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A. Supplementary Materials
A.1. Proof of Theorems
Theorem 1 The medians of a (K − 1)-simplex SK−1 meet
at the same point gK and they divide each other in the ratio
(K − 1) : 1.

Proof. Since the centre of gravity gk is a point of each
median, for the kth median [uk

ik ,gk], we have the following
convex combination

gK =
1

K

K∑
l=1

ulil =
1

K

(
ukik +

K∑
l=1,l 6=k

ulil
)

=
1

K
ukik +

K − 1

K
gk

(23)

Therefore, gK lies on [uk
ik ,gk] and divides it in the ratio

(K − 1) : 1.

Theorem 2 By sequentially projecting SK−1, we can gen-
erate a series of regular simplexes: SK−2 consisting of
u1
i1 , · · · ,u

K−1
iK−1 with centre cK−1 = 0, · · · , S1 consisting

of u1
i1 and u2

i2 with centre c2 = 0, and S0 consisting of
u1
i1 with centre c1 = 0. For radius rk of Sk−1 for any k

(2 ≤ k ≤ K), we have

rk =

√
K(K − 1)

k(k − 1)
rK , 2 ≤ k ≤ K (24)

All points in a standard regular simplex SK−1 with cK = 0
have the following coordinates.

uKiK = [0, · · · , 0, (K − 1)rK ]

uK−1
iK−1 = [0, · · · , 0, (K − 2)rK−1,−rK ]

uK−2
iK−2 = [0, · · · , 0, (K − 3)rK−2,−rK−1,−rK ]

· · · = · · ·

(25)

Proof. By projecting SK−1 into the hyperplane HK , we
can generate a regular simplex of SK−2 consisting of
u1
i1 , · · · ,u

K−1
iK−1 with centre cK−1 = 0. Now, we will de-

rive the relationship between radius rK−1 of its inscribed
hypersphere and radius rK of the inscribed hypersphere in
SK−1.

Notice that cK is the centre of the circumscribed hyper-
sphere in SK−1. The radius RK of the circumscribed hy-
persphere of the simplex is equal to the distance between
any point and cK , i.e., RK = (K − 1)rK . We have

‖cK − uK−1
iK−1‖2 = ‖uK−1

iK−1‖2 = ‖uKiK‖2 = (K − 1)rK (26)

Since line cKcK−1 is perpendicular to the hyperplaneHK ,
‖cK − cK−1‖2 is equal to rK and points cK , cK−1,uK−1

iK−1

forms a right triangle. Based on the Pythagoras Theorem,
we have

‖cK−1 − uK−1
iK−1‖2

=
√
‖cK − uK−1

iK−1‖22 − ‖cK − cK−1‖22

=
√

((K − 1)rK)2 − r2
K =

√
K2 − 2KrK

(27)

By using the same strategy in Theorem 1, we know cK−1
divides the medians in SK−2 in the ratio (K − 2) : 1. We
get

(K − 2)rK−1 =
√
K2 − 2KrK (28)

By sequentially projecting SK−1, we can generate a se-
ries of regular simplexes: SK−2 with radius rK−1 of its
inscribed hypersphere, · · · , S1 with radius r2, and S0 with
radius r1.

Eq.(28) can be generalized to the following equation.

(k − 2)rk−1 =
√
k2 − 2krk, 2 ≤ k ≤ K

r1 = 0
(29)

The solution of this recurrence relation is

rk =

√
K(K − 1)

k(k − 1)
rK , 2 ≤ k ≤ K

r1 = 0

(30)

By repeating the same argument for the simplexes SK−1,
SK−1, · · · etc., we get

uKiK = [0, · · · , 0, (K − 1)rK ]

uK−1
iK−1 = [0, · · · , 0, (K − 2)rK−1,−rK ]

uK−2
iK−2 = [0, · · · , 0, (K − 3)rK−2,−rK−1,−rK ]

· · · = · · ·

(31)

The general form of the coordinates of the points are given
as follows.

ukik = (k − 1)rkbk−1 −
K∑

l=k+1

rlbl−1, k = 1, · · · ,K (32)

where b1 = 0 ∈ RK−1 is an all-zero vector. bk ∈ RK−1

(1 ≤ k ≤ K − 1) is a one-hot vector with a single value of
1 at the kth component.

Theorem 3 For any two different points uk
ik and uj

ij (1 ≤
k, j ≤ K, k 6= j) in a standard regular simplex SK−1 with
cK = 0, ‖uk

ik − uj
ij‖

2
2 = 2K(K − 1)r2K .

Proof. Without loss of generality, we assume that k > j.
Based on Eqs.(30) and (32), and the orthogonality of the
standard unit vectors, we get
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‖ukik − uj
ij
‖22

=
∥∥∥(k − 1)rkbk−1 − (j − 1)rjbj−1 +
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∥∥∥2

2
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2
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j +
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r2
l

= K(K − 1)r2
K
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+
j − 1

j
+

k−1∑
l=j+1

1

l(l − 1)

)

= K(K − 1)r2
K

( k

k − 1
+
j − 1

j
+
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l=j+1

1

l − 1
− 1

l

)
= K(K − 1)r2

K

( k

k − 1
+
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j
+

1

j
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K

(33)

Theorem 4 In a standard regular simplex SK−1 with cen-
tre cK = 0, ‖uk

ik‖
2
2 = (K−1)2r2K for any k (1 ≤ k ≤ K).

For any two different points uk
ik and uj

ij (1 ≤ k, j ≤ K, k 6=
j), uk

ik · u
j
ij = −(K − 1)r2K .

Proof. (1)

‖ukik‖
2
2 =
(

(k − 1)rkbk−1 −
K∑

l=k+1

rlbl−1

)
·

(
(k − 1)rkbk−1 −

K∑
l=k+1

rlbl−1

) (34)

By using the orthonormality of the vectors {bk}K−1k=1 , we
have

‖ukik‖
2
2 = (k − 1)2r2

k +
K∑

l=k+1

r2
l (35)

According to Eq.(30), we get

‖ukik‖
2
2 =

{ (k − 1)K(K − 1)

k
+K(K − 1)

K∑
l=k+1

1

l(l − 1)

}
r2
K

=
{k − 1

k
+

1

k
− 1

K

}
K(K − 1)r2

K

= (K − 1)2r2
K

(36)

(2) Without loss of generality, we assume that k > j.

ukik · u
j

ij
=
(

(k − 1)rkbk−1 −
K∑

l=k+1

rlbl−1

)
·

(
(j − 1)rjbj−1 −

K∑
l=j+1

rlbl−1

)

= −(k − 1)r2
k +

K∑
l=k+1

r2
l

= −K(K − 1)

k
r2
K +K(K − 1)(

1

k
− 1

K
)r2
K

= −(K − 1)r2
K

(37)

Therefore, the proof is concluded.

Theorem 5 The set of phase-type distributions is dense in
the field of all positive-valued distributions, namely, it can
be used to approximate any positive-valued distribution.

Proof. Please refer to (O’Cinneide, 1990; 1999) for detailed
proof.

Theorem 6 The estimation with F̄D(x1, · · · , xK−1) =
αeTxDD1 is more expressive than the one
with F̄ (x1, · · · , xK−1) = αeTxD1, where
D = diag(h(d1), · · · , h(dm)) is a diagonal matrix
to be estimated and h is the sigmoid function.

Proof. For the original multivariate phase-type distri-
bution F̄ (x1, · · · , xK−1) = αeTxD1, by assuming that
α = [α1, · · · , αm], we obtain

F̄ (x1, · · · , xK−1)

= αeTxD1

= [α1, · · · , αm]

e
Tx
11 · · · eTx1m

...
. . .

...
eTxm1 · · · eTxmm

D1 · · ·DK−1[1, ·, 1]T

(38)

where eTx
ij is the element at the ith row and jth column in

eTx.

It is obviously that the value of F̄ (x1, · · · , xK−1) is the sum
of n ≤ m columns from vector

[

m∑
i=1

αie
Tx
i1 , · · · ,

m∑
i=1

αie
Tx
im ] (39)

where n depends on the number of 1 in the diagonal ele-
ments of D = D1 · · ·DK−1.

Therefore,

F̌ =
m

min
j=1

m∑
i=1

αie
Tx
ij ≤ F̄ ≤

m∑
j=1

m∑
i=1

αie
Tx
ij = F̂ (40)
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Now, we can see that the value of F̄ is one of
∑m

j=1

(
j
m

)
states.

Motivated by the above analysis, we introduce one
additional parameter D to F̄ (x1, · · · , xK−1) and get
F̄D(x1, · · · , xK−1).

F̄D(x1, · · · , xK−1) = αeTxDD1

=

m∑
j=1

(
Djjh(dj)

m∑
i=1

αie
Tx
ij

) (41)

Since Sigmoid is a continuous function with the value in
the range of [0, 1], F̄D(x1, · · · , xK−1) can be treated as a
continuous function with the value in the range of [F̌ , F̂ ],
instead of only

∑m
j=1

(
j
m

)
possible discrete values in the

range of [F̌ , F̂ ] achieved by the original multivariate phase-
type distribution F̄ (x1, · · · , xK−1).

Therefore, the expressiveness of F̄D(x1, · · · , xK−1) will be
significantly improved.

The following theorem conducts the convergence analysis of
our expressive parameter estimation of multivariate phase-
type distribution.

Theorem 7 Given enough iterations I , our expressive pa-
rameter estimation QD(x) = 1 − F̄ (x1, · · · , xK−1) =
1 − αeTxDD1 of multivariate phase-type distribution is
able to converge to the true distribution P (x).

Proof. Let xi denote x at the ith iteration among total I it-
erations and P (x)= #(u≤[xi,··· ,xi])

Nk be the true distribution.
Based on our estimation, we have

E(u ≤ [xi, · · · , xi]) = −αiTiDiDi1
V(u ≤ [xi, · · · , xi]) = 2αiT

2
iDiDi1− (αiTiDiDi1)2

(42)

where E and V represent the expectation and variance re-
spectively.

For those samples u satisfying u ≤ [xi, · · · , xi], we
can get its corresponding expectation ū = E(∪u,∀u ≤
[xi, · · · , xi]), and variance σ2

u = V(∪u,∀u ≤
[xi, · · · , xi]).

In addition, for the true distribution, we get

E(u) = −αtTtDtDt1
V(u) = 2αtT

2
tDtDt1− (αtTtDtDt1)2

(43)

where subscript t denotes the corresponding terms for the
true distribution.

Since ū ∈ {u}, it is straightforward to prove

E(ū) =

∑I
i=1 E(u ≤ [xi, · · · , xi])

I

V(ū) =
1

I2

I∑
i=1

V(u ≤ [xi, · · · , xi])
(44)

By utilizing Chebyshev’s inequality, for any real number
ε > 0, we have

P
(
|ū− E(u)| ≥ ε

)
=

∫
|ū−E(u)|≥ε

f(u)du

≤
∫
|ū−E(u)|≥ε

|ū− E(u)|2

ε2
f(u)du

≤ 1

ε2

∫
|ū− E(u)|2f(u)du

=
1

ε2I2

I∑
i=1

V(u ≤ [xi, · · · , xi])

=
V(u)

ε2I

(45)

By taking the limit on both sides at the same time, we get

lim
I→∞

P
(
|ū− E(u)| ≥ ε

)
= lim
I→∞

V(u)

ε2I
= 0 (46)

Again, by employing Chebyshev’s inequality, for any real
number ψ > 0, we get

P
(
|E(σ2

u)− E(V(u))| ≥ ψ
)

=

∫
|E(σ2

u)−E(V(u))|≥ψ
f(u)du

≤
∫
|E(σ2

u)−E(V(u))|≥ψ

|E(σ2
u)− E(V(u))|2

ψ2
f(u)du

≤ 1

ψ2

∫
|I − 1

I
σ2
u − V(u)|2f(u)du

=
V(u)2

ψ2I2

(47)

In addition, we have

lim
I→∞

P
(
|E(σ2

u)− E(V(u))| ≥ ψ
)

= lim
I→∞

V(u)2

ψ2I2
= 0 (48)

Therefore, the proof is concluded.

A.2. Additional Experiments

In this section, we use another measureHits@10 to evaluate
our model and other competitors on graph matching. Notice
that three graph matching methods of FINAL, MOANA, and
CONE-Align perform one-to-one matching among multiple
nodes in different graphs, i.e., they find only one node as
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(c) GMA Attack

Figure 9: AS with varying perturbed edges and Hits@10 (%)

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Perturbed edges (%)

H
its

@
1
0
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
IDRGM

(a) RND Attack

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Perturbed edges (%)

H
its

@
1
0
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
IDRGM

(b) NEA Attack

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Perturbed edges (%)

H
its

@
1
0
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
IDRGM

(c) GMA Attack

Figure 10: AS with varying perturbed edges and Hits@10 (%)

a matching in each of other graphs for a node in a graph.
Thus, the Hits@10 scores are the same as the Hits@1
values for these three methods. Therefore, we do not plot
the Hits@10 curves of these three algorithms in Figures
9-11. The Hits@1 values of these three methods have been
reported in Figures 3-5.

Figures 9-11 presents the quality of graph matching by
nine different algorithms under varying strengths of adver-
sarial attacks. Similar trends are observed for the graph
matching quality comparison: IDRGM achieves the largest
Hits@10 values (>41.4%, >40.1%, and >39.8%) on three
datasets of AS, CAIDA, DBLP respectively, which are ob-
viously better than all other methods. Especially, as shown
in Figure 9, compared to the best competitors among nine
graph matching algorithms, the Hits@10 scores achieved
by IDRGM averagely achieves 19.3% increase. This demon-
strates that the integration of the simplex detection technique
for tackling the inter-graph dispersion attacks and the distri-
bution estimation and node separation methods for handling
the intra-graph assembly attacks is able to make the graph
matching results achieved by our integrated defense model
robust to various adversarial attacks.

Table 3 presents the ablation study results with Hits@10
as evaluation metric of graph matching on three datasets

by four variants of our IDRGM model. The number of per-
turbed edges is fixed to 5%. It is observed that the complete
IDRGM achieves the highest Hits@10 (> 55.6%) on AS,
(> 51.2%) over CAIDA, and (> 49.8%) on DBLP, which
are obviously better than other versions. Compared with
IDRGM-A, IDRGM-D performs better in all experiments.
Concretely, there are three critical reasons for high accu-
racy of IDRGM: IDRGM-D is able to tackle inter-graph
dispersion attacks only. IDRGM-A can handle intra-graph
assembly attacks only. IDRGM-N fail to utilize any defense
techniques for defending the graph matching models against
adversarial attacks.

A.3. Parameter Sensitivity

In this section, we conduct more experiments to validate the
sensitivity of various parameters in the phase-type distribu-
tion estimation and our integrated defense model.

Impact of boundary parameter X . Figure 12 (a) presents
the impact of boundary parameter X in phase-type distri-
bution estimation with X between 0.2 and 1. It is observed
that the Hits@1 values are stable with varying X . Namely,
our expressive estimation of phase-type distribution is insen-
sitive to X when normalizing the node embedding vectors
into a bounded range [0, X]. This demonstrates that our
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Figure 11: AS with varying perturbed edges and Hits@10 (%)

Table 3: Hits@10 of IDRGM variants with 5% perturbed edges

Dataset AS CAIDA DBLP
Attack Model RND NEA GMA RND NEA GMA RND NEA GMA
IDRGM-D 53.3 53.7 53.8 55.8 51.5 50.4 53.4 47.7 51.2
IDRGM-A 53.4 51.6 53.9 55.6 51.8 50.3 53.5 48.7 51.7
IDRGM-N 50.0 48.9 50.0 51.5 48.6 46.5 51.3 47.1 49.6
IDRGM 56.6 55.6 57.0 56.7 54.1 51.2 54.8 49.8 53.0

IDRGM model can always result in the good parameter
estimation for phase-type distribution, no matter which nor-
malization bound is selected.

Sensitivity of iterations I . Figure 12 (b) shows the impact
of iterations I in phase-type distribution estimation over two
groups of datasets by varying I from 20 to 150. We have
witnessed the performance curves initially increase quickly
and then become stable or even drop when I continuously
increases. Initially, a large I can help partition the bounded
range [0, X] into more intervals to derive more accurate pa-
rameter estimation. Later on, when I continues to increase
and goes beyond some thresholds, too many intervals may
lead to each interval with very small size, i.e., very few
samples. Therefore, inadequate samples at each iteration
may result in the performance loss of parameter estimation.

Influence of number Y . Figure 12 (c) exhibits the sensitiv-
ity of number Y of nodes with local maximal densities with
Y between 2 and 100. The performance curves oscillates
up and down. This demonstrates that there must exist the
optimal Y that makes the performance of our node sepa-
ration method be maximally optimized. On one hand, too
small Y may not ensure the nodes separated into a wide
enough space, such that the similar neighbors may still af-
fect the matching of the perturbed nodes. On the other hand,
too large Y may push the similar neighbors of a perturbed
node close to another perturbed node, such that the match-
ing performance of another perturbed node is significantly
affected.

Impact of number Z. Figure 12 (d) presents the impact
of number Z of nearest neighbors for node separation over
two datasets. We have observed that the performance ini-
tially raises when the number Z increases. Intuitively, a
larger Z can help separate mode nodes into a wide space,
such that the interference from the similar neighbors of the
perturbed nodes is significantly reduced. However, when Z
continues to increase and goes beyond a certain threshold,
the performance curves become stable. A rational guess is
that after the perturbed nodes and their neighbors have been
already separated at a certain threshold, our IDRGM model
is able to generate a good graph matching result. When Z
continuously increases, this does not affect the performance
of graph matching any more.

Sensitivity of learning rate. Figure 12 (e) shows the im-
pact of learning rate in our IDRGM model by varying it
from 0.0001 to 0.01. the Hits@1 values have concave
curves when increasing learning rate. A too small learn-
ing rate may result in a long training process that could
get stuck, whereas a too large learning rate may result in
learning a sub-optimal set of weights too fast or an unstable
training process. Thus, this demonstrates that there must
exist the optimal learning rate that makes the performance
of our IDRGM model be maximally optimized.

Convergence study. Figure 12 (f) exhibits the convergence
of our IDRGM model for resilient graph matching. As
we can see, the Hits@1 values keep increasing when we
iteratively perform the defense task. The method converges
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Figure 12: Hits@1 (%) with varying parameters

when the numbers of iterations go beyond some thresholds.
We have observed that most curves on two datasets converge
within 200-300 iterations. This verifies the efficiency of our
IDRGM model to combat with two kinds of adversarial
attacks.

A.4. Experimental Details
Environment. Our experiments were conducted on a com-
pute server running on Red Hat Enterprise Linux 7.2 with
2 CPUs of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 8
GPUs of NVIDIA GeForce GTX 2080 Ti (with 11GB of
GDDR6 on a 352-bit memory bus and memory bandwidth
in the neighborhood of 620GB/s), 256GB of RAM, and 1TB
of HDD. Overall, our experiments took about 4 days in a
shared resource setting. We expect that a consumer-grade
single-GPU machine (e.g., with a 1080 Ti GPU) could com-
plete our full set of experiments in around 8 days, if its full
resources were dedicated. The codes were implemented in
Python 3.7.3 and PyTorch 1.0.14. We also employ Numpy
1.16.4 and Scipy 1.3.0 in the implementation. Since the
datasets used are all public datasets and the hyperparameter
settings are explicitly described, our experiments can be
easily reproduced on top of a GPU server.

Implementation. For random attack model, we add the
noisy edges to the datasets with different levels of noisy
data, say 5% (i.e., 0.05), by randomly adding or removing

edges with the half noise level respectively, say 2.5%. For
other two attack models of NEA 1 and GMA 2, we used
the open-source implementation and default parameter set-
tings by the original authors for our experiments. For six
graph matching methods of FINAL 3, REGAL 4, MOANA 5,
DGMC 6, CONE-Align 7 and G-CREWE 8, two Lipschitz-
bound neural architectures of GroupSort 9 and BCOP 10,
we also utilized the same model architecture as the official
implementation provided by the original authors and used
the same perturbed graphs to validate the robustness of these
graph learning models in all experiments.

For our integrated defense model for resilient graph
matching, we performed hyperparameter selection by
performing a parameter sweep on boundary parame-
ter X ∈ {0.2, 0.4, 0.6, 0.8, 1} in phase-type distribu-

1https://www.in.tum.de/daml/node-embedding-attack/
2https://github.com/DMML-AU/GMA
3https://github.com/sizhang92/FINAL-network-alignment-

KDD16
4https://github.com/GemsLab/REGAL
5https://github.com/sizhang92/Multilevel-network-alignment-

Moana-
6https://github.com/rusty1s/deep-graph-matching-consensus
7https://github.com/GemsLab/CONE-Align
8https://github.com/cruiseresearchgroup/G-CREWE
9https://github.com/cemanil/LNets

10https://github.com/ColinQiyangLi/LConvNet
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tion estimation, iterations I ∈ {20, 40, 60, 100, 150}
in phase-type distribution estimation number Y ∈
{2, 5, 10, 20, 50, 100} of nodes with local maximal den-
sities, number Z ∈ {20, 50, 100, 200, 500} of near-
est neighbors for node separation, and learning rate ∈
{0.0001, 0.0005, 0.001, 0.005, 0.01}. We select the best
parameters over 50 iterations of training and evaluate the
model at test time. After the hyperparameter selection, the
model was trained for 500 iterations, with a batch size of
512, and a learning rate of 0.001.


