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Abstract

We present a method for estimating neural scenes
representations of objects given only a single im-
age. The core of our method is the estimation
of a geometric scaffold for the object and its use
as a guide for the reconstruction of the underly-
ing radiance field. Our formulation is based on
a generative process that first maps a latent code
to a voxelized shape, and then renders it to an im-
age, with the object appearance being controlled
by a second latent code. During inference, we
optimize both the latent codes and the networks
to fit a test image of a new object. The explicit
disentanglement of shape and appearance allows
our model to be fine-tuned given a single image.
We can then render new views in a geometrically
consistent manner and they represent faithfully
the input object. Additionally, our method is able
to generalize to images outside of the training
domain (more realistic renderings and even real
photographs). Finally, the inferred geometric scaf-
fold is itself an accurate estimate of the object’s
3D shape. We demonstrate in several experiments
the effectiveness of our approach in both synthetic
and real images.

1. Introduction

Understanding and reconstructing the intrinsic properties of
a 3D scene, such as 3D shape and materials of objects,
is a longstanding fundamental problem in computer vi-
sion (Marr, 1982). The typical process for these tasks starts
with a collection of multiple views of a scene and continues
with the application of an algorithm to extract information
such as the geometry and appearance (Hartley & Zisserman,
2004; Yu et al., 1999). There are several representations
for geometry such as voxels or meshes; similarly for ap-
pearance, there are colored voxels (Seitz & Dyer, 1999),
BRDFs (Matusik et al., 2003), etc. Recently, there has been
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a paradigm shift due to the success of deep learning methods.
Firstly, the 3D scene properties can be estimated from a sin-
gle image (Choy et al., 2016; Tulsiani et al., 2017; Fan et al.,
2017; Eigen et al., 2014; Shu et al., 2017). This removes the
requirement of multiple views and enables the application
of a method to a wider range of scenarios. Secondly, in
some recent works the 3D scene properties are modeled
with implicit representations (Park et al., 2019; Mescheder
et al., 2019; Mildenhall et al., 2020; Oechsle et al., 2019).
These representations overcome specific shortcomings that
traditional representations face (e.g. space discretization
for voxels, requirement for accurate geometry for textured
meshes).

In this paper we propose a generative method tailored for
inverse rendering from a single image, using both explicit
and implicit representations. In our method, the geometry
and appearance of an object in the rendered image are con-
trolled by two networks. The first network maps a latent
code to an explicit voxelized shape. The second network es-
timates implicitly the radiance field around the object (color
and volumetric density for any point) using the estimated
shape as a geometric scaffold, together with a second latent
code that controls appearance. Hence, the radiance field is
conditioned on these two factors. The final image is ren-
dered by casting rays towards the scene and accumulating
the color and densities to pixel values. After training the net-
works, our model can input a new test image and estimate
its geometric and appearance properties by re-rendering it:
we optimize for the latent codes and fine-tune the network
parameters so the rendered image matches the input. At
this point, our model is ready to render novel views of the
test object, as both the implicit and explicit representations
within our model are aware of its 3D shape.

By using an explicit geometric representation for an object,
we guide the appearance reconstruction to focus on its sur-
face. The empty volume around an object does not provide
useful information. Moreover, during inference on a test
image we only have one view. Therefore we cannot rely
on multi-view consistency for accurate shape/appearance
reconstruction, as done in previous work (Mildenhall et al.,
2020), and our geometric scaffold compensates for that.

Our disentangled shape and appearance representation im-
proves performance for novel view synthesis in several sce-
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narios. When trained and evaluated on the ShapeNet-SRN
dataset (Sitzmann et al., 2019), our method outperforms
previous works on both metrics PSNR and SSIM (except
the concurrent work pixelNeRF (Yu et al., 2021)). Here
we use the standard setting of rather low-fidelity render-
ings with simple lighting. Moreover, we show that the
same model, trained on these simple renderings, general-
izes to other appearance domains: (1) more realistic ren-
derings of ShapeNet objects with complex lighting and
higher resolution; and (2) photos of real objects in the Pix3D
dataset (Sun et al., 2018). On this dataset we demonstrate
better rendering quality than pixelNeRF. Finally, our method
also produces 3D objects reconstructions from a single im-
age, achieving strong performance on par with a recent
method (Mescheder et al., 2019) on two ShapeNet classes.

In summary, our contributions are: (1) a new model to
represent object classes that enables reconstructing objects
from a single image, (2) a new representation that combines
an intermediate volumetric shape representation to condi-
tion a high fidelity radiance field, and (3) optimization and
fine-tuning strategies during inference that allow estimating
radiance fields from real images.

2. Related Work

Scene Representation. To represent scenes, many works
rely on geometric primitives inspired by Computer Graphics
that respect the 3D nature of the world, like points, meshes,
and voxel volumes. (Qi et al., 2017) reason about point
clouds using permutation-invariant set networks. Meshes
can be generated by deforming a static mesh with fixed
topology using a graph neural network (Wang et al., 2018),
modeling variable-length sequences (Nash et al., 2020), or
using space-partitioning functions (Chen et al., 2020). Dis-
cretized voxel grids are a popular representation that can
be naturally processed by CNNs (Brock et al., 2016), al-
though are limited in resolution due to large memory re-
quirements. Surfaces can also be modeled implicitly using
signed distance functions (Park et al., 2019) or occupancy
volumes (Chen & Zhang, 2019; Mescheder et al., 2019).
Other approaches have used less geometrically explicit rep-
resentations, like learned latent spaces for scenes (Eslami
et al., 2018) and faces (Karras et al., 2019). Such learned
latent spaces can contain subspaces with geometric proper-
ties, like viewpoint changes (Hérkonen et al., 2020). In our
work, we predict voxel grids as explicit geometric scaffolds
that guide the estimation of scene appearance.

Neural Rendering. Scene representations are often ac-
companied by a renderer, which is often composed of one
or multiple neural networks, a process called neural render-
ing (Tewari et al., 2020). Neural rendering is a nascent field
with an array of diverse techniques, each specific to a par-
ticular scene representation. Several works handle the dif-
ferentiation through occlusion and visibility for meshes (Li

et al., 2018) and point clouds (Wiles et al., 2020). Other
approaches use deferred neural rendering (Thies et al., 2019)
and learn neural latent textures on proxy geometry to syn-
thesize realistic views. Other approaches raymarch through
the scene accumulating latent codes to finally synthesize
color values (Sitzmann et al., 2019). Most recently, Neu-
ral Radiance Fields (NeRF) (Mildenhall et al., 2020) use
volumetric rendering to synthesize highly realistic novel
views of a scene. NeRF has been extended to generative
modeling (Schwarz et al., 2020) by adding conditioning
on a latent code and adding adversarial losses. Our work
combines a voxelized representation that conditions a neu-
ral radiance field thereby enabling better disentanglement
between shape and appearance. This is related to (Riegler
& Koltun, 2020; 2021), which use estimated geometry from
multiview stereo to guide the image synthesis. However,
they require several calibrated images for any new scene, in
contrast to our method that uses only a single view during
inference.

3D Reconstruction. Classical 3D reconstruction is
typically performed using stereo matching between
two (Scharstein & Szeliski, 2002) or multiple calibrated
views (Seitz et al., 2006). A recent wave of learning-based
methods have demonstrated the ability to reconstruct an
object from a single RGB image, albeit in rather simple
imaging conditions (Mescheder et al., 2019; Fan et al., 2017;
Wang et al., 2018; Choy et al., 2016; Niemeyer et al., 2020;
Chen et al., 2019). Particular related are works which per-
form reconstruction through optimization of the latent or
explicit representation by backpropagating through the ren-
dering function (Niemeyer et al., 2020; Chen et al., 2019).
Meta-learning approaches can be used to accelerate the opti-
mization process (Sitzmann et al., 2020). When modeling a
latent space of scenes or objects, direct regression into that
latent space can be performed (Zhu et al., 2016). Further-
more, cues from multiple observations can be averaged in
that latent space (Sitzmann et al., 2019). (Insafutdinov &
Dosovitskiy, 2018) further learns about object shape without
direct camera pose supervision. Our method reconstructs
objects from a single image by optimizing shape and appear-
ance latent codes and fine-tuning the neural renderer.

Concurrent Work. The field of neural rendering is mov-
ing very fast, as shown by the number of arXiv preprints
appearing in late 2020 (Dellaert & Yen-Chen, 2020).
GREF (Trevithick & Yang, 2020) and pixelNeRF (Yu et al.,
2021) use image-based rendering and extract 2D features on
a single or few input images to compute a neural radiance
field. Instead, our method uses a latent shape representation
that provides a geometric scaffold that enables shape and
appearance disentanglement. Moreover, pixelNeRF oper-
ates in view space, which makes it difficult for the user to
specify a desired new view (see Sec. 5.5) GANcraft (Hao
et al., 2021) is also using explicit geometry (voxels) to ren-
der realistic images of block worlds, but it requires the scene
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Figure 1. Rendering of radiance fields. For any 3D point, a radi-
ance field maps its 3D position, together with a view direction,
to an RGB and density value. Then for a camera ray, color and
density values are accumulated to deliver a final pixel color.

voxels annotated with their semantic labels as an input. IBR-
Net (Wang et al., 2021) combines image-based rendering
with neural radiance fields and can render new scenes with-
out re-training, but it requires multiple views of the same
scene as an input. The work of (DeVries et al., 2021) esti-
mates radiance fields given multiple views of indoor scenes
using latent features in a 2D grid representing a floorplan.
However, they have not demonstrated the ability to estimate
a radiance field from a single image.

3. Background

Our goal is to synthesize realistic images of an object from
any viewpoint and at any resolution given a single view as
input (an image with its camera parameters). We tackle
this problem by estimating the underlying neural radiance
field (Mildenhall et al., 2020) and then render it from new
views. A radiance field is a function that maps a 3D point
and a 3D viewing direction to an RGB color and a density
value. We choose this representation because (1) it provides
an implicit 3D structure to the observed scene that allows
consistent rendering from different viewpoints, and (2) it
can accurately represent scenes at arbitrary resolutions.

Radiance fields. More formally, a radiance field is a con-
tinuous function F' that inputs the position of a 3D point
p € R? and a viewing direction d € R3?, and outputs a
color value c and the volume density o at the point p:

F(p,d)=c,o (1)

The radiance field can be rendered to an image pixel seen by
a camera with parameters K by casting a ray r(t) : o + td
from the camera center o towards the scene and passing
through the given pixel on the image plane with ray direction
d. Using the volume rendering equations (Max, 1995), the
estimated color C'(r) for ray r is:

Olr) = /t ) o) - et %)

n
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The values c(t) and o (t) are the color and volume density
at point ¢ on ray r, and they are estimated by the radiance

where

field F'. The bounds ¢,, and ¢; represent the nearest and
farthest point of the integration along the ray and depend on
the scene/camera arrangement.

In NeRF (Mildenhall et al., 2020), the above integrals are es-
timated with numerical quadrature: a set of random quadra-
ture points {t }5<_, is selected between t,, and ¢ ; with strat-
ified sampling and the final color can be estimated as:
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where £(z) = 1 — exp(—=z) and 6, = tr41 — ti is the
distance between two points on the ray.

In NeRF, the radiance field F' is estimated using a neural
network. The network is trained using a set of images I of
the same object/scene by optimizing the following loss:

ZZ 1C(rij)

i jel;

—C(ri)IP? (6)

where C(r;;) is the ground truth color of ray j passing
through a pixel in image . Each image is calibrated, i.e. the
camera parameters K are given.

The function F' uses the multiview consistency among the
calibrated images [ to implicitly capture the 3D nature of
the underlying scene. However, one major limitation is
that each function F' implicitly embeds the geometry and
appearance of a particular scene, and thus a separate neural
network model needs to be trained for every new scene.
Again, a large number of calibrated images is required to
accurately train F' and hence to render new views of a scene.

Rendering a new view. The radiance field F' can be used
to render a new view specified by camera parameters K’ as
follows (Mildenhall et al., 2020). For each pixel, we cast
a ray from the camera center towards the scene, passing
through the pixel in the image plane. Then, for each ray we
apply the process in Eq. (2)-(5) to determine the color of its
corresponding pixel (Fig. 1). The points p and direction d
in those equations are all derived from the camera K’ with
basic geometry. We refer to this process of generating a new
image I’ given the radiance field F’ and camera parameters
K asR(F,K')=1T.

4. Our method

In this section we present our generative framework for
image synthesis and how it is used for single image radiance
field estimation during inference.
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Figure 2. Overview of our generative process: a shape code is mapped to a 3D shape and an appearance code controls its appearance.

4.1. Generative Neural Rendering

The goal of our method is to estimate the radiance field of
an object from a single image so that we can render novel
views. We approximate the image formation process by a
generative neural rendering process that is conditioned on
two latent variables, one that controls the shape of the object
and another that controls its appearance (Fig. 2). We now
describe a full pass through the model.

First, a shape network G maps a latent code 6 into a 3D
shape represented as a voxel grid V' € R2%° Each voxel
i contains a scalar a; € [0, 1] indicating its occupancy:
G(6) = V. The voxel grid specifies a continuous volumet-
ric area in world coordinates where the object exists.

Second, we estimate a radiance field, i.e. the color ¢ and
density o of any 3D point p inside this area, using an ap-
pearance network F which extends (1):

F(p7d7ap7 ¢) = C,0 (7)

This extended radiance field is now conditioned on two
elements: (1) the voxelized shape V' produced by the shape
network, via the occupancy value «, at point p; and (2) a
latent code ¢ that controls the appearance of the object.

Finally, we can synthesize a new view of the object with
the rendering process R of the radiance field (described at
the end of Sec. 3). Note that all operations between the two
networks GG and F are fully differentiable.

Our generative formulation brings several advantages. It
sets up the intrinsic properties of the object (shape and
appearance) in such a way that estimating them is effective
and precise. By using an explicit geometric scaffold, we
condition the network F' to estimate radiance fields for a
specific 3D shape. In particular, we guide the network to
estimate proper color values on the surface of the object by
indicating the occupancy «, and the appearance latent code
¢ for a particular object). Additionally, during inference,
we cannot rely on multi-view constraints as we are given a
single test image. In this situation, the geometric scaffold
provides valuable 3D information to steer the radiance field
estimation towards the object surface. Finally, conditioning
the appearance network on the shape scaffold produced

by G enforces a disentanglement between the shape and
appearance latent spaces by construction, which is beneficial
when generalizing to different domains (Sec. 5.3).

4.2. Shape Network

We use a discretized voxel grid for representing the shape
scaffold. Voxel representations integrate naturally with con-
volutional architectures and the chosen resolution provides
a good balance between geometric details and memory re-
quirements (our 1282 resolution is sufficient for capturing
even fine details of a single object). In addition, for any point
p inside the extent of the voxel grid, we can estimate its
occupancy value «, efficiently using trilinear interpolation.
This process is differentiable, allowing the communication
between the shape network G and the appearance network
F'. Moreover, the scaffold provides a strong geometric sig-
nal to the appearance network, both by considering it as an
input via «ay,, and by enabling the sampling of more points
on the object surface for Eq. (4).

Architecture. The network consists of a series of fully
connected layers, followed by a series of 3D convolutional
blocks (with ReLU and batch normalization layers; details
in the supplementary material). This network maps a shape
latent code 6 to a voxelized shape V.

Training. As training data, we use the 3D objects of a
ShapeNet class (e.g. chairs or cars) and each instance has its
own shape latent code §. During training we optimize both
the network GG and these latent codes 6 (see Fig. 2), akin to
the Generative Latent Optimization (GLO) technique (Bo-
janowski et al., 2018). The loss consists of three parts. First,
the weighted binary cross entropy loss between a predicted
V and a ground truth voxel grid V' (Brock et al., 2016). Sec-
ond, we use a symmetry loss on the voxels, as we assume
the objects are left/right symmetric. Finally, we incorporate
a voxel-to-image projection loss by projecting the estimated
voxels to two random views j and comparing it with the
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corresponding object silhouette S;. The overall loss is:

1 R N
G Z*yaj, logé&; + (1 —7)(1 — o) log (1 — &)
eV
+ Wayml |V = Vegml[* + wproj Y [IP5(V) = S
je{l.2}

where ¢&; is the occupancy at voxel 4, Wsym and wp,o; are
the weights for the symmetry and projection loss respec-
tively, v is a weight to penalize false negatives, and P; is
the differentiable projection of the object silhouette on the
random view j. The latter operation is similar to Eq. (4),
without the c factor.

Note that while we use 3D voxelized shapes for training, this
is in practice not a big limitation as they can be easily com-
puted for synthetic datasets, or estimated using traditional
3D reconstruction techniques for real datasets with multiple
views. Note how standard neural rendering methods typi-
cally train from large number of multiple views (Sitzmann
et al., 2019; Mildenhall et al., 2020; Dupont et al., 2020;
Tatarchenko et al., 2016; Schwarz et al., 2020).

4.3. Appearance Network.

Our appearance network F' models a radiance field (7) simi-
lar to the one of NeRF (1), but extended to include additional
conditioning inputs: (a) the occupancy value «, at p, as
estimated by the shape network G, and (b) the appearance
latent code ¢ controlling the appearance of the object.

Architecture. The appearance network F' has similar ar-
chitecture to NeRF. It consists of a series of fully connected
layers (followed by ReLLU) that map the above input to an
RGB color c and a density value o.

Training. As training data, we use the same 3D objects
as in Sec. 4.2. For each object we render N = 50 views,
and for every view we sample random rays passing through
its pixels. Note that an appearance latent code ¢ represents
a single object, therefore the code is shared among all its
views. The final data consists of all the rays from every
image, together with the corresponding shape latent code
0, the appearance latent code ¢, and the ground truth pixel
color for each ray.

As in Sec. 4.2, we use GLO to optimize the network F'
together with the appearance latent codes ¢ for each training
object. For every ray r in the training set, we sample points
with stratified sampling (Mildenhall et al., 2020). For every
sampled 3D point p, we estimate its occupancy value «,
from the voxel grid G(0)(p) = V(p). These are input
to the appearance network F', together with the viewing
direction d and the appearance code ¢ for this object. The
network outputs a color ¢ and a density ¢ for p, which are
then accumulated along the ray r as in Eq. (4) giving the
final color for the pixel. We train the appearance network F'

by minimizing the loss (6), comparing this final color with
the ground truth.

The training of F' depends on the occupancy values of the
voxel grid V. While we can use the V' output by the shape
network G(6) directly, we achieve higher rendering quality
by first pre-training F' using the ground truth voxels as V,
and then fine-tuning with the estimated V' from G(9).

4.4. Inference on a test image

Our model is essentially a renderer with two latent codes
6, ¢ that control the shape and appearance of an object in
the output image. The model is differentiable along any
path from the latent codes to the rendered image, therefore
it can be used for the inverse task: given a test image [
and its camera parameters /K, we can reconstruct the latent
codes and then use them for synthetizing a new view of that
object.

Estimating the latent codes. We can estimate the latent

codes for a test image I by:

arg min [[R(F, K) — I + IG©0) = GO)symll* (3

where R is the rendering process from Sec. 3 ("Rendering
anew view’). Note that F' from Eq. (7) depends on ¢, and
on 6 via its arguments «a, (Sec. 4.1). The first term of this
loss measures the difference between I and its re-rendered
version. Hence, minimizing this term means finding the
latent codes 6, ¢ that lead to rendering the test image. The
second term encourages the voxel grid estimated by G to be
symmetric.

Jointly optimizing latent codes and networks. In prac-
tice, the above objective is difficult to optimize. The implicit
assumptions are that the input image I can be represented by
latent codes sampled from their respective latent space, and
that it is possible to discover them using gradient descent
methods. When the test image is substantially different
than the training set, then the appearance latent code ¢ can-
not properly express the colors in it. Moreover, the voxel
grid output by the shape network G tend to lack thin de-
tails. These two phenomena lead to blurry renderings by the
appearance network F'.

However, we observed that minimizing the objective (8)
also over parameters of the shape and appearance networks
G, F, in addition to the latent codes 6, ¢, results in more
detailed shape reconstructions and more accurate renderings,
even when the test image is from a different domain than the
training set. This corresponds to fine-tuning the networks
G, F beyond the parameters found during training (Sec. 4.2
and 4.3), allowing to overfit to this particular test image.

In practice, we devised through experimentation that the
best results can be achieved by a two-stage optimization
procedure, which we describe below.
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Importantly, notice how the objective (8) does not require
any annotations for the test image apart from the camera
parameters (e.g. no ground truth 3D shape). Hence, opti-
mizing it w.r.t. the network parameters is a valid operation
even at test time.

Shape code + network

Input image Shape code

Figure 3. Shape reconstruction by (a) optimizing only the shape
code, (b) together with fine-tuning the shape network.

Stage 1: Shape code ¢ and network GG. In the first stage,
we focus on optimizing the shape code and network pa-
rameters in order to get an accurate shape estimation for
the object in the test image. To achieve this, we use the
appearance network F' as a neural renderer that we can
backpropagate through to measure the image reconstruction
loss (8). Concretely, we keep F' fixed and optimize the
shape code 6, shape network G and appearance code ¢, to
achieve the best image I reconstruction (8). In other words,
we ask the shape code 6 and network G to produce an accu-
rate shape so that when it is rendered with appearance code
¢ and network F', it reproduces the input image I.

The fine-tuning of the network G is a necessary element
for accurate reconstruction, as the optimization of only the
shape code 6 results in approximate reconstructions and
missing geometric details (Fig. 3). In the experiment section
we further evaluate the performance of different optimiza-
tion strategies.

Stage 2: Appearance code ¢ and network F'. In Stage
2, we optimize for the appearance code ¢ and network F’,
while keeping the shape code and network fixed to the output
of Stage 1. Again, our goal is for the rendering R to be as
close as possible to input image I by minimizing (8). In
other words, we ask the appearance code ¢ and network F'
to render the shape V' = G(0) (estimated in Stage 1) so as
to match the input image I.

The fine-tuning of appearance network F' is also important,
as it results in more accurate reconstructions of the input
image (Fig. 4). This is particularly noticeable when the test
image [ is significantly different than the training data, in
which case the optimization of the appearance code ¢ is
insufficient. We present a thorough evaluation of this setting
in Sec. 5.3.

Rendering a new view K’'. So far, we have found the
shape and appearance codes and updated networks that en-
able to re-render the test image /. In order to render a new
view I’ specified by camera parameters K, we use the up-
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Input image App. code App. code + network

Figure 4. Image reconstruction by (a) optimizing only the appear-
ance code, (b) together with fine-tuning the appearance network.

dated latent codes and networks in R(F, K’). Note that
our optimizations and fine-tuning avoids trivial solutions,
e.g. when the test image [ is re-rendered accurately but new
views are wrong. Our method achieves this by (1) incorpo-
rating prior knowledge of the object class using a learned
latent shape and appearance models (G, F); (2) adding a
symmetry prior in the form of a symmetry loss (Eq. (8));
(3) customizing F' to focus on the surface of the object by
conditioning it on the geometric scaffold.

5. Experiments

We extensively evaluate our approach for novel view syn-
thesis given a single image on three datasets: (1) an exist-
ing benchmark based on ShapeNet (ShapeNet-SRN (Sitz-
mann et al., 2019), Sec. 5.2); (2) an updated ShapeNet test
set with images rendered more realistically and at higher
resolution (dubbed ShapeNet-Realistic, Sec. 5.3); (3) the
Pix3D (Sun et al., 2018) dataset, with photographs of real
objects (Sec. 5.4). As additional experiments, we (4) demon-
strate our method can operate without being given camera
parameters and compare to pixelNeRF (Sec. 5.5); (5) in-
vestigate the effects of exploiting symmetry at test time
(Sec. 5.6); (6) report results for 3D shape reconstruction on
two ShapeNet classes (Sec. 5.7). Additional results can be
found in the supplementary material.

Metrics. We evaluate with the standard image quality met-
rics PSNR and SSIM (Zhou Wang et al., 2004).

Technical details. In all experiments we use positional
encoding (Mildenhall et al., 2020) of a 3D point p with 6
frequencies. The appearance network F' has two residual
blocks of fully connected layers with width 256. We use
128 rays per image and 128 stratified samples per ray, plus
128 importance samples estimated by the geometric scaffold.
The latent codes are initialized from a normal distribution
and all optimizations are performed with Adam (Kingma &
Ba, 2015). During inference, we optimize the latent codes
and networks for 1000 iterations.

5.1. Variants of our method

Our method is highly modular and adjustable. We investi-
gate four variants of our method, which differ in how the
object shape is estimated and how it interacts with the ap-
pearance network.
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Figure 5. Results on ShapeNet-SRN (top two rows) and ShapeNet-
Realistic (other rows).

Variant 1: Conditional NeRF. This is a simpler version
of the appearance network F' in (7), which only inputs the
position of a point p and the appearance code ¢. Hence, we
train the network with GLO, optimizing both the network
parameters and the appearance codes. This variant does
not depend on any explicit geometry (no shape scaffold);
elements of both the object appearance and geometry are
entangled in the only latent code ¢. This network can be
seen as a variant of GRAF (Schwarz et al., 2020) with only
one (optimized) latent code as an input.

Variant 2: ShapeFromNR. The second variant corre-
sponds to our description in Sec. 4.4: the appearance net-
work F' has the same form as in (7), and both latent codes
as network parameters are fit to the test image (NR stands
for neural rendering).

Here the geometric scaffold is estimated by optimizing (8),
i.e. the reconstruction of the test image. Recall that in doing
so, the appearance network helps by acting as a renderer
in Stage 1. Then, in Stage 2 the shape network guides the
appearance network in the rendering process and thus sup-
port fitting ¢, F' to the test image. Hence, the two networks
interact fully.

Variant 3: ShapeFromMask. In this variant the geomet-
ric scaffold is instead estimated from a given segmentation
mask of the object during Stage 1. Concretely, we optimize
the shape network GG and the latent code 6 to fit the mask
by minimizing the projection P of the estimated shape with
the given mask (see *Training’ in Sec. 4.2). In this variant
the shape and appearance networks interact less: the shape

Variant code-only  code+network
V1 Conditional NeRF  22.12/0.90  22.05/0.91
V2 ShapeFromNR 23.37/0.92  23.31/0.92
V3 ShapeFromMask  22.94/0.91 22.98/0.91
V4 ShapeFromGT 25.59/094  25.65/0.94

Table 1. Analysis of four variants of our method on Chairs from
ShapeNet-SRN. Results in form PSNR/SSIM.

PSNR SSIM

GRF (Trevithick & Yang, 2020) 21.25 0.86

»  TCO (Tatarchenko et al., 2016) ~ 21.27  0.88

'gj dGQN (Eslami et al., 2018) 21.59 0.87

©) SRN (Sitzmann et al., 2019) 22.89  0.89
ENR (Dupont et al., 2020) 22.83 -

pixelNeRF (Yu et al., 2021) 23.72 091

Ours (ShapeFromNR) 23.37  0.92

- SRN (Sitzmann et al., 2019) 2225  0.89
5 ENR (Dupont et al., 2020) 22.26 -

pixelNeRF (Yu et al., 2021) 2317  0.90

Ours (ShapeFromNR) 22.53  0.90

Table 2. Comparison with other methods on Cars and Chairs of
ShapeNet-SRN. pixelNeRF is a concurrent work.

network is estimated first based on the mask alone, and
then it is fed to the appearance network for Stage 2. As the
ShapeNet-SRN dataset does not provide masks, we estimate
them automatically using background subtraction, as the
backgrounds are uniformly white.

Variant 4: ShapeFromGT. Here we directly provide the
ground truth object shape as V' to the appearance network
(determining the input occupancy «). There is no shape
network in this variant. This can be seen as an upper bound
on the performance on our method, where the appearance
network can rely on a perfect indication of where the object
surface is, and thus it can more easily render it properly
based on the visible parts in the test image.

5.2. Novel View Synthesis on ShapeNet-SRN

Settings. We use the same experimental setup and data as
(Sitzmann et al., 2019). The dataset consist of 6591 Chairs
and 3514 Cars that are split for training, validation and
testing. For training, each object is rendered with simple
lighting from 50 different viewpoints to images of 1282
resolution, with the cameras lying on a sphere around the
object. For testing, the objects are rendered from 251 views
on an archimedean spiral with the same illumination and
resolution as training.

At test time, we first fit the model to one of the 251 views
as in Sec. 4.4 (plays the role of the test image I), with a
procedure that depends on the variant (Sec. 5.1). Then, we
render each of other 250 views as described at the end of



ShaRF: Shape-conditioned Radiance Fields from a Single View

Variant code-only  code+network
V1 Conditional NeRF  21.86/0.86  22.91/0.89
V2 ShapeFromNR 21.68/0.88  22.07/0.89
V3 ShapeFromMask  22.68/0.88  23.26/0.90
V4 ShapeFromGT 24.84/091  25.65/0.92

Table 3. Evaluation on test Chairs from ShapeNet-Realistic. Here
the test images are rendered more realistically than the training set
(ShapeNet-SRN). Results in form PSNR/SSIM.

Sec. 4.4 (they play the role of ‘new views’ requested by the
user). Finally, we compare the rendering to the ground truth
image to evaluate performance.

Results. Tab. 1 show the performance of the four method
variants on the Chair class. First, all variants 2,3,4, which
include some form of shape scaffold, outperform variant
1. This supports the main contribution of our paper. In-
terestingly, ShapeFromNR performs somewhat better than
ShapeFromMask. This is likely because the training and
test images come from the same distribution (same illumi-
nation, resolution, etc). Hence the appearance network can
accurately guide the shape reconstruction. As expected,
ShapeFromGT achieves the best performance, as the ground
truth shape is the best guide for the appearance network.

In the columns of Tab. 1, we compare across another axis:
optimizing the appearance latent code only, or together with
the appearance network. We see that, in this setting, the
difference is minor. This is also due to the training and test
images having similar characteristics, so the test images can
be fit well by optimizing only the appearance latent codes.
We show qualitative results in Fig. 5.

Comparison to other works. We compare our Shape-
FromNR method to recent results on this dataset in Tab. 2
(numbers taken from the original papers). We outperform all
previous methods on both classes and for both metrics, with
an especially visible improvement on Chairs. Our results
are also on par with the concurrent method pixelNeRF (Yu
et al., 2021) on Chairs, while being somewhat below on
Cars.

5.3. Novel View Synthesis on ShapeNet-Realistic

Settings. We now perform novel view synthesis on a dif-
ferent synthetic test set. We render each Chair from the test
split of ShapeNet-SRN using a path tracer with complex
illumination (environment map and local lights, ambient oc-
clusion) to 20 views of resolution 2562 pixels. These images
are more realistic than the original test set of ShapeNet-SRN
and they have very different appearance statistics (shadows
are in different locations, the color palette is more vibrant,
etc.). All model variants are still trained on the original
ShapeNet-SRN training set, allowing us to investigate their
ability to generalize to a different appearance domain.

ShapeFromMask Conditional-NeRF

Inputimage .l . .’

ShapeFromMask Conditional-NeRF

1R LR
1Y
ey IR

Figure 6. Comparison between our ShapeFromMask and Condi-
tional NeRF on ShapeNet-Realistic.

Figure 7. Results on Pix3D using our ShapeFromMask variant.

Results. Tab. 3 presents results. First, two of the variants
with a shape scaffold (V3,V4) outperform V1 (Conditional
NeRF), which confirms it helps also in this more challenging
setting. Moreover, Conditional NeRF’s renderings are
blurry and show floating artifacts, especially in the presence
of thin structures (chair legs in Fig. 6). To quantify this
further, we computed the perceptual metric LPIPS (Zhang
et al., 2018) on this dataset (lower is better): 0.109 for
ShapeFromMask vs 0.115 for Conditional NeRF.

In this setting, ShapeFromMask delivers better results than
ShapeFromNR. As the test images are substantially different
from the training set, the segmentation mask provides a
better signal for shape reconstruction than neural rendering
from a appearance network trained in a different domain.

Finally and most importantly, by comparing across the
columns of Tab. 3, we see that optimizing the code+network
substantially improves the accuracy of all variants, com-
pared to code-only. In this setting the difference is much
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Figure 8. Comparison with pixelNeRF on Pix3D (here our method automatically estimates camera parameters).

larger than in Sec. 5.2, as optimizing also the networks en-
ables to bridge the gap between the training and test domains.
We show qualitative results in Fig. 5 using ShapeFromMask
with code+network optimization.

5.4. Novel View Synthesis on Pix3D

We also apply our ShapeFromMask method to real pho-
tographs from Pix3D (Sun et al., 2018), using the provided
masks as input (Fig. 7). The model is still trained on the
simple ShapeNet-SRN renderings, again demonstrating gen-
eralization to a new domain.

5.5. Comparison to pixeINeRF

Nearly all novel view synthesis methods based on neural ren-
dering, e.g. SRN (Sitzmann et al., 2019), GRF (Trevithick &
Yang, 2020), DVR (Niemeyer et al., 2020), NeRF (Milden-
hall et al., 2020) assume known camera parameters. The
very recent PixelNeRF (Yu et al., 2021) circumvents this re-
quirement by operating in view space. However, this makes
is difficult for a user to specify a particular new viewpoint
for synthesis (e.g. a frontal view of a chair), because it needs
to be expressed relative to the internal view space coordinate
system (which varies for each input image depending on the
depicted object pose).

However, we can easily incorporate automatic estimation of
the camera parameters at test time (3D rotation, 3D transla-
tion) into our method. We first retrieve the closest rendered
image from the training set (ShapeNet-SRN) using Lo dis-
tance on HOG features. Then, we use the camera parameters
of the retrieved image as an initialization and we optimize
them for the test image together with the latent codes ¢, 0
as in Eq. (8). This simple approach results in just 13.8°
rotation error and 0.14 blender units translation error in
ShapeNet-SRN. Note that the parameters correspond to a
canonical space so a user can specify a novel view directly.

We now compare to PixelNeRF using the public code,
trained on the same dataset as ours (ShapeNet-SRN) and
applied to Pix3D chairs. We make sure to place the chairs
a white background based on their mask, as the pixelNeRF
code expects them in this format. We compare to our Shape-
FromMask variant, also without given camera pose, in Fig. 8.
The images rendered by pixelNeRF are blurrier than our
method’s, and thin structures exhibit ghosting. There are
also clear artifacts from perspective distortion as pixelNeRF

operates in view space: the assumed camera frustum does
not match the actual one, making the object appear stretched
when seen from a new view. Finally, operating in view space
makes the objects seem slanted: the new view can only be
specified as a relative transformation, reducing the user abil-
ity to control the viewpoint.

5.6. Using symmetry.

Many man-made objects exhibit symmetry along one axis
and we can take advantage of that, similarly to other
works (Wu et al., 2020; Yao et al., 2020). Having the sym-
metric object in a canonical camera frame allows us to use
the mirrored input image during shape/appearance optimiza-
tion at test time as well. We used this for our qualitative
results in Fig. 5 and 7, as it yield slightly better render-
ings. Also quantitatively, the performance with symmetry is
only slightly higher than without (0.91/23.51 vs 0.90/23.26
SSIM/PSNR on ShapeNet-Realistic ShapeFromMask). We
stress that all quantitative results in Tab. 1, 2, 3 are without
exploiting symmetry at test time.

5.7. Shape reconstruction

We additionally evaluate the 3D reconstruction performance
of the shape network G for the ShapeFromMask variant in
the standard ShapeNet setting of (Choy et al., 2016) using
the evaluation protocol of Occupancy Networks (Mescheder
et al., 2019). Our method performs on par with Occupancy
Networks for Chair (ours 0.49 vs 0.50 IoU) and better for
Car (ours 0.77 vs 0.74 IoU), though this comparison is
approximative as our method is class-specific. While we
provide this limited evaluation as an indication that our
reconstructions are good, the focus of our work is to use the
3D reconstructions as a means towards accurate renderings.

6. Conclusion

We present a method for estimating a radiance field from
a single image using both explicit and implicit representa-
tions. Our generative process builds a geometric scaffold
for an object and then then uses for estimating the radiance
field. By inverting the process, we recover the explicit and
implicit parameters and use them for synthesizing novel
views. We show state-of-the-art results on a standard novel
view synthesis dataset and we demonstrate generalization
to images that differ significantly from the training data.



ShaRF: Shape-conditioned Radiance Fields from a Single View

References

Bojanowski, P., Joulin, A., Lopez-Pas, D., and Szlam, A.
Optimizing the Latent Space of Generative Networks. In
ICML, 2018.

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. Genera-
tive and discriminative voxel modeling with convolutional
neural networks. arXiv preprint arXiv:1608.04236, 2016.

Chen, W., Ling, H., Gao, J., Smith, E., Lehtinen, J., Jacob-
son, A., and Fidler, S. Learning to predict 3d objects
with an interpolation-based differentiable renderer. In
NeurlPS, 2019.

Chen, Z. and Zhang, H. Learning implicit fields for genera-
tive shape modeling. In CVPR, 2019.

Chen, Z., Tagliasacchi, A., and Zhang, H. BSP-Net: Gener-
ating compact meshes via binary space partitioning. In
CVPR, 2020.

Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S.
3d-r2n2: A unified approach for single and multi-view 3d
object reconstruction. In ECCV, 2016.

Dellaert, F. and Yen-Chen, L. Neural volume rendering:
Nerf and beyond. arXiv preprint arXiv:2101.05204, 2020.

DeVries, T., Bautista, M. A., Srivastava, N., Taylor, G. W.,
and Susskind, J. M. Unconstrained scene generation with
locally conditioned radiance fields. arXiv, 2021.

Dupont, E., Martin, M. B., Colburn, A., Sankar, A.,
Susskind, J. M., and Shan, Q. Equivariant neural ren-
dering. In ICML, 2020.

Eigen, D., Puhrsch, C., and Fergus, R. Depth map prediction
from a single image using a multi-scale deep network. In
NIPS, 2014.

Eslami, S. M. A., Jimenez Rezende, D., Besse, F., Viola,
F., Morcos, A. S., Garnelo, M., Ruderman, A., Rusu,
A. A., Danihelka, I., Gregor, K., Reichert, D. P., Buesing,
L., Weber, T., Vinyals, O., Rosenbaum, D., Rabinowitz,
N., King, H., Hillier, C., Botvinick, M., Wierstra, D.,
Kavukcuoglu, K., and Hassabis, D. Neural scene repre-
sentation and rendering. Science, 2018.

Fan, H., Su, H., and Guibas, L. J. A point set generation
network for 3d object reconstruction from a single image.
In CVPR, 2017.

Hao, Z., Mallya, A., Belongie, S., and Liu, M.-Y. GANcraft:
Unsupervised 3D Neural Rendering of Minecraft Worlds.
arXiv preprint arXiv:2104.07659, 2021.

Hiarkonen, E., Hertzmann, A., Lehtinen, J., and Paris, S.
Ganspace: Discovering interpretable gan controls. In
NeurlPS, 2020.

Hartley, R. I. and Zisserman, A. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004.

Insafutdinov, E. and Dosovitskiy, A. Unsupervised learning
of shape and pose with differentiable point clouds. In
NeurlPS, 2018.

Karras, T., Laine, S., and Aila, T. A style-based genera-
tor architecture for generative adversarial networks. In
CVPR, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Li, T.-M., Aittala, M., Durand, F., and Lehtinen, J. Differen-
tiable monte carlo ray tracing through edge sampling. In
SIGGRAPH Asia, 2018.

Marr, D. Vision: A Computational Investigation into the
Human Representation and Processing of Visual Informa-
tion. 1982.

Matusik, W., Pfister, H., Brand, M., and McMillan, L. A
data-driven reflectance model. ACM Transactions on
Graphics, 2003.

Max, N. Optical models for direct volume rendering. /IEEE
Transactions on Visualization and Computer Graphics,
1995.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,
and Geiger, A. Occupancy networks: Learning 3d recon-
struction in function space. In CVPR, 2019.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. NeRF: Representing Scenes
as Neural Radiance Fields for View Synthesis. In ECCV,
2020.

Nash, C., Ganin, Y., Eslami, S. A., and Battaglia, P. Polygen:
An autoregressive generative model of 3d meshes. In
ICML, 2020.

Niemeyer, M., Mescheder, L., Oechsle, M., and Geiger, A.
Differentiable volumetric rendering: Learning implicit 3d
representations without 3d supervision. In CVPR, 2020.

Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., and
Geiger, A. Texture fields: Learning texture representa-
tions in function space. In ICCV, 2019.

Park, J. J., Florence, P., Straub, J., Newcombe, R., and
Lovegrove, S. DeepSDF: Learning continuous signed
distance functions for shape representation. In CVPR,
2019.

Qi, C. R, Su, H., Mo, K., and Guibas, L. J. PointNet: Deep
learning on point sets for 3d classification and segmenta-
tion. In CVPR, 2017.



ShaRF: Shape-conditioned Radiance Fields from a Single View

Riegler, G. and Koltun, V. Free view synthesis. In ECCV,
2020.

Riegler, G. and Koltun, V. Stable view synthesis. In CVPR,
2021.

Scharstein, D. and Szeliski, R. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. In
1JCV, 2002.

Schwarz, K., Liao, Y., Niemeyer, M., and Geiger, A. GRAF:
Generative radiance fields for 3d-aware image synthesis.
In NeurIPS, 2020.

Seitz, S. M. and Dyer, C. R. Photorealistic scene reconstruc-
tion by voxel coloring. IJCV, 1999.

Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and
Szeliski, R. A comparison and evaluation of multi-view
stereo reconstruction algorithms. In CVPR, 2006.

Shu, Z., Yumer, E., Hadap, S., Sunkavalli, K., Shechtman,
E., and Samaras, D. Neural face editing with intrinsic
image disentangling. In CVPR, 2017.

Sitzmann, V., Zollhofer, M., and Wetzstein, G. Scene Rep-
resentation Networks: Continuous 3D-Structure-Aware
Neural Scene Representations. In NeurIPS, 2019.

Sitzmann, V., Chan, E. R., Tucker, R., Snavely, N., and
Wetzstein, G. MetaSDF: Meta-learning signed distance
functions. In NeurIPS, 2020.

Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T,
Tenenbaum, J. B., and Freeman, W. T. Pix3D: Dataset
and Methods for Single-Image 3D Shape Modeling. In
CVPR, 2018.

Tatarchenko, M., Dosovitskiy, A., and Brox, T. Multi-view
3d models from single images with a convolutional net-
work. In ECCV, 2016.

Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S.,
Sunkavalli, K., Martin-Brualla, R., Simon, T., Saragih, J.,
NieBner, M., et al. State of the art on neural rendering. In
Computer Graphics Forum, 2020.

Thies, J., Zollhofer, M., and Nieflner, M. Deferred neural
rendering: Image synthesis using neural textures. In
SIGGRAPH, 2019.

Trevithick, A. and Yang, B. Grf: Learning a general radiance
field for 3d scene representation and rendering. arXiv
preprint arXiv:2010.04595, 2020.

Tulsiani, S., Zhou, T., Efros, A. A., and Malik, J. Multi-view
supervision for single-view reconstruction via differen-
tiable ray consistency. In CVPR, 2017.

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., and Jiang, Y.-G.
Pixel2mesh: Generating 3d mesh models from single rgb
images. In ECCV, 2018.

Wang, Q., Wang, Z., Genova, K., Srinivasan, P., Zhou,
H., Barron, J. T., Martin-Brualla, R., Snavely, N., and
Funkhouser, T. Ibrnet: Learning multi-view image-based
rendering. In CVPR, 2021.

Wiles, O., Gkioxari, G., Szeliski, R., and Johnson, J. SynSin:
End-to-end view synthesis from a single image. In CVPR,
2020.

Wu, S., Rupprecht, C., and Vedaldi, A. Unsupervised learn-
ing of probably symmetric deformable 3d objects from
images in the wild. In CVPR, 2020.

Yao, Y., Schertler, N., Rosales, E., Rhodin, H., Sigal, L.,
and Sheffer, A. Front2back: Single view 3d shape recon-
struction via front to back prediction. In CVPR, 2020.

Yu, A., Ye, V., Tancik, M., and Kanazawa, A. pixelNeRF:
Neural radiance fields from one or few images. In CVPR,
2021.

Yu, Y., Debevec, P., Malik, J., and Hawkins, T. Inverse
global illumination: Recovering reflectance models of
real scenes from photographs. In SIGGRAPH, 1999.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In CVPR, 2018.

Zhou Wang, Bovik, A. C., Sheikh, H. R., and Simoncelli,
E. P. Image quality assessment: from error visibility to

structural similarity. Transactions on Image Processing,
2004.

Zhu, J.-Y., Krdhenbiihl, P., Shechtman, E., and Efros, A. A.
Generative visual manipulation on the natural image man-
ifold. In ECCYV, 2016.



