
The Dynamics of Learning with Feedback Alignment

A. Derivation of the ODE
The derivation of the ODE’s that describe the dynamics of
the test error for shallow networks closely follows the one
of Saad & Solla (1995a) and Biehl & Schwarze (1995) for
back-propagation. Here, we give the main steps to obtain
the analytical curves of the main text and refer the reader to
their paper for further details.

As we discuss in Sec. 1, student and teacher are both two-
layer networks with K and M hidden nodes, respectively.
For an input x 2 RN , their outputs ŷ and y can be written
as

ŷ = �✓(x) =
KX

k=1

W k
2 g

�
�k

�
,

y = �✓̃(x) =
MX

m=1

W̃m
2 g (⌫m) , (21)

where we have introduced the pre-activations �k
⌘

W k
1 x/

p
N and ⌫m ⌘ W̃m

1 x/
p
N . Evaluating the test error

of a student with respect to the teacher under the squared
loss leads us to compute the average

✏g
⇣
✓, ✓̃

⌘
=

1

2
E x

"
KX

k=1

W k
2 g

�
�k

�
�

MX

m=1

W̃m
2 g (⌫m)

#2

,

(22)
where the expectation is taken over inputs x for a fixed
student and teacher. Since x only enters Eq. (22) via the
pre-activations � = (�k) and ⌫ = (⌫m), we can replace the
high-dimensional average over x by a low-dimensional av-
erage over the K +M variables (�, ⌫). The pre-activations
are jointly Gaussian since the inputs are drawn element-wise
i.i.d. from the Gaussian distribution. The mean of (�, ⌫) is
zero since Exi = 0, so the distribution of (�, ⌫) is fully
described by the second moments

Qkl = E�k�l = W k
1 ·W l

1/N, (23)

Rkm = E�k⌫m = W k
1 · W̃m

1 /N, (24)

Tmn = E ⌫m⌫n = W̃m
1 · W̃n

1 /N. (25)

which are the “order parameters” that we introduced in the
main text. We can thus rewrite the generalisation error (5) as
a function of only the order parameters and the second-layer
weights,

lim
N!1

✏g(✓, ✓̃) = ✏g(Q,R, T,W2, W̃2) (26)

As we update the weights using SGD, the time-dependent
order parameters Q,R, and W2 evolve in time. By choos-
ing different scalings for the learning rates in the SGD up-
dates (4), namely

⌘W1 = ⌘, ⌘W2 = ⌘/N

for some constant ⌘, we guarantee that the dynamics of
the order parameters can be described by a set of ordinary
differential equations, called their “equations of motion”.
We can obtain these equations in a heuristic manner by
squaring the weight update (4) and taking inner products
with W̃m

1 , to yield the equations of motion for Q and R
respectively:

dRkm

d↵
= �⌘F k

1 E
⇥
g0(�k)⌫me

⇤
(27a)

dQk`

d↵
= �⌘F k

1 E
⇥
g0(�k)�`e

⇤
� ⌘F `

1E
⇥
g0(�`)�ke

⇤

+ ⌘2F k
1 F

`
1E

⇥
g0(�k)g0(�`)e2

⇤
, (27b)

dW k
2

d↵
= �⌘E

⇥
g(�k)e

⇤
(27c)

where, as in the main text, we introduced the error e =
�✓(x)��✓̃(x). In the limit N ! 1, the variable ↵ = µ/N
becomes a continuous time-like variable. The remaining
averages over the pre-activations, such as

E g0(�k)�`g(⌫m),

are simple three-dimensional integral over the Gaussian
random variables �k,�` and ⌫m and can be evaluated an-
alytically for the choice of g(x) = erf(x/

p
2) (Biehl &

Schwarze, 1995) and for linear networks with g(x) = x.
Furthermore, these averages can be expressed only in term
of the order parameters, and so the equations close. We
note that the asymptotic exactness of Eqs. 27 can be proven
using the techniques used recently to prove the equations of
motion for BP (Goldt et al., 2019).

We provide an integrator for the full system of ODEs for
any K and M in the Github repository.

B. Detailed analysis of DFA dynamics
In this section, we present a detailed analysis of the ODE dy-
namics in the matched case K = M for sigmoidal networks
(g(x) = erf (x/

p
2)).

The Early Stages and Gradient Alignment We now use
Eqs. (27) to demonstrate that alignment occurs in the early
stages of learning, determining from the start the solution
DFA will converge to (see Fig. 3 which summarises the
dynamical evolution of the student’s second layer weights).

Assuming zero initial weights for the student and orthogonal
first layer weights for the teacher (i.e. Tnm is the identity
matrix), for small times (t ⌧ 1), one can expand the order
parameters in t:

Rkm(t) = tṘkm(0) +O(t2),

Qkl(t) = tQ̇kl(0) +O(t2),

W k
2 (t) = tẆ k

2 (0) +O(t2). (28)

The Dynamics of Learning with Feedback Alignment

where, due to the initial conditions, R(0) = Q(0) =
W2(0) = 0. Using Eq. 27, we can obtain the lowest or-
der term of the above updates:

Ṙkm(0) =

p
2

⇡
⌘W̃m

2 F k
1 ,

Q̇kl(0) =
2

⇡
⌘2

⇣
(W̃ k

2)
2 + (W̃ l

2)
2
⌘
F l
1F

k
1 ,

Ẇ k
2 (0) = 0 (29)

Since both Ṙ(0) and Q̇(0) are non-zero, this initial condi-
tion is not a fixed point of DFA. To analyse initial alignment,
we consider the first order term of Ẇ2. Using Eq. (28) with
the derivatives at t = 0 (29), we obtain to linear order in t:

Ẇ k
2 (t) =

2

⇡2
⌘2||W̃2||

2F k
1 t. (30)

Crucially, this update is in the direction of the feedback vec-
tor F1. DFA training thus constrains the student to initially
grow in the direction of the feedback vector and align with
it. This implies gradient alignment between BP and DFA
and dictates into which of the many degenerate solutions in
the energy landscape the student converges.

Plateau phase After the initial phase of learning with
DFA where the test error decreases exponentially, similarly
to BP, the student falls into a symmetric fixed point of the
Eqs. (27) where the weights of a single student node are
correlated to the weights of all the teacher nodes ((Saad &
Solla, 1995a; Biehl & Schwarze, 1995; Engel & Van den
Broeck, 2001)). The test error stays constant while the
student is trapped in this fixed point. We can obtain an
analytic expression for the order parameters under the as-
sumption that the teacher first-layer weights are orthogonal
(Tnm = �nm). We set the teacher’s second-layer weights
to unity for notational simplicity (W̃m

2 = 1) and restrict to
linear order in the learning rate ⌘, since this is the dominant
contribution to the learning dynamics at early times and on
the plateau (Saad & Solla, 1995b). In the case where all
components of the feedback vector are positive, the order
parameters are of the form Qkl = q,Rkm = r,W k

2 = w2

with:

q =
1

2K � 1
, r =

r
q

2
, w2 =

s
1 + 2q

q(4 + 3q)
. (31)

If the components of the feedback vector are not all positive,
we instead obtain Rkm = sgn(F k)r, W k

2 = sgn(F k)w2

and Qkl = sgn(F k) sgn(F l)q. This shows that on the
plateau the student is already in the configuration that max-
imises its alignment with F1. Note that in all cases, the
value of the test error reached at the plateau is the same for
DFA and BP.

Memorisation phase and Asymptotic Fixed Point At
the end of the plateau phase, the student converges to its
final solution, which is often referred to as the specialised

phase (Saad & Solla, 1995a; Biehl & Schwarze, 1995; Engel
& Van den Broeck, 2001). The configuration of the order
parameters is such that the student reproduces her teacher
up to sign changes that guarantee the alignment between
W2 and F1 is maximal, i.e. sgn(W k

2) = sgn(F k
1). The

final value of the test error of a student trained with DFA is
the same as that of a student trained with BP on the same
teacher.

Figure 10. Test error of a sigmoidal student started with zero initial
weights. The feedback vector F1 is chosen random (blue) and
orthogonal to the teacher’s second layer weights W̃2 (orange).
Parameters: ⌘ = 0.1,K = M = 2.

Choice of the feedback vector In the main text, we saw
how a wrong choice of feedback vector F1 can prevent a
ReLU student from learning a task. Here, we show that also
for sigmoidal student, a wrong choice of feedback vector
F1 is possible. As Fig. 10 shows, in the case where the F1

is taken orthogonal to the teacher second layer weights, a
student whose weights are initialised to zero remains stuck
on the plateau and is unable to learn. In contrast, when the
F1 is chosen with random i.i.d. components drawn from the
standard normal distribution, perfect recovery is achieved.

C. Derivation of weight alignment
Since the network is linear, the update equations are (con-
sider the first three layers only):

�W1 = �⌘(F1e)x
T , (32)

�W2 = �⌘(F2e)(W1x)
>, (33)

�W3 = �⌘(F3e)(W2W1x)
> (34)

The Dynamics of Learning with Feedback Alignment

First, it is straightforward to see that

W t
1 = �⌘

t�1X

t0=0

F1et0x
>
t0 = F1A

t
1 (35)

At
1 = �⌘

t�1X

t0=0

et0x
>
t0 (36)

This allows to calculate the dynamics of W t
2 :

�W t
2 = �⌘F2et(A

t
1xt)

>F>
1 (37)

W t
2 = �⌘

t�1X

t0=0

F2et(A
t0

1 xt0)
>F>

1 = F2A
t
2F

>
1 (38)

At
2 = �⌘

t�1X

t0=0

et0(A
t0

1 xt0)
> = ⌘2

t�1X

t0=0

t0�1X

t00=0

(xt0 · xt00)et0e
>
t00 .

(39)

Which in turns allows to calculate the dynamics of W t
3 :

�W t
3 = �⌘F3et(F2A

t0

2 F
>
1 F1A

t0

1 xt)
> (40)

W t
3 = �⌘

t�1X

t0=0

F3et0(F2A
t0

2 F
>
1 F1A

t0

1 xt)
> = F3A

t
3F

>
2

(41)

At
3 = �⌘

t�1X

t0=0

F3et0(A
t0

2 F
>
1 F1A

t0

1 xt0)
> (42)

= ⌘2
t�1X

t0=0

t0�1X

t00=0

(At0

1 xt0) · (A
t00

1 xt00)et0e
>
t00 . (43)

By induction it is easy to show the general expression:

At
1 = �⌘

t�1X

t0=0

et0x
>
t0 (44)

At
2 = ⌘2

t�1X

t0=0

t0�1X

t00=0

(xt0 · xt00)et0e
>
t00 (45)

At
l�3 = ⌘2

X

t,t0=0

(At0

l�2 . . . A
t0

1 xt0) · (A
t00

l�2 . . . A
t00

1 xt00)et0e
>
t00

(46)

Defining A0 ⌘ In0 , one can rewrite this as in Eq. 15

At
l�2 = ⌘2

t�1X

t0=0

t0�1X

t00=0

(Bt0

l xt0) · (B
t00

l xt00)et0e
>
t00 , (47)

Bl = Al�2 · · ·A0. (48)

D. Impact of data structure
To study the impact of data structure on the alignment, the
simplest setup to consider is that of Direct Random Target

Projection (Frenkel et al., 2019). Indeed, in this case the
error vector et = �yt does not depend on the prediction of
the network: the dynamics become explicitly solvable in the
linear case.

For concreteness, we consider the setup of (Lillicrap et al.,
2016) where the targets are given by a linear teacher, y =
Tx, and the inputs are i.i.d Gaussian. We denote the input
and target correlation matrices as follows:

E
⇥
xx>⇤

⌘ ⌃x 2 Rn0⇥n0 , (49)

E
⇥
TT>⇤

⌘ ⌃y 2 RnL⇥nL (50)

If the batch size is large enough, one can write xtx>
t =

E
⇥
xx>⇤ = ⌃x. Hence the dynamics of Eq. 9 become:

�W t
1 = �⌘(F1et)x

T
t = ⌘F1Txtx

>
t = ⌘F1T⌃x (51)

�W t
2 = �⌘(F2et)(W1xt)

> = ⌘F2T⌃xW
>
1 (52)

= ⌘2F2

�
T⌃2

xT
>�F>

1 (53)

�W t
3 = �⌘(F3et)(W2W1xt)

> = ⌘F3T⌃xW
>
1 W>

2

(54)

= ⌘3F3

�
T⌃2

xT
>� �T⌃2

xT
>�F>

2 (55)

From which we easily deduce At
1 = ⌘T⌃xt, and the expres-

sion of the alignment matrices at all times:

At
l�2 = ⌘l

�
T⌃2

xT
>�l�1

t (56)

As we saw, GA depends on how well-conditioned the aligne-
ment matrices are, i.e. how different it is from the identity.
To examine deviation from identity, we write ⌃x = In0+⌃̃x

and ⌃y = InL + ⌃̃y , where the tilde matrices are small per-
turbations. Then to first order,

At
l�2 � InL / (l � 1)

⇣
⌃̃y + 2T ⌃̃xT

>
⌘

(57)

Here we see that GA depends on how well-conditioned the
input and target correlation matrices ⌃x and ⌃y are. In
other words, if the different components of the inputs or the
targets are correlated or of different variances, we expect
GA to be hampered, observed in Sec. 4. Note that due to
the l � 1 exponent, we expect poor conditioning to have an
even more drastic effect in deeper layers.

Notice that in this DRTP setup, the norm of the weights
grows linearly with time, which makes DRTP inapplicable
to regression tasks, and over-confident in classification tasks.
It is clear in this case the the first layer learns the teacher, and
the subsequent layers try to passively transmit the signal.

E. Details about the experiments
E.1. Direct Feedback Alignment implementation

We build on the Pytorch implementation of DFA
implemented in (Launay et al., 2020), accessi-

The Dynamics of Learning with Feedback Alignment

ble at https://github.com/lightonai/
dfa-scales-to-modern-deep-learning/
tree/master/TinyDFA. Note that we do not use the
shared feedback matrix trick introduced in this work. We
sample the elements of the feedback matrix Fl from a
centered uniform distribution of scale 1/

p
nl + 1.

E.2. Experiments on realistic datasets

We trained 4-layer MLPs with 100 nodes per layer for 1000
epochs using vanilla SGD, with a batch size of 32 and a
learning rate of 10�4. The datasets considered are MNIST
and CIFAR10, and the activation functions are Tanh and
ReLU.

We initialise the networks using the standard Pytorch ini-
tialization scheme. We do not use any momentum, weight
decay, dropout, batchnorm or any other bells and whistles.
We downscale all images to 14⇥ 14 pixels to speed up the
experiments. Results are averaged over 10 runs.

For completeness, we show in Fig. 11 the results in the main
text for 4 different levels of label corruption. The transition
from Alignment phase to Memorisation phase can clearly be
seen in all cases from the drop in weight alignment. Three
important remarks can be made:

• Alignment phase: Increasing label corruption slows
down the early increase of weight alignment, as noted
in Sec. 4.1.

• Memorization phase: Increasing label corruption
makes the datasets harder to fit. As a consequence,
the network needs to give up more weight alignment
in the memorization phase, as can be seen from the
sharper drop in the weight alignment curves.

• Transition point: the transition time between the
Alignement and Memorization phases coincides with
the time at which the training error starts to decrease
sharply (particularly at high label corruption), and is
hardly affected by the level of label corruption.

E.3. Experiment on the structure of targets

We trained a 3-layer linear MLP of width 100 for 1000
epochs on the synthetic dataset described in the main text,
containing 104 examples. We used the same hyperparame-
ters as for the experiment on nonlinear networks. We choose
5 values for ↵ and �: 0.2, 0.4, 0.6, 0.8 and 1.

In Fig. 12, we show the dynamics of weight alignment for
both ReLU and Tanh activations. We again see the Align-
then-Memorise process distinctly. Notice that decreasing ↵
and � hampers both the mamixmal weight alignment (at the
end of the alignment phase) and the final weight alignment
(at the end of the memorisation phase).

https://github.com/lightonai/dfa-scales-to-modern-deep-learning/tree/master/TinyDFA
https://github.com/lightonai/dfa-scales-to-modern-deep-learning/tree/master/TinyDFA
https://github.com/lightonai/dfa-scales-to-modern-deep-learning/tree/master/TinyDFA

The Dynamics of Learning with Feedback Alignment

(a) No label corruption

(b) 50% label corruption

(c) 90% label corruption

Figure 11. Effect of label corruption on training observables. A: Training error. B and C: Weight and gradient alignment, as defined in the
main text. D: Cosine similarity of the weight during training.

The Dynamics of Learning with Feedback Alignment

(a) ReLU

(b) Tanh

Figure 12. WA is hampered when the output dimensions are correlated (� < 1) or of different variances (↵ < 1).

