
Interpreting and Disentangling Feature Components
of Various Complexity from DNNs

Jie Ren * 1 Mingjie Li * 1 Zexu Liu 1 Quanshi Zhang 1 2

Abstract
This paper aims to define, visualize, and analyze
the feature complexity that is learned by a DNN.
We propose a generic definition for the feature
complexity. Given the feature of a certain layer in
the DNN, our method decomposes and visualizes
feature components of different complexity or-
ders from the feature. The feature decomposition
enables us to evaluate the reliability, the effective-
ness, and the significance of over-fitting of these
feature components. Furthermore, such analy-
sis helps to improve the performance of DNNs.
As a generic method, the feature complexity also
provides new insights into existing deep-learning
techniques, such as network compression and
knowledge distillation.

1. Introduction
Deep neural networks (DNNs) have demonstrated signifi-
cant success in various tasks. Besides the superior perfor-
mance of DNNs, some attempts have been made to investi-
gate the interpretability of DNNs in recent years. Previous
studies of interpreting DNNs can be roughly summarized
into two types, i.e. the explanation of DNNs in a post-hoc
manner (Lundberg & Lee, 2017; Ribeiro et al., 2016), and
the analysis of the representation capacity of a DNN (Hig-
gins et al., 2017; Achille & Soatto, 2018a;b; Fort et al.,
2019; Liang et al., 2019).

This study focuses on a new perspective of analyzing the
representation capacity of DNNs. I.e. we define, visualize,
and analyze the complexity of features in DNNs. Previous
research usually analyzed the theoretic maximum complex-
ity of a DNN according to network architectures (Arora
et al., 2016; Zhang et al., 2016; Raghu et al., 2017; Manu-

*Equal contribution 1Shanghai Jiao Tong University. 2Quanshi
Zhang is the corresponding author. He is with the John Hopcroft
Center and the MoE Key Lab of Artificial Intelligence, AI Institute,
at the Shanghai Jiao Tong University, China. Correspondence to:
Quanshi Zhang <zqs1022@sjtu.edu.cn>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

...

𝒇(𝒙) = 𝒄𝒍𝒐𝒘 𝒄𝒎𝒊𝒅 𝒄𝒉𝒊𝒈𝒉 𝚫𝒇+ ++

input

image

feature

of low

complexity

feature

of high

complexity

• reliability

• noise?

• over-fitted?

Figure 1. We decompose the raw feature into feature components
of different complexity orders. We further visualize and analyze
the feature components using some generic metrics.

rangsi & Reichman, 2018). In comparison, we propose to
measure the complexity of features by analyzing the com-
plexity of nonlinear transformations. The actual complexity
of features caused by nonlinear transformations is usually
different from the maximum complexity computed based
on the network architecture.

In this paper, given the feature of a specific intermediate
layer, we define the complexity of this feature as the mini-
mum number of nonlinear transformations required to com-
pute this feature under certain constraints. However, the
quantification of nonlinear transformations presents signifi-
cant challenges to state-of-the-art algorithms. Thus, we use
the number of nonlinear layers to approximate the feature
complexity. I.e. if a feature component can be computed
using k nonlinear layers with a fixed width, but cannot be
computed with k − 1 nonlinear layers, we consider its com-
plexity to be of the k-th order.

Analyzing DNNs using feature complexity. Based on the
above definition, we decompose an intermediate-layer fea-
ture into feature components of different complexity orders,
as Figure 1 shows. The clear feature decomposition en-
ables both qualitative and quantitative analysis of a DNN as
follows.

•We first visualize feature components of different complex-
ity orders. Then, we explore the relationship between the
feature complexity and the task difficulty. The distribution

Interpreting and Disentangling Feature Components of Various Complexity from DNNs

of feature components’ strength over different complexity
orders potentially reflects the difficulty of the task. A simple
task usually makes the DNN mainly learn simple features.

•We further analyze the reliability, the effectiveness, and
the significance of over-fitting for the decomposed feature
components: (1) In this paper, reliable feature components
refer to features that can be stably learned for the same
task by DNNs with different architectures and parameters.
(2) The effectiveness of a feature component is referred to
as whether the feature component corresponds to neural
activations relevant to the task. Usually, irrelevant neural ac-
tivations can be considered as noises. (3) The significance of
over-fitting of a feature component is quantified as the differ-
ence between a feature component’s numerical contribution
to the decrease of the training loss and its contribution to
the decrease of the testing loss.

From the above perspectives, we discover:

(1) The number of training samples has small influence on
the distribution of feature components’ strength, but signifi-
cant impacts on the feature reliability and the significance
of over-fitting of feature components.

(2) Feature components of the complexity order, which
is about the half of the depth of DNNs, are usually more
effective in inference than other feature components.

• Improving performance. Above conclusions can be further
used to improve performance of DNNs. We use feature
components of low complexity orders, especially those with
high effectiveness and reliability, to improve DNNs.

Method. More specifically, the feature decomposition into
different complexity orders is inspired by knowledge distilla-
tion (Hinton et al., 2015). We consider the target DNN as the
teacher network. Then, we design several neural networks
(namely decomposer nets) with different depths to mimic
the feature in an intermediate layer of the teacher network.
In this way, we assume that feature components mimicked
by shallow decomposer nets usually have low complexity.
A deeper decomposer net can incrementally learn an addi-
tional feature component of a bit higher complexity order,
besides components of low complexity.

In addition, different types of decomposer nets usually pro-
vide consistent feature decomposition. We find that the
moderate change of the width or the architecture of de-
composer nets does not significantly affect the distribution
of feature components’ strength over different complexity
orders, which ensures the trustworthiness of our method. Be-
sides, the feature decomposition also provides new insights
into network compression and knowledge distillation.

Contributions of this work can be summarized as follows:
(1) We propose a method to decompose, visualize, and ana-
lyze the complexity of intermediate-layer features in a DNN.

We measure the minimum number of nonlinear transforma-
tions actually used to compute the feature, which is usually
different from the maximum complexity of a DNN com-
puted based on its architecture. (2) We visualize the feature
components of different complexity orders. (3) We propose
new metrics to analyze these feature components in terms
of the reliability, the effectiveness, and the over-fitting level.
Such metrics provide insightful analysis of advantages and
disadvantages of the network compression and the knowl-
edge distillation. (4) The feature decomposition improve
the performance of DNNs.

2. Related Work
In this section, we discuss related studies in the scope of
interpreting DNNs.

Visual explanations for DNNs. The most direct way to
interpret DNNs includes the visualization of the knowledge
encoded in intermediate layers of DNNs (Zeiler & Fergus,
2014; Simonyan et al., 2017; Yosinski et al., 2015; Mahen-
dran & Vedaldi, 2015; Dosovitskiy & Brox, 2016), and the
estimation of the pixel-wise attribution/importance/saliency
on input images (Ribeiro et al., 2016; Lundberg & Lee,
2017; Kindermans et al., 2017; Fong & Vedaldi, 2017; Zhou
et al., 2016; Selvaraju et al., 2017; Chattopadhay et al., 2018;
Zhou et al., 2015). They visualized salient regions in input
images or salient feature units. In comparison, we propose
to decompose and visualize feature components of differ-
ent complexity orders, which provides a new perspective to
understand DNNs.

Explanations for the representation capacity of DNNs.
The evaluation of the representation capacity of DNNs pro-
vides a new perspective for explanations. The information-
bottleneck theory (Wolchover, 2017; Shwartz-Ziv & Tishby,
2017) used the mutual information to evaluate the repre-
sentation capacity of DNNs (Goldfeld et al., 2019; Xu &
Raginsky, 2017). Achille & Soatto (2018b) further used the
information-bottleneck to constrain the feature representa-
tion. Chen et al. (2018) proposed instance-wise feature se-
lection for model interpretation. The CLEVER score (Weng
et al., 2018) was used to estimate the robustness of DNNs.
The stiffiness (Fort et al., 2019), the Fourier analysis (Xu,
2018), and the sensitivity metrics (Novak et al., 2018) were
proposed to analyze the generalization capacity of DNNs.
The canonical correlation analysis (CCA) (Kornblith et al.,
2019) was used to measure the similarity between feature
representations of DNNs. Liang et al. (2019) investigated
the knowledge consistency between different DNNs.

Unlike previous methods, our research aims to explain a
DNN from the perspective of feature complexity. In compar-
ison, previous methods mainly analyzed the difficulty of op-
timizing a DNN (Arora et al., 2016; Blum & Rivest, 1989;

Interpreting and Disentangling Feature Components of Various Complexity from DNNs

target feature 𝑓(𝑥)

input image 𝑥

𝑐 5~7 (𝑥) 𝑐 8~13 (𝑥) 𝑐(14~25)(𝑥) Δ𝑓

Φ 4 (𝑥) Φ 7 (𝑥) Φ 13 (𝑥) Φ 25 (𝑥)

𝑐 1~4 (𝑥)= 𝑐 𝑖 (𝑥)Σ𝑖=1
4

input image 𝑥

target feature 𝑓(𝑥)

𝑐 5~7 (𝑥) 𝑐 8~13 (𝑥) 𝑐(14~25)(𝑥) Δ𝑓

Φ 4 (𝑥) Φ 7 (𝑥) Φ 13 (𝑥) Φ 25 (𝑥)

𝑐 1~4 (𝑥)= 𝑐 𝑖 (𝑥)Σ𝑖=1
4

input image 𝑥

target feature 𝑓(𝑥)

𝑐 5~7 (𝑥) 𝑐 8~13 (𝑥) 𝑐(14~25)(𝑥) Δ𝑓

Φ 4 (𝑥) Φ 7 (𝑥) Φ 13 (𝑥) Φ 25 (𝑥)

𝑐 1~4 (𝑥)= 𝑐 𝑖 (𝑥)Σ𝑖=1
4

input image 𝑥

target feature 𝑓(𝑥)

𝑐 5~7 (𝑥) 𝑐 8~13 (𝑥) 𝑐(14~25)(𝑥) Δ𝑓

Φ 4 (𝑥) Φ 7 (𝑥) Φ 13 (𝑥) Φ 25 (𝑥)

𝑐 1~4 (𝑥)= 𝑐 𝑖 (𝑥)Σ𝑖=1
4

Figure 2. Visualization of the feature components. Feature components of low complexity orders were usually more significant than those
of high complexity orders. Feature components of high complexity orders usually looked like noises.

Boob et al., 2018), the architectural complexity (Zhang
et al., 2016), and the representation complexity (Liang
et al., 2017; Cortes et al., 2017; Raghu et al., 2017), which
are introduced as follows.

• Difficulty or computational complexity of optimizing a
DNN: Some studies focus on the amount of computation,
which is required to ensure a certain accuracy of tasks. Blum
& Rivest (1989); Livni et al. (2014); Boob et al. (2018); Ma-
nurangsi & Reichman (2018) proved that learning a neural
network with one or two hidden layers was NP-hard in the
realizable case. Arora et al. (2016) showed that a ReLU net-
work with a single hidden layer could be trained in polyno-
mial time when the dimension of input was constant. Based
on topological concepts, Bianchini & Scarselli (2014) pro-
posed to evaluate the complexity of functions implemented
by neural networks. Rolnick & Tegmark (2017) focused on
the number of neurons required to compute a given function
for a network with a fixed depth.

• Complexity measures of the feature representation in
DNNs: Pascanu et al. (2013); Zhang et al. (2016) proposed
three architectural complexity measures for RNNs. Raghu
et al. (2017) proved the maximal complexity of features
grew exponentially with depth. Liang et al. (2017); Cortes
et al. (2017) measured the maximal complexity of DNNs
with Rademacher complexity. Kalimeris et al. (2019) in-
vestigated the change of the mutual information between
features in a DNN and features in a linear classifier. They
found that during the learning process, the SGD optimizer
learned functions of increasing complexity.

Unlike investigating the maximal complexity of DNNs
based on the network architecture, we measure the feature
complexity by exploring the complexity of nonlinear trans-
formations, and visualize feature components of different
complexity orders. Moreover, we analyze the quality of

feature components and successfully boost the performance
of DNNs with these feature components.

Knowledge distillation. Knowledge distillation is a pop-
ular and successful technique in knowledge transferring.
Hinton et al. (2015) thought “soft targets” led to the supe-
rior performance of knowledge distillation. From another
perspective, Lopez-Paz et al. (2016) unified knowledge dis-
tillation and privileged information. Phuong & Lampert
(2019) explained the knowledge distillation from the view
of data distribution, optimization bias, and the size of the
training set. Cheng et al. (2020) explained the knowledge
distillation by quantifying the knowledge. This paper uses
knowledge distillation to decompose feature components
of different complexities, and further explains the superior
performance of knowledge distillation as the fact that knowl-
edge distillation removes noisy components.

3. Definition, quantification and analysis of
feature complexity

3.1. Complexity of feature components

Given an input x, let f(x) ∈ Rn denote the feature of a spe-
cific intermediate layer of the DNN. y = D(f(x)) ∈ RC is
the output of the DNN, whereD denotes the network module
above f(x). The basic requirement for feature complexity
is to ensure that the entire feature f(x) can be decomposed
into feature components of different complexity orders.

f(x) = c(1)(x) + c(2)(x) + . . .+ c(L)(x) + ∆f (1)

where c(l)(x) denotes the feature component of the l-th
complexity order (or, the l-order complexity for short). ∆f

is the feature component of a higher-order complexity.

Definition. Considering the above requirement for linear
feature decomposition, the feature component c(l)(x)=c of
the l-order complexity is defined as the feature component

Interpreting and Disentangling Feature Components of Various Complexity from DNNs

decomposer

net

෩Φ𝑘
𝑙
𝑥 = 𝐺 ⋅ 𝜓 𝑙 (𝑥)

ℎ𝑘 ෩Φ𝑘
𝑙
𝑥 = 𝐻 ⋅ ෩Φ𝑘

𝑙
𝑥

𝑔1

ℎ1

𝑔2

ℎ2

𝑔𝐾

ℎ𝐾...

...

𝜓 𝑙 (𝑥)

𝑙 nonlinear

layers

ite
ra

tio
n
s

𝑥

complexity order 𝑙 1 ~ 4 orders 5 ~ 7 orders 8 ~ 13 orders 14 ~ 25 orders 25 ~ 49 orders

d
if

fe
re

n
t

va
lu

es
 o

f
1/16

1/8

1/4

1/2

1

2

0.2 0.4 0.6 0.8 𝜌𝑐
𝑙

𝜌𝑐
(𝑙)

1.0

0.8

0.6

0.4

0.2

0.0
Task-0 Task-2 Task-8 Task-26 Task-80

(a) (b) (c)

Figure 3. (a) Strength of feature components decomposed by decomposer nets of different widths. (b) Strength of feature components of
different orders learned for different tasks. (c) The network for the decomposition of reliable feature components.

that can be computed using l nonlinear layers, but cannot be
computed with l−1 nonlinear layers, when we constrain the
network Φ to have a fixed width. I.e. the feature complexity
of c is defined as l= argminl′{Φ(l′)(x) = c}, where Φ(l′)(·)
denotes a neural network with l′ nonlinear transformation
layers, and

∑L
l′=1c

(l′)(x) is a reconstruction of f(x).

This definition poses a significant challenge, i.e. measuring
the exact number of non-linear layers required to compute
f(x). It usually involves two problems: (1) people cannot
exhaust all network architectures of Φ to guarantee a feature
component is not able to be computed with less nonlinear
layers; (2) even if given a good enough network architec-
ture, people still cannot guarantee network parameters can
be fully optimized, in order to calculate the component
accurately. Therefore, we used the following method to ap-
proximately decompose features into different complexity
orders.

Approximate-yet-efficient solution. Instead of directly de-
composing the feature component c(l), we propose to use
knowledge distillation to extract all feature components
with the complexity of no higher than the l-th order, i.e.
Φ(l)(x) =

∑l
i=1 c

(i)(x). Given a trained DNN as the teacher
(target) network, we select an intermediate layer f of the
DNN as the target layer. Φ(l)(x) =

∑l
i=1 c

(i)(x) is decom-
posed using another DNN (termed the decomposer net)
with l nonlinear layers. The loss ‖f(x)−Φ(l)(x)‖2 is used to
force Φ(l)(x) to mimic f(x), where f(x) denotes the feature
of the target network. We use decomposer nets with differ-
ent depths Φ(1), . . . ,Φ(L) to extract feature components of
different complexity orders. Thus, the feature component of
the l-order complexity is given as follows.

c(l)(x) = Φ(l)(x)− Φ(l−1)(x),

where minΦ(l) Loss = ‖f(x)− Φ(l)(x)‖2.
(2)

In particular, c(1)(x) = Φ(1)(x). Thus, f(x) is decomposed
into two parts: f(x) = Φ(L)(x) + ∆f where ∆f denotes the
feature component with a higher complexity order than L.

Actually, it is not necessary to analyze feature compo-
nents of every order, which leads to a large computational
load. Instead, we compute feature components in inter-
vals. Specifically, we calculate c(1∼l1)(x) = c(1)(x) + · · · +
c(l1)(x)=Φ(l1)(x), c(l1+1∼l2)(x)=c(l1+1)(x)+· · ·+c(l2)(x)=

Φ(l2)(x)−Φ(l1)(x), c(l2+1∼l3)(x)=c(l2+1)(x)+· · ·+c(l3)(x)=

Φ(l3)(x)−Φ(l2)(x), etc., instead of computing the component
of each single order. This approximation does not signifi-
cantly affect the objectiveness of the quantified distribution
of feature components’ strength over different complexity
orders.

Strength of feature components (ρ(l)
c). Furthermore, we

quantify the strength of feature components of different
complexity orders as the variance of feature components.
The metric is designed as ρ(l)

c = V ar[c(l)(x)]/V ar[f(x)],
where V ar[c(l)(x)] = Ex[‖c(l)(x)− Ex′ [c

(l)(x′)]‖2]. For fair
comparisons between different DNNs, we use the variance
of the entire feature f(x) to normalize V ar[c(l)(x)]. The
variance indicates the numerical impact of the feature com-
ponent c(l)(x) to f(x). ρ(l)

c represents the relative strength
of the l-th order complex feature component w.r.t. the entire
feature.

Limitations: accurate estimation vs. fair comparison.
Theoretically, if the target DNN has D nonlinear layers,
the complexity of its features must be no higher than the
D-th order, i.e. Φ(D′)(x) = f(x), D′ ≤ D. However, the
optimization capacity for the learning of decomposer nets is
limited. A decomposer net with D nonlinear layers cannot
learn all features in f(x). Thus, when Φ(D′)(x) ≈ f(x) in
real implementations, we have D′ ≥ D.

In this way, ρ(l)
c measures the relative distribution of fea-

ture components’ strength over different complexity orders,
instead of an accurate strength of feature components. Nev-
ertheless, as Figure 3(a) shows, even if we use decomposer
nets with different architectures (different widths), we still
get similar distributions of feature components’ strength.
This proves the trustworthiness of our method, and enables
the fair comparison between different DNNs.

Decomposer nets. We design decomposer nets
Φ(1)(x), . . . ,Φ(L)(x) with residual architectures. The
decomposer net consists of three types of residual blocks,
each type having m blocks. Each block of the three
types consists of a ReLU layer and a convolutional layer
with 128γ, 256γ, 512γ channels, respectively. In most
experiments, we set γ = 1, but in Figure 3(a), we try
different values of γ to test decomposer nets of different

Interpreting and Disentangling Feature Components of Various Complexity from DNNs

widths. We use two additional convolutional layers before
and after all 3m blocks, respectively, to match the input and
output dimensions. Therefore, a decomposer net contains
3m + 2 convolutional layers and l = 3m + 1 ReLU layers.
For fair comparisons between DNNs, we use the same set
of decomposer nets to measure the complexity of each
DNN.

Various decomposer nets generate similar distributions of
feature components’ strength, which demonstrates the trust-
worthiness of our methods. To verify this, we learn a tar-
get DNN for Task-26 (which will be introduced later) on
the CIFAR-10 dataset and decompose the output feature
of the target DNN. We use decomposer nets with differ-
ent widths (different values of γ) for analysis. We ana-
lyze the complexity of the output feature of the last con-
volutional layer. We set m = 1, 2, 4, 8, 16, 32, so that
the nonlinear layer numbers of decomposer nets are set
to l1 = 4, l2 = 7, l3 = 13, l4 = 25, l5 = 49, l6 = 97
according to settings in the approximate-yet-efficient so-
lution paragraph. Thus, we calculate c(1∼4)(x), c(5∼7)(x),
etc. To boost the learning efficiency, we used parameters
of the learned Φ(li) to initialize first li layers in Φ(li+1).
Figure 3(a) compares distributions of feature components’
strength computed using different decomposer nets. We find
that decomposer nets with different widths generate simi-
lar distributions of feature components’ strength, thereby
verifying the trustworthiness of our method.

The relationship between the task complexity and the
feature complexity. We define the complexity of tasks first.
Let Task-n denote a task of the n-order complexity as fol-
lows: we construct another network (namely the task DNN)
with n ReLU layers and randomly initialized parameters
(without further training), whose output is an 8×8×64 tensor.
We learn the target DNN1 to reconstruct this output tensor
via an MSE loss. Since the task DNN contains n ReLU
layers, we use Task-n to indicate the complexity of mimick-
ing the task DNN. Due to the randomness of the initialized
parameters in the task DNN, when n is large, the task com-
plexity is high. Figure 3(b) compares distributions of feature
components’ strength computed on target DNNs learned for
Task-0, Task-2, Task-8, Task-26, and Task-80. We find that
DNNs learned for more complex tasks usually encode more
high-complexity feature components.2 Let us take target
DNNs learned for Task-0 and Task-80 for example. For
the target DNN learned for Task-0, the significance of the
4-order feature component is much higher than the signifi-

1For simplicity, we design the target DNN to have the same
architecture as the decomposer net with l = 19.

2Note that if the target DNN has D nonlinear layers, the actual
complexity of its features can be higher than the D-th order, i.e.
ρ

(D′)
l > 0 for D′ > D, due to the limited optimization capacity

of learning decomposer nets. Please see the paragraph limitations:
accurate estimation vs. fair comparison for details.

cance of higher-order feature components. However, in the
target DNN learned for Task-80, 7-order and the 13-order
feature components are strengthened significantly.

3.2. Reliability of feature components

Understanding the reliability of a set of feature compo-
nents Φ(l)(x)=

∑l
i=1 c

(i)(x). We aim to decompose reliable
feature components Φ(l),reli(x) and unreliable feature com-
ponents Φ(l),unreli(x). The goal can be represented as

Φ(l)(x) = Φ(l),reli(x) + Φ(l),unreli(x) (3)

As discussed in (Liang et al., 2019), DNNs with dif-
ferent initializations of parameters usually learn simi-
lar feature representations for the same task, and these
similar features are proved to be reliable for the task.
Thus, we consider the reliable feature components as
features that can be stably learned by different DNNs
trained for the same task. Suppose that we have K
different DNNs learned for the same task. For each
DNN, we select the feature of a specific intermediate
layer as the target feature. Let f1(x), f2(x), . . . , fK(x)

denote target features of K DNNs. We aim to ex-
tract features shared by f1(x), f2(x), . . . , fK(x). Let
Φ

(l),reli
1 (x),Φ

(l),reli
2 (x), . . . ,Φ

(l),reli
K (x) denote reliable feature

components extracted from the K DNNs, which are shared
by f1(x), f2(x), . . . , fK(x), respectively. Then, we can con-
sider the goal is to learn Φ

(l),reli
1 (x),Φ

(l),reli
2 (x), . . . ,Φ

(l),reli
K (x),

which satisfies each pair of Φ
(l),reli
i (x) and Φ

(l),reli
j (x) are able

to reconstruct each other by a linear transformation:

Φ
(l),reli
i (x) = rj→i(Φ

(l),reli
j (x)), Φ

(l),reli
j (x) = ri→j(Φ

(l),reli
i (x))

(4)
where ri→j and rj→i denote two linear transformations.

Computation of reliable feature components that satisfy
requirements in Eq. (3) and Eq. (4). We design a direct
and simple algorithm to decompose reliable and unreliable
feature components. The decomposition can provide new
insights into the feature representation capacity of DNNs,
as experiments in Section 4 show.

Inspired by the CycleGAN (Zhu et al., 2017), we apply
the idea of cycle consistency on knowledge distillation to
extract reliable feature components. To extract reliable fea-
ture components, we construct the following neural net-
work for knowledge distillation. As Figure 3(c) shows,
the network has a total of l ReLU layers. We add K
parallel additional convolutional layers g1, g2, . . . , gK to
generate K outputs Φ̃

(l)
1 (x), Φ̃

(l)
2 (x), . . . , Φ̃

(l)
K (x), to mimic

f1(x), f2(x), . . . , fK(x), respectively. More specifically,
Φ̃

(l)
k (x) = gk(ψ(l)(x)) = Gk · ψ(l)(x), where GK is a ma-

trix, and ψ(l)(x) denotes the output of the decomposer net
with l ReLU layers. Then, the distillation loss is given as
Ldistill =

∑K
k=1‖fk(x)− Φ̃

(l)
k (x)‖2.

Interpreting and Disentangling Feature Components of Various Complexity from DNNs

To enable Φ̃
(l)
k (x) and Φ̃

(l)

k′ (x) to reconstruct each other lin-
early, we apply the idea of cycle consistency. We first
use Φ̃

(l)
k (x) to reconstruct ψ(l)(x) by using another linear

transformation hk(Φ̃
(l)
k (x))=Hk ·Gk · ψ(l)(x) to fit ψ(l)(x).

Similarly, we can also use Φ̃
(l)

k′ (x) to reconstruct ψ(l)(x) by
fitting hk′(Φ̃

(l)

k′ (x))=Hk′ ·Gk′ · ψ(l)(x) to ψ(l)(x), as shown
in Figure 3 (c). In this way, we consider Φ̃

(l)
k (x) and Φ̃

(l)

k′ (x)

construct each other through ψ(l)(x). We conduct cycle re-
constructions between ψ(l)(x) and Φ̃

(l)
k (x) for R iterations

(R=10 in experiments) to ensure a certain reconstruction ac-
curacy. Let ψ(l)

0 (x)=ψ(l)(x), ψ
(l)
r (x)=Ek[hk ◦ gk ◦ ψ(l)

r−1(x)]
denote the reconstruction output in the r-th iteration, where
hk◦gk denotes the cascaded layerwise operations. The cycle
construction loss is as follows.

Lcycle =
∑R

r=1

∑K

k=1
‖hk ◦ gk ◦ ψ(l)

r−1(x)− ψ(l)
r−1(x)‖2 (5)

This loss makes the feature Φ̃
(l)
k (x) approximately shared by

K DNNs. In this way, Φ
(l),reli
k (x) = Φ̃

(l)
k (x) can be consid-

ered as the reliable feature component. Compared with the
traditional cycle consistency (Zhu et al., 2017), the above
loss is much simpler and requires less computational cost.
In this way, we can decompose the unreliable feature compo-
nent of the k-th DNN as Φ

(l),unreli
k (x) = Φ

(l)
k (x)− Φ

(l),reli
k (x),

with the other K − 1 DNNs as assistant DNNs. In exper-
iments, we set K = 3, including a target DNN and DNNs
A and B. The reliable feature components are shared by
the three DNNs. DNNs A and B have been well-trained as
two additional assistant DNNs, namely exemplary DNNs,
in order to decompose reliable and unreliable feature com-
ponents from the target DNN. The exemplary DNNs A and
B are selected as those with state-of-the-art performance
in the target task, in order to obtain convincing results. To
enable fair comparisons, the same pair of DNNs A and B
are uniformly used to analyze various DNNs.

Reliability of feature components in Φ
(l)
k (x) can be quan-

tified as the ratio of reliable feature components in Φ
(l)
k (x)

as ρ(l),reli = V ar[Φ
(l),reli
k (x)]/V ar[Φ

(l)
k (x)].

3.3. Other metrics to evaluate feature components

Effectiveness of feature components (α(l)
effective) measures

whether the feature components c(l)(x) extracted from the
training sample x directly contributes to the task. We com-
pute the Shapley value of each l-order feature component
to quantify the numerical contribution of this feature com-
ponent, i.e. its contribution to the decrease of the task loss.
The Shapley value is widely considered as a standard met-
ric for feature importance in literature (Chen et al., 2019;
Ghorbani & Zou, 2019; Williamson & Feng, 2020). Given
a set of feature components C = {c(l)(x), l = 1, . . . , L},
let S ⊆ C denote a subset of C and f ′S =

∑
c(l)(x)∈S c

(l)(x)

is the sum of feature components in the subset S. Then,
v(S) = −Ex∈X train [Ltask(ytruth, y = D(f ′S+∆f)given x)] denotes
the negative value of the task loss when we only use feature

components in the subset S for inference. ∆f is the high-
order component in Eq. (1). Then, the Shapley value of the
l-order feature components w.r.t. the decrease in the task
loss is computed as follows (Shapley, 1953).

ϕtrain
l =

∑
S⊆C\{c(l)(x)}

p(S)

[
v(S ∪{c(l)(x)})− v(S)

]
(6)

where p(S) = (L−|S|−1)!|S|!
L!

. In this way, numer-
ical contributions of all the L feature components
can be fairly allocated and given as ϕtrain

1 + ϕtrain
2 +

· · · + ϕtrain
L = Ex∈Xtrain [L

task(ytruth, y = D(∆f)given x) −
Ltask(ytruth, y = D(f)given x)]. Thus, the metric α(l)

effective =

ϕtrain
l /

√
V ar[c(l)(x)] measures the normalized effectiveness

of the feature component c(l) to the decrease of the training
loss.

√
V ar[c(l)(x)] is used for normalization.

Significance of over-fitting of feature components
(α(l)

overfit) measures whether c(l)(x) is over-fitted to specific
training samples. Just like the effectiveness, we use the
Shapley value to measure the numerical contribution ϕoverfit

l

of each l-order feature component to the over-fitting level.
We use Loverfit(f) = Ex∈Xtest [Ltask(ytruth, y = D(f)given x)] −
Ex∈Xtrain [L

task(ytruth, y = D(f)given x)] to represent the sig-
nificance of over-fitting when we use the feature f for
inference. In this case, v(S) = Loverfit(f

′
S + ∆f) quanti-

fies the over-fitting level caused by both feature compo-
nents in ∆f and feature components in S. We plug such
definition of v(S) to the formulation of Shapley values
in Eq. (6) to compute the Shapley value ϕoverfit

l . In this
way, the computed Shapley value ϕoverfit

l represents the nu-
merical contribution of the l-order feature components to
the over-fitting level. Based on Shapley values, we have
ϕoverfit

1 +ϕoverfit
2 + · · ·+ϕoverfit

L = Loverfit(f)−Loverfit(∆f). Then,
the metric of the significance of over-fitting for c(l) is given
as α(l)

overfit = ϕoverfit
l /ϕtrain

l .

4. Experiments
Datasets, DNNs & Implementation details. We used our
method to analyze VGG-16 (Simonyan et al., 2017) and
ResNet-8/14/18/20/32/34/44 (He et al., 2016).3 For sim-
plicity, we limited our attention to coarse-grained and fine-
grained classification. We trained these DNNs based on
the CIFAR-10 dataset (Krizhevsky et al., 2009) and the
CUB200-2011 dataset (Wah et al., 2011). For the CUB200-
2011 dataset, we used object images cropped by object
bounding boxes for both training and testing.

Visualization of feature components. Given a trained

3Compared with the original VGG-16, we added a BatchNorm
layer before the output feature of each convolutional layer, before
we use its feature to guide the distillation process. ResNet-8 and
ResNet-14 had the similar structure as ResNet-20, ResNet-32 and
ResNet-44 in (He et al., 2016), except that they had 1 and 2 blocks
in each stage, respectively.

Interpreting and Disentangling Feature Components of Various Complexity from DNNs

200

500

1000

2000

5000#
tr

ai
n

in
g

sa
m

p
le

s

0.2 0.4 0.6 0.8 𝜌𝑐
(𝑙)

ResNet-8

200

500

1000

2000

5000#
tr

ai
n

in
g

sa
m

p
le

s

0.2 0.4 0.6 0.8 𝜌𝑐
(𝑙)

ResNet-14

0.2 0.4 0.6 0.8 𝜌𝑐
(𝑙)

200

500

1000

2000

5000#
tr

ai
n

in
g

sa
m

p
le

s ResNet-20

0.2 0.4 0.6 0.8 𝜌𝑐
(𝑙)

200

500

1000

2000

5000#
tr

ai
n

in
g

sa
m

p
le

s ResNet-32

0.2 0.4 0.6 0.8 𝜌𝑐
(𝑙)

200

500

1000

2000

5000#
tr

ai
n

in
g

sa
m

p
le

s ResNet-44

0.6

0.4

𝜌 𝑙 ,reli ResNet-8

4 7 13 25
𝑙-th order

4 7 13 25
𝑙-th order

4 7 13 25
𝑙-th order

4 7 13 25
𝑙-th order

4 7 13 25
𝑙-th order

𝜌 𝑙 ,reli ResNet-14 𝜌 𝑙 ,reli ResNet-20 𝜌 𝑙 ,reli ResNet-32 𝜌 𝑙 ,reli ResNet-44

0.4

0.6

0.8

0.4

0.6

0.8

0.4

0.6

0.8

0.4

0.6

0.8

complexity
order 𝑙
1-4 orders

5-7 orders

8-13 orders

14-25 orders

26-49 orders

50-97 orders

𝑛 = 200

𝑛 = 500

𝑛 = 1000

𝑛 = 2000

𝑛 = 5000

using random
𝑛 samples in

CIFAR-10

Figure 4. Strength (ρ(l)
c) and reliability (ρ(l),reli) of the decomposed feature components.

ResNet-8

ResNet-14

ResNet-20

ResNet-32

ResNet-44

in
c
re

a
s
e
 o

f
a
c
c
u
ra

c
y

o
n
 t

h
e
 t

e
s
t

s
e
t

(%
)

using random 𝑛 samples in CIFAR-10

𝑛=200

𝑛=500

𝑛=1000

𝑛=2000

𝑛=5000

in
c
re

a
s
e
 o

f
a
c
c
u
ra

c
y

o
n
 t

h
e
 t

e
s
t
s
e
t

(%
)

-6

0

2

4

4 7 13 25 49 97
𝑙-th order

-20

-10

0

1

using random 𝑛 samples in CUB200-2011

𝑛=2000

𝑛=3000

𝑛=4000

𝑛=5000

4 7 13 25 49
𝑙-th order

in
c
re

a
s
e
 o

f
a
c
c
u
ra

c
y

o
n

 t
h

e
 t

e
s
t

s
e

t
(%

)

-1

0

1

2

-4

-8

-10

using random 𝑛 samples in Stanford Dogs

4 7 13 25 49
𝑙-th order

𝑛=1200

𝑛=2400

𝑛=3600

𝑛=4800

in
c
re

a
s
e
 o

f
a
c
c
u
ra

c
y

o
n

 t
h

e
 t

e
s
t
s
e

t
(%

)

#training samples

0

2

4

1

3

5

200 50010002000 5000 50000

Figure 5. Improvements of the classification accuracy based on Φ(l)(x). (left) The accuracy improvement of different DNNs learned on
the CIFAR-10 dataset with l = 7 using different number of training samples. (right) The accuracy improvement with different values of l.
Here ResNet-32 was learned on the CIFAR-10 dataset, and ResNet-34 was learned on the CUB200-2011 dataset and the Stanford Dogs
dataset, respectively.

VGG-16 and images in the CUB200-2011 dataset, we de-
composed and visualized feature components of different
orders. We took the feature in the conv 4-3 layer (with
the size of 28 × 28 × 512) as the target feature f(x). Fig-
ure 2 shows the feature map of a random channel in f(x),
and the corresponding channel in c(l)(x) and Φ(l)(x). Low-
complexity components usually represented the general
shape of objects, while high-complexity components corre-
sponded to detailed shape and noises.2

Exp. 1, the number of training samples had small
influence on the distribution of feature components’
strength, but had significant impacts on the feature reli-
ability. We learned ResNet-8/14/20/32/44 using different
numbers of training samples, which were randomly sam-
pled from the the CIFAR-10 dataset. Then, we decomposed
feature components and reliable feature components of dif-
ferent complexity orders from the output feature of the last
residual block. More specifically, two exemplary DNNs
A and B were used to help us extract the reliable feature
components in the target feature. They were implemented
as ResNet-44 learned on the entire CIFAR-10 dataset with
different initial parameters.

Figure 4 compares the strength of feature components ρ(l)
c

and the reliability of feature components ρ(l),reli in differ-
ent DNNs.2 The DNN learned from the larger training set
usually encoded more complex features, but its overall dis-
tribution of feature components’ strength was very close
to that of the DNN learned from the smaller training set.

This indicated that the number of training samples had small
impacts on the strength of feature components of different
complexity orders. However, in Figure 4 (bottom), DNNs
learned from many training samples always exhibited higher
reliability than DNNs learned form a few training samples,
which meant that the increase of the number of training
samples would help DNN learn more reliable features.

Exp. 2, improvement of the classification accuracy
based on Φ(l)(x). We compared the effectiveness α(l)

effective

and the over-fitting level α(l)
overfit of feature components2 of

different DNNs in Figure 6. We found that (1) when the
complexity order of feature components is about the half of
the depth of the DNN, these feature components exhibited
the highest effectiveness. For ResNet-8, the feature com-
ponent with the highest effectiveness was of the 4-th order.
For ResNet-14, the 7-order feature component was the most
effective.
(2) Low-complexity feature components learned from a
small number of samples were usually more over-fitted than
low-complexity components learned from many samples.
However, we could not summarize clear conclusions from
the significance of over-fitting for high-complexity compo-
nents. However, for high-complexity feature components,
we can not summarize clear relationships between the sam-
ple number and the over-fitting level. This might be due
to the low effectiveness of these high-complexity feature
components (noise-like features).

Based on above observations, we further tested the classifi-

Interpreting and Disentangling Feature Components of Various Complexity from DNNs

1.0

2.0

0.0

𝛼overfit
(𝑙)

R
e
s
N

e
t-

1
4

4 7 13 25 49 97
𝑙-th order

0.5

1.5

2.5 𝛼overfit
(𝑙)

4 7 13 25 49 97
𝑙-th order

R
e
s
N

e
t-

3
2

0.5

1.5

2.5
𝛼overfit
(𝑙)

4 7 13 25 49 97
𝑙-th order

R
e
s
N

e
t-

2
0

1.0

2.0

3.0

4.0
𝛼overfit
(𝑙)

4 7 13 25 49 97
𝑙-th order

R
e
s
N

e
t-

4
4

using random 𝑛 training samples in CIFAR-10 𝑛=200 𝑛=500 𝑛=1000 𝑛=2000 𝑛=5000

4 7 13 25 49 97
𝑙-th order

0.0

0.4

0.8

1.2

R
e
s
N

e
t-

8

𝛼effective
(𝑙)

half
depth

4 7 13 25 49 97
𝑙-th order

0.2

0.4

0.6

R
e
s
N

e
t-

3
2

𝛼effective
(𝑙)

half
depth

4 7 13 25 49 97
𝑙-th order

0.0

0.4

0.8

R
e
s
N

e
t-

1
4

𝛼effective
(𝑙)

half
depth

4 7 13 25 49 97
𝑙-th order

0.2

0.4

0.6

0.8

R
e
s
N

e
t-

2
0

𝛼effective
(𝑙)

half
depth

Figure 6. Comparisons of (left) the effectiveness of feature components α(l)
effective; (right)

the significance of feature components being over-fitted α(l)
overfit, between DNNs learned

using various training samples.

0.0

0.2

0.4

0.6

0.5

0.6

0.7

0.8

1.0

2.0

3.0

0.1

0.3

0.5

0.7

4 7 13 25 49 97
𝑙-th order

4 7 13 25 49 97
𝑙-th order

4 7 13 25 49 97
𝑙-th order

4 7 13 25
𝑙-th order

𝛼effective
(𝑙) 𝛼overfit

(𝑙)

𝜌𝑐
(𝑙)

𝜌 𝑙 ,reli

original DNN compressed DNN distilled DNN

Figure 7. Comparisons between the original
DNN, the compressed DNN, and the dis-
tilled DNN.

cation accuracy of DNNs by directly replacing the original
target feature f(x) with Φ(l)(x). Figure 5 (left) shows the
accuracy improvement using Φ(l)(x) when l = 7. When we
used the feature component with l = 7, the classification
accuracy of ResNet-14 learned on the CIFAR-10 dataset
was improved by over 5%. Beyond the existing finding
that knowledge distillation can improve DNNs (Liang et al.,
2019), results in Figure 6 and Figure 5 (right) explicitly spec-
ified the middle-complexity feature components were more
responsible for the accuracy increase than high-complexity
features. Figure 5 (right) shows that for different complex-
ity orders, the accuracy improvement was different. When
the complexity order l increased, the accuracy improve-
ment first increased, and then decreased. This was because
very few feature components of the lowest complexity did
not contain enough information for the classification, while
high-complexity feature components were significantly over-
fitted, which hurt the generalization power of DNNs.

Exp. 3, analysis of network compression and knowledge
distillation. We learned the ResNet-32 on the CIFAR-10
dataset with 1000 training samples as the original DNN. We
used the compression algorithm (Han et al., 2015) to learn
another DNN (termed the compressed DNN) by pruning and
quantizing the original DNN. For the knowledge distillation,
we used another network (termed the distilled DNN)4, to
distill (Hinton et al., 2015) the output feature of the last
residual block in the original DNN. The supplementary ma-
terial summarizes technique details of network compression
and knowledge distillation provided in (Han et al., 2015;
Hinton et al., 2015). We compared the compressed DNN
and the distilled DNN with the original DNN. We decom-
posed feature components from the output feature of the
last residual block in the original DNN and the compressed
DNN, and the output feature of the distilled DNN.

4The distilled DNN had the same architecture with the decom-
poser net with 7 ReLU layers.

Figure 7 shows ρ(l)
c , ρ(l),reli, α

(l)
effective, and α(l)

overfit in three DNNs.
For the compressed DNN, (1) the network compression did
not affect feature components’ strength distribution and re-
liability. (2) Low-complexity feature components in the
compressed DNN exhibited lower effectiveness and higher
significance of over-fitting than low-complexity feature com-
ponents in the original DNN.

For the knowledge distillation, (1) the distilled DNN had
more low-complexity feature components than the origi-
nal DNN. The low-complexity feature components in the
distilled DNN were more effective than those in the origi-
nal DNN. (2) High-complexity feature components in the
distilled DNN were more reliable and less over-fitted than
high-complexity feature components in the original DNN.
These results demonstrated that the knowledge distillation
would help DNNs learn more reliable features, which pre-
vented over-fitting.

Exp. 4, the close relationship between the feature com-
plexity and the performance of DNNs. Inspired by Fig-
ure 7, we thought there was a close relationship between the
feature complexity and the performance of DNNs.

To this end, we learned a regression model, which
used the distribution of feature components’ strength
over different complexity orders to predict the perfor-
mance of DNNs. For each DNN, we used decom-
poser nets with l1 = 4, l2 = 7, l3 = 13, l4 = 25

to decompose Φ(l),reli(x) and Φ(l),unreli(x). Then, we
calculated V ar[Φ(li),reli(x)− Φ(li−1),reli(x)]/V ar[f(x)] and
V ar[Φ(li),unreli(x)−Φ(li−1),unreli(x)]/V ar[f(x)], thereby ob-
taining an 8-dimensional feature to represent the distribution
of different feature components. In this way, we learned a
linear regressor to use the 8-dimensional feature to predict
the testing loss or the classification accuracy. For the CIFAR-
10 dataset, we applied cross validation: we randomly se-
lected 20 DNNs from 25 pre-trained ResNet-8/14/20/32/44
models on different training sets in Exp. 1 to learn the re-

Interpreting and Disentangling Feature Components of Various Complexity from DNNs

Predicting the accuracy Predicting the loss
Prediction Range Prediction Range

error of value error of value
CIFAR-10 2.73% 28.73%-72.83% 0.49 1.59-6.42

CUB200-2011 5.66% 28.18%-56.18% 0.47 2.94-5.76
Stanford Dogs 3.26% 9.37%-37.95% 0.34 4.34-7.97

Table 1. Verifying the close relationship between the feature complexity and the
performance of DNNs. The mean error of using the feature complexity to predict
the classification accuracy and the classification loss was reported. The prediction
error was much less than the range of the testing accuracy and the range of the loss.

40

20

80

60

0.05
0.00
−0.05 −0.1 0.0 0.1 0.2

A
c
c
u

ra
c
y

𝑥 𝑦

Figure 8. Relationship between the fea-
ture complexity and the accuracy on the
CIFAR-10 dataset.

gressor and used the other 5 DNNs for testing.5 These 25
DNNs were learned using 200-5000 samples, which were
randomly sampled from the CIFAR-10 dataset to boost the
model diversity. We repeated such experiments for 1000
times for cross validation.

Table 1 reports the mean prediction error for the classifica-
tion accuracy and the task loss over 1000 repeated experi-
ments. The prediction error was much less than the range
of the testing accuracy and the range of the classification
loss, which indicated the strong relationship between the
distribution of feature complexity and the performance of
DNNs.

Figure 8 further visualizes the plane of the linear regressor
learned on the CIFAR-10 dataset. The visualization was
conducted by using PCA (Wold et al., 1987) to reduce the
8-dimensional feature into a 2-dimensional space, i.e. (x, y)
in Figure 8. There was a close relationship between the
distribution of feature complexity and the performance of a
DNN.

5. Conclusion
In this paper, we have proposed a generic definition of the
feature complexity of DNNs. We design a method to de-
compose and visualize feature components of different com-
plexity orders, and analyze feature components from three
perspectives. Then, a close relationship between the feature
complexity and the performance of DNNs is discovered.
Furthermore, the feature components can improve the clas-
sification accuracy of DNNs. As a generic tool, the feature
complexity provides a new perspective to explain existing
deep-learning techniques, which has been validated by ex-
periments.

Acknowledgments
This work is partially supported by the National Nature
Science Foundation of China (No. 61906120, U19B2043),
and Shanghai Municipal Science and Technology Major

5For the CUB200-2011 dataset and the Stanford Dogs dataset,
we randomly selected 11 models from 12 pre-trained ResNet-18/34
and VGG-16 models to learn the regressor. One model was used
for testing.

Project (2021SHZDZX0102).

References
Achille, A. and Soatto, S. Emergence of invariance and

disentanglement in deep representations. The Journal of
Machine Learning Research, 19(1):1947–1980, 2018a.

Achille, A. and Soatto, S. Information dropout: Learning
optimal representations through noisy computation. IEEE
transactions on pattern analysis and machine intelligence,
40(12):2897–2905, 2018b.

Arora, R., Basu, A., Mianjy, P., and Mukherjee, A. Under-
standing deep neural networks with rectified linear units.
arXiv preprint arXiv:1611.01491, 2016.

Bianchini, M. and Scarselli, F. On the complexity of neural
network classifiers: A comparison between shallow and
deep architectures. IEEE transactions on neural networks
and learning systems, 25(8):1553–1565, 2014.

Blum, A. and Rivest, R. L. Training a 3-node neural net-
work is np-complete. In Advances in neural information
processing systems, pp. 494–501, 1989.

Boob, D., Dey, S. S., and Lan, G. Complexity of training
relu neural network. arXiv preprint arXiv:1809.10787,
2018.

Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubra-
manian, V. N. Grad-cam++: Generalized gradient-based
visual explanations for deep convolutional networks. In
2018 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pp. 839–847. IEEE, 2018.

Chen, J., Song, L., Wainwright, M., and Jordan, M. Learn-
ing to explain: An information-theoretic perspective on
model interpretation. In International Conference on
Machine Learning, pp. 882–891, 2018.

Chen, J., Song, L., Wainwright, M. J., and Jordan, M. I.
L-shapley and c-shapley: Efficient model interpretation
for structured data. In ICLR, 2019.

Cheng, X., Rao, Z., Chen, Y., and Zhang, Q. Explaining
knowledge distillation by quantifying the knowledge. In

Interpreting and Disentangling Feature Components of Various Complexity from DNNs

Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12925–12935, 2020.

Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., and
Yang, S. Adanet: Adaptive structural learning of artificial
neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 874–
883. JMLR. org, 2017.

Dosovitskiy, A. and Brox, T. Inverting visual representations
with convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 4829–4837, 2016.

Fong, R. C. and Vedaldi, A. Interpretable explanations of
black boxes by meaningful perturbation. In Proceed-
ings of the IEEE International Conference on Computer
Vision, pp. 3429–3437, 2017.

Fort, S., Nowak, P. K., and Narayanan, S. Stiffness: A new
perspective on generalization in neural networks. arXiv
preprint arXiv:1901.09491, 2019.

Ghorbani, A. and Zou, J. Data shapley: Equitable valuation
of data for machine learning. In ICML, 2019.

Goldfeld, Z., Van Den Berg, E., Greenewald, K., Melnyk,
I., Nguyen, N., Kingsbury, B., and Polyanskiy, Y. Es-
timating information flow in deep neural networks. In
International Conference on Machine Learning, pp. 2299–
2308, 2019.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained
variational framework. In ICLR, 2(5):6, 2017.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Kalimeris, D., Kaplun, G., Nakkiran, P., Edelman, B., Yang,
T., Barak, B., and Zhang, H. Sgd on neural networks
learns functions of increasing complexity. In Advances
in Neural Information Processing Systems 32, pp. 3496–
3506. Curran Associates, Inc., 2019.

Kindermans, P.-J., Schütt, K. T., Alber, M., Müller, K.-
R., Erhan, D., Kim, B., and Dähne, S. Learning how to
explain neural networks: Patternnet and patternattribution.
arXiv preprint arXiv:1705.05598, 2017.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Simi-
larity of neural network representations revisited. arXiv
preprint arXiv:1905.00414, 2019.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Liang, R., Li, T., Li, L., and Zhang, Q. Knowledge consis-
tency between neural networks and beyond. In Interna-
tional Conference on Learning Representations, 2019.

Liang, T., Poggio, T., Rakhlin, A., and Stokes, J. Fisher-
rao metric, geometry, and complexity of neural networks.
arXiv preprint arXiv:1711.01530, 2017.

Livni, R., Shalev-Shwartz, S., and Shamir, O. On the com-
putational efficiency of training neural networks. In Ad-
vances in neural information processing systems, pp. 855–
863, 2014.

Lopez-Paz, D., Bottou, L., Schölkopf, B., and Vapnik, V.
Unifying distillation and privileged information. In ICLR,
2016.

Lundberg, S. M. and Lee, S.-I. A unified approach to in-
terpreting model predictions. In Advances in Neural
Information Processing Systems, pp. 4765–4774, 2017.

Mahendran, A. and Vedaldi, A. Understanding deep im-
age representations by inverting them. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 5188–5196, 2015.

Manurangsi, P. and Reichman, D. The computa-
tional complexity of training relu (s). arXiv preprint
arXiv:1810.04207, 2018.

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J.,
and Sohl-Dickstein, J. Sensitivity and generalization
in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. How to
construct deep recurrent neural networks. arXiv preprint
arXiv:1312.6026, 2013.

Phuong, M. and Lampert, C. Towards understanding knowl-
edge distillation. In International Conference on Machine
Learning, pp. 5142–5151, 2019.

Interpreting and Disentangling Feature Components of Various Complexity from DNNs

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Dick-
stein, J. S. On the expressive power of deep neural net-
works. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, pp. 2847–2854.
JMLR. org, 2017.

Ribeiro, M. T., Singh, S., and Guestrin, C. ”why should I
trust you?”: Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp.
1135–1144. ACM, 2016.

Rolnick, D. and Tegmark, M. The power of deeper net-
works for expressing natural functions. arXiv preprint
arXiv:1705.05502, 2017.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In
Proceedings of the IEEE International Conference on
Computer Vision, pp. 618–626, 2017.

Shapley, L. S. A value for n-person games. Contributions
to the Theory of Games, 2(28):307–317, 1953.

Shwartz-Ziv, R. and Tishby, N. Opening the black box of
deep neural networks via information. arXiv preprint
arXiv:1703.00810, 2017.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep
inside convolutional networks: visualising image clas-
sification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2017.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. 2011.

Weng, T.-W., Zhang, H., Chen, P.-Y., Yi, J., Su, D., Gao,
Y., Hsieh, C.-J., and Daniel, L. Evaluating the robustness
of neural networks: An extreme value theory approach.
arXiv preprint arXiv:1801.10578, 2018.

Williamson, B. D. and Feng, J. Efficient nonparametric sta-
tistical inference on population feature importance using
shapley values. In ICML, 2020.

Wolchover, N. New theory cracks open the black box of
deep learning. In Quanta Magazine, 2017.

Wold, S., Esbensen, K., and Geladi, P. Principal compo-
nent analysis. Chemometrics and intelligent laboratory
systems, 2(1-3):37–52, 1987.

Xu, A. and Raginsky, M. Information-theoretic analysis
of generalization capability of learning algorithms. In
Advances in Neural Information Processing Systems, pp.
2524–2533, 2017.

Xu, Z. J. Understanding training and generalization
in deep learning by fourier analysis. arXiv preprint
arXiv:1808.04295, 2018.

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson,
H. Understanding neural networks through deep visual-
ization. arXiv preprint arXiv:1506.06579, 2015.

Zeiler, M. D. and Fergus, R. Visualizing and understand-
ing convolutional networks. In European conference on
computer vision, pp. 818–833. Springer, 2014.

Zhang, S., Wu, Y., Che, T., Lin, Z., Memisevic, R., Salakhut-
dinov, R. R., and Bengio, Y. Architectural complexity
measures of recurrent neural networks. In Advances in
neural information processing systems, pp. 1822–1830,
2016.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba,
A. Object detectors emerge in deep scene cnns. In ICLR,
2015.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba,
A. Learning deep features for discriminative localiza-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2921–2929, 2016.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In Proceedings of the IEEE international
conference on computer vision, pp. 2223–2232, 2017.

