given x 2 X , we have
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where op(1) is a random variable that converges to 0 in probability.

Proof of Proposition 4. From (11), for a given (q, w), the implicit loss for the sampled softmax cross-entropy is
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where ⇢yy0 = m · qy0 · wyy0 . This exactly equals the pairwise margin loss (6). Thus, for a fixed ⇢yy0 , picking wyy0 =
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guarantees the implicit and pairwise margin losses coincide.
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Here,
d! denotes convergence in distribution as m ! 1.

Proof. We first note that

Ey0⇠q[Gy,m(x)] = efy(x) +mEy0⇠qwyy0efy(x)
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C. Additional Discussion on Negative Sampling Schemes
Remark 4. For the softmax cross-entropy, one way of reasoning about the weighting on negative samples is as a logit

correction. Observe that (7) may be rewritten
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where f̄y0(x) = fy0(x)� logwyy0 are corrected versions of the original logits or scores. Note further that if N can include
the positive label y, this is tantamount to additionally correcting the positive logit as well.

Remark 5. Further to Remark 4, the difference between the importance and relative weighting schemes may be understood
as follows. Suppose we employ the softmax cross-entropy with explicit exclusion of the positive label from N. Further, if
we modify the positive logit to f̃y(x), and negative logit to f̄y(x):
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By setting f̃y(x) = fy(x), and f̄y0(x) = fy0(x)� log(m · qy0), we obtain the importance weighting scheme. On the other
hand, if we additionally set f̃y(x) = fy(x)� log(m · qy), — i.e., apply positive logit correction as well — then we arrive at
the relative weighting scheme.

Remark 6. As stated, the sampling distribution q may place non-zero mass on the “positive” label y; thus, one may include
y amongst the “negative” labels. As this is intuitively undesirable, the domain of q may be additionally restricted so as to
exclude this possibility. Further, one may explicitly discount this label from consideration by zeroing out its weight; e.g., we
may apply wyy0 = Jy0 6= yK in place of constant weighting. This is similar yet distinct to forcing q to exclude y from its
sampling domain, as the former implicitly modifies the distribution of negatives. In practice, however, the two approaches
have similar performance.

D. Expected Decoupled Losses under Negative Sampling
Table 3 summarises expected losses under negative sampling for the decoupled case.

E. Details of Long-tail Experiments
For all datasets, we use SGD with momentum 0.9. Dataset specific settings are given below.
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Sampling distribution Weighting Expected loss on negatives Comment

Uniform Constant ( 1
m ) 1
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P
y0 6=y '(�fy0(x)) Scaled decoupled loss

Uniform Importance weighting ( L
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P
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Table 3: Expectation of loss of negatives
P

y02N wyy0 · '(�fy0(x)) for an example (x, y). Here, negatives N are sampled
from q with qy > 0, and weighting scheme w satisfies wyy = 0. Different choices of (q, w) yield upper bounds which
resemble losses from the long-tail learning literature, such as the equalised loss of Tan et al. (2020) and the logit-adjusted
loss of Menon et al. (2020).

CIFAR-100: We use a CIFAR ResNet-56 with weight decay of 10�4 trained for 256 epochs, using a minibatch size of 128.
We use a stepwise annealed learning rate, with a base learning rate of 0.1 that is decayed by 0.1 at the 160th epoch, and by
0.01 at the 180th epoch. We apply standard CIFAR data augmentation per Cao et al. (2019); He et al. (2016).

ImageNet: We use a ResNet-50 with weight decay of 5⇥ 10�4 trained for 90 epochs, using a minibatch size of 512. We
use a cosine learning rate with a base learning rate of 0.4. We apply standard ImageNet data augmentation per Goyal et al.
(2017).

F. Additional Results: Long-tail Datasets
We present additional results on the long-tail learning benchmarks using a contrastive loss, and compare the overall
(non-sliced) balanced errors of various methods.

F.1. Results on Contrastive Loss

Figure 3 shows results using the contrastive loss on the long-tail benchmarks. Here, the performance of different sampling
schemes is more variable compared to the softmax cross-entropy. In particular, on Tail classes, the performance of sampling
is generally poor compared to the baseline. Note that the latter is the de-facto choice of loss function for long-tail settings.
Consequently, the default hyperparameters (e.g., learning rate and batch size) are generally attuned to this loss. Further
tuning of these may improve the results for the contrastive loss.

F.2. Balanced Error Plots

Figures 4 and 5 present the balanced errors of the various choices of sampling and weighting schemes, for the softmax
cross-entropy and contrastive loss, respectively. We see that the gains of within-batch sampling with constant weighting are
such that it can improve over the standard loss using all the labels. In general, performance is superior using the softmax
cross-entropy versus contrastive loss; this is in keeping with the former’s extensive use as a foundation in long-tail problems.

F.3. Results with Varying Number of Sampled Negatives

We present results where the number of sampled negatives varies from {32, 64, 128, 256} on ImageNet-LT, using the
softmax cross-entropy. Figure 6 shows that with fewer sampled negatives, performance tends to slightly degrade, as expected.
However, even with a modest number of negatives, the general trends seen in the body are reflected.



Disentangling labeling and sampling bias for learning in large-output spaces

(a) CIFAR-100-LT Step (contrastive loss). (b) CIFAR-100-LT Exp (contrastive loss). (c) ImageNet-LT (contrastive loss).

(d) CIFAR-100-LT Step (contrastive loss). (e) CIFAR-100-LT Exp (contrastive loss). (f) ImageNet-LT (contrastive loss).

Figure 3: Results on head, torso and tail labels on long-tail learning benchmarks, using the contrastive loss. Fig. 3a - 3c show
the performance of within-batch negative sampling along with baseline loss functions. Fig. 3d - 3f illustrate the performance
of uniform negative sampling.

(a) CIFAR-100-LT (Step). (b) CIFAR-100-LT (Exp). (c) ImageNet-LT.

(d) CIFAR-100-LT (Step). (e) CIFAR-100-LT (Exp). (f) ImageNet-LT.

Figure 4: Balanced error on long-tail learning benchmarks using the softmax cross-entropy. We present results for within-
batch (within) negative sampling (Fig. 4a - 4c) and uniform (unif) negative sampling (Fig. 4d - 4f) , using the constant
weight (const), importance weighting (importance), and relative weighting (relative) schemes from Table 1.

F.4. Results on iNaturalist 2018

See Figure 7.
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(a) CIFAR-100-LT Step. (b) CIFAR-100-LT Exp. (c) ImageNet-LT.

(d) CIFAR-100-LT Step. (e) CIFAR-100-LT Exp. (f) ImageNet-LT.

Figure 5: Balanced error on long-tail learning benchmarks using the contrastive loss. We present results for within-batch
(within) negative sampling (Fig. 5a - 5c) and uniform (unif) negative sampling (Fig. 5d - 5f), using the constant weight
(const), importance weighting (importance), and relative weighting (relative) schemes from Table 1.

(a) ImageNet-LT m = 32. (b) ImageNet-LT m = 64. (c) ImageNet-LT m = 128. (d) ImageNet-LT m = 256.

(e) ImageNet-LT m = 32. (f) ImageNet-LT m = 64. (g) ImageNet-LT m = 128. (h) ImageNet-LT m = 256.

Figure 6: Results on head, torso and tail labels on ImageNet-LT, using varying number of sampled negatives. Fig. 6a -
6d show the performance of within-batch negative sampling along with baseline loss functions. Fig. 6e - 6h illustrate the
performance of uniform negative sampling.
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(a) CE, Uniform (b) CE, within batch

(c) CE. Uniform. Balanced error. (d) CE, within batch. Balanced error.

Figure 7: (a), (b): Results on head, torso, and tail labels on iNaturalist 2018 using uniform (unif) (in (a)) and within-batch
(within) (in (b)) negative sampling. (c), (d): Balanced error on iNaturalist 2018. We present results for uniform (unif) and
within-batch (within) and negative sampling, using the constant weight (const), importance weighting (importance),
and relative weighting (relative) schemes from Table 1.
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G. Retrieval Datasets
Table 4 presents the details of the retrieval benchmarks used in § 5.2.

Dataset #Features #Labels #Train Points #Test Points Average #I/L Average #L/I
DELICIOUS 500 983 12920 3185 311.61 19.03
AMAZONCAT-13K 203,882 13,330 1,186,239 306,782 448.57 5.04
WIKILSHTC-325K 1,617,899 325,056 1,778,351 587,084 17.46 3.19

Table 4: Summary of the extreme classification datasets used in this paper (Varma, 2018). #I/L is the number of instances
per label, and #L/I is the number of labels per instance.

H. Additional Results: Retrieval Datasets

(a) Recall@ 1. (b) Recall@ 10. (c) Recall@ 50.

(d) Recall@ 1. (e) Recall@ 10. (f) Recall@ 50.

(g) Recall@ 1. (h) Recall@ 10. (i) Recall@ 50.

Figure 8: Performance of uniform negative sampling based cross-entropy loss (cf. (7)) on AMAZONCAT-13K (Figure 8a -
8c), WIKILSHTC-325K (Fig. 8d - 8f), and DELICIOUS (Fig. 8g - 8i). These experiments utilize m = 256 negative for
AMAZONCAT-13K and WIKILSHTC-325K, and m = 64 negatives for DELICIOUS. We report the performance on three
subpopulations (Head, Torso, and Tail) and the entire test set (Full), as measured by Recall@k for k = 1, 10, and 50. We
combine uniform sampling with constant, importance, and relative weighting schemes. For reference, we include the results
of standard softmax cross-entropy loss (ce). Note that for the retrieval datasets, the uniform sampling aligns with ce as it
consistently focuses on Head, Torso, and Tail in that order. This is in contrast with the within-batch sampling (cf. Figure 2).
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(a) AMAZONCAT-13K. (b) WIKILSHTC-325K. (c) DELICIOUS.

(d) AMAZONCAT-13K. (e) WIKILSHTC-325K. (f) DELICIOUS.

Figure 9: Performance of within-batch and uniform sampling on the entire original (multilabel) test sets of AMAZONCAT-
13K, WIKILSHTC-325K, and DELICIOUS, as measured by Precision@k for k = 1, 3, and 5. These experiments utilize
m = 256 negative for AMAZONCAT-13K and WIKILSHTC-325K, and m = 64 negatives for DELICIOUS. For reference,
we include the results of standard softmax cross-entropy loss (ce). Note that these results are included here for completeness,
as they are often reported in the literature as the performance measure. Since these results do not breakdown the performance
on different subpopulations, they do not highlight the impact of sampling distribution and weighting schemes on various
subpopulations.

(a) AMAZONCAT-13K. (b) WIKILSHTC-325K. (c) DELICIOUS.

(d) AMAZONCAT-13K. (e) WIKILSHTC-325K. (f) DELICIOUS.

Figure 10: Performance of within-batch and uniform sampling on the entire original (multilabel) test sets of AMAZONCAT-
13K, WIKILSHTC-325K, and DELICIOUS, as measured by propensity-scored variant of Precision@k (Jain et al., 2016) or
PSP@k for k = 1, 3, and 5. These experiments utilize m = 256 negative for AMAZONCAT-13K and WIKILSHTC-325K,
and m = 64 negatives for DELICIOUS. For reference, we include the results of standard softmax cross-entropy loss (ce).


