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Abstract

A recent study has shown that graph matching
models are vulnerable to adversarial manipulation
of their input which is intended to cause a mis-
matching. Nevertheless, there is still a lack of
a comprehensive solution for further enhancing
the robustness of graph matching against adver-
sarial attacks. In this paper, we identify and study
two types of unique topology attacks in graph
matching: inter-graph dispersion and intra-graph
assembly attacks. We propose an integrated de-
fense model, IDRGM, for resilient graph match-
ing with two novel defense techniques to de-
fend against the above two attacks simultaneously.
A detection technique of inscribed simplexes in
the hyperspheres consisting of multiple matched
nodes is proposed to tackle inter-graph dispersion
attacks, in which the distances among the matched
nodes in multiple graphs are maximized to form
regular simplexes. A node separation method
based on phase-type distribution and maximum
likelihood estimation is developed to estimate the
distribution of perturbed graphs and separate the
nodes within the same graphs over a wide space,
for defending intra-graph assembly attacks, such
that the interference from the similar neighbors of
the perturbed nodes is significantly reduced. We
evaluate the robustness of our IDRGM model on
real datasets against state-of-the-art algorithms.

1. Introduction
Graph matching (i.e., network alignment), which aims to
identify the same entities (i.e., nodes) across multiple graphs,
has been a heated topic in recent years (Chu et al., 2019;
Xu et al., 2019a; Wang et al., 2020d; Chen et al., 2020a;b;
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Zhang & Tong, 2016; Mu et al., 2016; Heimann et al., 2018;
Li et al., 2019a; Fey et al., 2020; Qin et al., 2020; Feng
et al., 2019; Ren et al., 2020). It has been widely applied
to many real-world applications, including protein network
alignment in bioinformatics (Liu et al., 2017; Vijayan et al.,
2020), user account linking in multiple social networks(Shu
et al., 2016; Mu et al., 2016; Feng et al., 2019), object
matching in computer vision (Fey et al., 2020; Wang et al.,
2020b;e; Yang et al., 2020), knowledge translation in multi-
lingual knowledge bases (Sun et al., 2020; Wu et al., 2020c).

Recently, there has been much interest in developing re-
silient graph learning techniques to improve the model ro-
bustness against adversarial attacks, including node classifi-
cation (Zhu et al., 2019; Xu et al., 2019b; Tang et al., 2020;
Entezari et al., 2020; Zheng et al., 2020; Zhou & Vorobey-
chik, 2020; Jin et al., 2020b; Feng et al., 2020; Elinas et al.,
2020; Zhang & Zitnik, 2020), graph classification (Jin et al.,
2020a), community detection (Jia et al., 2020), network
embedding (Dai et al., 2019), link prediction (Zhou et al.,
2019a), malware detection (Hou et al., 2019), spammer de-
tection (Dou et al., 2020), fraud detection (Breuer et al.,
2020; Zhang et al., 2020a), and influence maximization (Lo-
gins et al., 2020). The majority of existing techniques focus
on the defenses on single graph learning tasks. Improving
the robustness of graph matching against adversarial attacks
has not been inadequately investigated yet. Existing tech-
niques for defending single graph learning tasks cannot be
directly utilized to improve the robustness of graph match-
ing, as the graph matching has to analyze interactions within
and across graphs. To our best knowledge, RGM is the only
robust graph matching model (Yu et al., 2021). It enhances
the robustness of image matching against visual noise in
computer vision, including image deformations, rotations,
and outliers, but it fails to defend adversarial attacks on
graph topology.

In the context of graph matching, there are two types of
topology attacks within and across graphs: (1) Inter-graph
dispersion attacks. Most of existing graph matching algo-
rithms often aim to minimize the distance or maximize the
similarity among the matched nodes in K different graphs
in training data by mapping these nodes with different fea-
tures into common space through either matrix transforma-
tion (Zhang & Tong, 2016; Zhang et al., 2019) or network
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embedding (Heimann et al., 2018; Chu et al., 2019; Xu et al.,
2019a; Fey et al., 2020). The nodes with the smallest dis-
tances in K graphs in test data are selected as the matching
results. As shown in Figure 1, three matched nodes v1

i1 , v2
i2 ,

and v3
i3 in three graphs G1, G2, and G3 are projected into

the same space, such that their embeddings u1
i1 , u2

i2 , and
u3
i3 are identical, i.e., u1

i1 = u2
i2 = u3

i3 . An inter-graph
dispersion attack tries to push the matched nodes in multi-
ple graphs far away from each other for maximizing their
distances under an attack budget ε. In this case, the attack
problem is equivalent to a geometry optimization problem
of how to arrange the matched nodes in a hypersphere with
radius ε such that the distances among them are maximized.
Namely, an inscribed regular (K − 1)-simplex in a hyper-
sphere with radius ε is generated by adding/deleting edges
to/from the matched nodes, e.g., an inscribed equilateral
triangle (i.e., regular 2-simplex) in a circle (1-hypersphere)
with radius ε in Figure 1. In addition, there is little possibil-
ity for the non-matched clean nodes in K graphs to form a
regular or near-regular simplex, especially when K is large.
Thus, regular or near-regular simplexes within the range
of ε can be safely treated as the matched nodes under the
inter-graph dispersion attacks; and (2) Intra-graph assem-
bly attacks. A recent attack solution for graph matching
aims to move a node to be attacked to dense region in its
graph, such that the distances between its similar neighbors
in the same graph and its counterparts in other graphs be-
come smaller than the ones between this perturbed node
and its counterparts, and thus to generate a wrong matching
result (Zhang et al., 2020b). As shown in Figure 2, two
matched nodes u1

i1 and u2
i2 are pushed to dense regions in

two graphs G1 and G2 respectively, such that u1
i1 is closer

to the neighbors of u2
i2 in G2, rather than u2

i2 itself. A
wrong matching between u1

i1 and an neighbor of u2
i2 will be

generated. In addition, since there are many similar neigh-
bors around the perturbed nodes in the dense region, this
dramatically increases the possibility of deriving the wrong
matching results.

Motivated by the above analysis, we propose an effective
simplex detection technique to tackle the inter-graph disper-
sion attacks. The defense model tries to determine whether
the nodes in multiple graphs form inscribed regular sim-
plexes in the hyperspheres with radius ε and how regular
the simplexes are. The completely regular or near-regular
simplexes with the radius RK ≤ ε of their circumscribed
hyperspheres are identified as the matching results under the
inter-graph dispersion attacks. As shown in Figure 1, the
inscribed equilateral triangle consisting of u1

i1 , u2
i2 , and u3

i3

and its circumscribed circle with radius R3 = ε are detected
as an inter-graph dispersion attack.

Although real clean graphs often follow power-law degree
distribution (Kleinberg et al., 1999; Albert et al., 1999;
Barabási & Albert, 1999; Aiello et al., 2001; Zügner et al.,

2018), most of existing adversarial attack techniques on
graph data focus on how to generate imperceptible pertur-
bations within a lp norm neighborhood but ignore the dis-
tribution change from clean graphs to perturbed ones (Bo-
jchevski & Günnemann, 2019; Wang & Gong, 2019; Liu
et al., 2019; Chang et al., 2020; Li et al., 2020; Zang et al.,
2020). Thus, the perturbed graphs can follow any distribu-
tions. The phase-type distribution can be used to approxi-
mate any positive-valued distribution (O’Cinneide, 1990).
By exploring the phase-type distribution and maximum like-
lihood estimation (Chakravarthy & Alfa, 1996; Asmussen
et al., 1996), we develop a node separation algorithm to
handle the intra-graph assembly attacks. We estimate the
distribution of perturbed graphs and maximize the distances
among the perturbed nodes within the same graphs, for
separating the nodes in a narrow space into a wide space,
such that the interference from the similar neighbors of the
perturbed nodes is significantly reduced. In Figure 2, the
nodes in two graphs G1 and G2 are separated respectively
by maximizing the distances 1/d1y and 1/d2y in G1 and G2.

Empirical evaluation over real graph datasets demonstrates
that the remarkable robustness of IDRGM against state-of-
the-art graph matching methods and representative resilient
Lipschitz-bound neural architectures. In addition, more
experiments, implementation details, and hyperparameter
selection and setting are presented in Appendices A.2-A.4.

To our best knowledge, this work is the first to study in-
tegrated defense for resilient graph matching against both
inter-graph dispersion and intra-graph assembly attacks.

2. Problem Definition
Given a set of K graphs G1, · · · , GK to be matched, each
graph is denoted as Gk = (V k, Ek) (1 ≤ k ≤ K), where
V k = {vk1 , · · · , vkNk} is the set of Nk nodes and Ek =
{(vki , vkj ) : 1 ≤ i, j ≤ Nk} is the set of edges. Each
Gk has an Nk × Nk binary adjacency matrix Ak, where
each entry Ak

ij = 1 if there exists an edge (vki , v
k
j ) ∈ Ek;

otherwise Ak
ij = 0. Ak

i: specifies the ith row vector of Ak.
In this paper, if there are no specific descriptions, we use
vk
i to denote a node vki itself and its representation Ak

i:, i.e.,
vk
i = Ak

i: and we utilize vk
ij to specify the jth dimension

of vk
i , i.e., vk

ij = Ak
ij .

The dataset is divided into two disjoint sets: train-
ing data D and test data D′. The former denotes a
set of known matched nodes across K graphs D =
{(v1

i1 , · · · ,vK
iK )|v1

i1↔· · ·↔vK
iK ,v

1
i1 ∈ V 1, · · · ,vK

iK ∈
V K}, where v1

i1↔· · ·↔vK
iK indicates that K nodes

v1
i1 , · · · ,vK

iK belong to the same entity. The latter, de-
noted by D′ = {(v1

i1 , · · · ,vK
iK )|v1

i1↔· · ·↔vK
iK ,v

1
i1 ∈

V 1, · · · ,vK
iK ∈ V

K}, is used to evaluate the graph match-
ing performance, where the nodes (but not their matchings)
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Figure 1: Defenses against Inter-graph Dispersion Attacks
are also observed during training. The goal of graph match-
ing is to use D as the training data to identify the one-to-one
matching relationships among nodes v1

i1 , · · · ,vK
iK belong-

ing to the same entities in the test data D′.

By following the same idea in existing efforts (Zhou et al.,
2018a; Yasar & Çatalyürek, 2018; Li et al., 2019a), this
paper aims to learn an embedding function M to map the
nodes (v1

i1 , · · · ,vK
iK ) ∈ D with different features across K

graphs into common embedding space, i.e, minimize the
distances among the projected nodesM(v1

i1), · · · ,M(vK
iK ).

The nodes (v1
i1 , · · · ,vK

iK ) ∈ D′ with the smallest distances
in the embedding space are selected as the matching results.

LM(v1
i1 , · · · ,v

K
iK ) =

K∑
k=1,l>k

1− cos(ukik ,u
l
il)

LE =

K∑
k=1

[
−

∑
vk
ik
∈V k,vk

jk
∈N (vki )

max{0, cos(ukik ,u
k
jk )}

+

J∑
jk=1

Evk
jk
∼p(vk

jk
) max{0, cos(ukik ,u

k
jk )}

]
min
M
L = LE + E(v1

i1
,··· ,vK

iK
)∈DLM(v1

i1 , · · · ,v
K
iK )

(1)

where uk
ik = M(vk

ik) denotes an embedding function to
map the original representation vk

ik of each node vkik in
each graph Gk to a low-dimensional representation uk

ik ,
i.e., vk

ik : RNk 7→ uk
ik : RK−1 and K − 1 << Nk (1 ≤

k ≤ K). cos is the cosine similarity between pairwise
node embedding vectors. N (vki ) is the set of neighbors of
node vki in graph Gk. p(vk

jk) denotes the distribution for
sampling J negative nodes vkjk 6= vkik through the negative
sampling method. LM(v1

i1 , · · · ,vK
iK ) denotes the matching

loss among nodes v1
i1 , · · · ,vK

iK in K graphs, while LE is
the embedding loss that maximizes/minimizes the similarity
between neighbored/disconnected nodes within the same
graphs Gk.

With the injected adversarial attacks (including edge in-
sertions and deletions) on K clean graphs G1, · · · , GK ,
leading to perturbed graphs Ĝ1, · · · , ĜK , an adversarial de-
fender is trained to detect or eliminate the perturbations for
maintaining the high utility of the matching results by M
on Ĝ1, · · · , ĜK .

3. Defenses against Inter-graph Dispersion
Attacks

In this section, we propose an effective simplex detection
technique to tackle the inter-graph dispersion attacks. In
geometry, a simplex is a generalization of the notion of a
triangle or tetrahedron to arbitrary dimensions (Elte, 1912).
A regular simplex is a simplex that is also a regular poly-
tope. Given K points u1

i1 , · · · ,uK
iK ∈ RK−1, letHk be the

hyperplane generated by the points (ul
il)l 6=k, we can always

discover a vector xk ∈ RK−1 and a scalar zk ∈ R such that

Hk = {y ∈ RK−1 : xk · y = zk},∀k, 1 ≤ k ≤ K (2)

where · represents the inner product between two vectors.
Definition 1 A (K − 1)-simplex SK−1, generated by the
points u1

i1 , · · · ,uK
iK , is defined as the convex hull of these

points.

SK−1 =

{
s
∣∣∣s =

K∑
k=1

ωku
k
ik , 0 ≤ ωk ≤ 1,

K∑
k=1

ωk = 1

}
(3)

The radius rK of the inscribed hypersphere in SK−1 is given
as follows.

1

rK
=

K∑
k=1

1

Dk
(4)

where Dk = dist(uk
ik ,Hk) = min

h∈Hk

‖uk
ik − h‖ represents

the distance between uk
ik andHk.

The centre cK of the inscribed hypersphere in SK−1 is given
below.

cK = rK

K∑
k=1

1

Dk
ukik (5)

Definition 2 The centre of gravity gk of the kth face of a
(K − 1)-simplex SK−1 is defined as follows.

gk =
1

K − 1

K∑
l=1,l 6=k

ulil , 1 ≤ k ≤ K (6)

The kth median of a (K − 1)-simplex SK−1 is the line
segment [uk

ik ,gk].

The centre of gravity gK of the (K − 1)-simplex SK−1 is
defined as follows.

gK =
1

K

K∑
k=1

ukik (7)

Theorems 1-4 demonstrates that for any two different points
uk
ik and uj

ij in a regular simplex SK−1 with centre cK = 0,
the 2-norm of their distance and their inner product depend
on only K and the radius rK but are irrelevant to the coor-
dinates of two points. Therefore, given K and rK , the inner
product between the coordinate vectors of any two points in
a standard regular simplex SK−1 with cK = 0 is a constant.
We will utilize this important property to determine whether
the nodes in multiple graphs form regular simplexes and
how regular the simplexes are.
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Theorem 1 The medians of a (K − 1)-simplex SK−1 meet
at the same point gK and they divide each other in the ratio
(K − 1) : 1.

In a standard regular simplex SK−1, the centre cK of the
inscribed hypersphere is equal to 0, i.e., cK = 0, where
0 ∈ RK−1 is an all-zero vector denoting the origin. Based
on Eq.(5), we have

K∑
k=1

ukik = 0 (8)

Without loss of generality, in SK−1 with cK = 0, there
must exist a point with the following coordinate, say uK

iK .

uKiK = [0, · · · , 0,uKiK(K−1)] (9)

where uK
iK(K−1) is to be determined.

By symmetry the hyperplane HK consisting
of u1

i1 , · · · ,u
K−1
iK−1 has the Cartesian equation

ul
il(K−1) = −rK for ∀l, l 6= K. Namely, the last

component of all points (ul
il)l 6=K is −rK .

As the inscribed hypersphere has the radius rK , based
on Theorem 1, then DK = dist(uK

iK ,HK) = KrK and
uK
iK(K−1) = (K − 1)rK .

uKiK = [0, · · · , 0, (K − 1)rK ] (10)

Theorem 2 By sequentially projecting SK−1, we can gen-
erate a series of regular simplexes: SK−2 consisting of
u1
i1 , · · · ,u

K−1
iK−1 with centre cK−1 = 0, · · · , S1 consisting

of u1
i1 and u2

i2 with centre c2 = 0, and S0 consisting of
u1
i1 with centre c1 = 0. For radius rk of Sk−1 for any k

(2 ≤ k ≤ K), we have

rk =

√
K(K − 1)

k(k − 1)
rK , 2 ≤ k ≤ K (11)

All points in a standard regular simplex SK−1 with cK = 0
have the following coordinates.

uKiK = [0, · · · , 0, (K − 1)rK ]

uK−1
iK−1 = [0, · · · , 0, (K − 2)rK−1,−rK ]

uK−2
iK−2 = [0, · · · , 0, (K − 3)rK−2,−rK−1,−rK ]

· · · = · · ·

(12)

Theorem 3 For any two different points uk
ik and uj

ij (1 ≤
k, j ≤ K, k 6= j) in a standard regular simplex SK−1 with
cK = 0, ‖uk

ik − uj
ij‖

2
2 = 2K(K − 1)r2K .

Theorem 4 In a standard regular simplex SK−1 with cen-
tre cK = 0, ‖uk

ik‖
2
2 = (K−1)2r2K for any k (1 ≤ k ≤ K).

For any two different points uk
ik and uj

ij (1 ≤ k, j ≤ K, k 6=
j), uk

ik · u
j
ij = −(K − 1)r2K .

Proof. Please refer to Appendix A.1 for detailed proof of
Theorems 1-4.

For a regular simplex SK−1, its centre cK coincides with
the centre of gravity gK . In addition, gK coincides with the

centre of the inscribed hypersphere and the circumscribed
hypersphere of SK−1. In the context of graph matching,
the centre cK of a possible regular simplex that consists of
K perturbed nodes with the inter-graph dispersion attacks
may not be at the origin 0 in the embedding space. We
calculate cK = gK = 1

K

∑K
k=1 u

k
ik and move the simplex

by converting the nodes with wk
ik = uk

ik − cK for all k
(1 ≤ k ≤ K), such that the centre is at the origin. Thus, the
radius RK of the circumscribed hypersphere of the simplex
is estimated as RK = 1

K

∑K
k=1 ‖wk

ik‖2. According to The-
orem 1, the radius rK of the inscribed hypersphere of the
simplex is estimated as rK = 1

K−1RK . The attack budget
ε is estimated with the average R̄K of the radius RK of the
circumscribed hypersphere of all simplexes, generated by
the matched nodes (u1

i1 , · · · ,uK
iK ) in the training data D,

i.e., ε = R̄K .

In order to determine whether the nodes w1
i1 , · · · ,wK

iK in
K graphs form a regular (K − 1)-simplex, we need to de-
cide whether wk

ik ·w
j
ij = −(K−1)r2K for all K(K−1)/2

pairs of nodes wk
ik and wj

ij (1 ≤ k < j ≤ K). How-
ever, this operation is non-trivial and practically infeasible.
We randomly sample T (T << K(K − 1)/2) pairs from
w1

i1 , · · · ,wK
iK , denoted by S = {w1

1,w
1
2}, · · · , {wT

1 ,w
T
2 }}.

A function τ is used to define how regular a simplex is.

τ(S) =
1

T

T∑
t=1

g(wt1 · wt2 + (K − 1)r2
K) (13)

where g is the gaussian function with mean µ = 0 and
variance σ2 = 1/(2π), such that τ(S) lies between 0 and 1.
1 denotes the simplex is completely regular when wt

1 ·wt
2 =

−(K − 1)r2K for any two wt
1 and wt

2. 0 specifies it is least
regular if the difference wt

1 · wt
2 and −(K − 1)r2K is large.

By integrating simplex detection for tackling inter-graph
dispersion attacks, the overall loss is updated as follows.

min
M
L =LE + E(v1

i1
,··· ,vK

iK
)∈D

[
LM(v1

i1 , · · · ,v
K
iK )×(

1− τ(S)h(ε+ 4−RK)
)] (14)

where h is the sigmoid function. Notice that h(4) =
0.982 · · · ≈ 1. Thus, h(ε + 4 − RK) ≈ 1 when RK ≤ ε,
i.e., actual attacks on the matched nodes in all K graphs
are observed within the attack budget ε. On the other hand,
when RK > ε, h(ε + 4 − RK) < 1 and approaches 0.
We treat this case as natural outliers or exceptions among
the non-matched nodes. Thus, τ(S)f(ε + 4 − RK) can
be treated as the detection probability of inter-graph dis-
persion attacks on the matched nodes. It is equal to 1
when the simplex is completely regular and RK is within
ε. τ(S)h(ε + 4 − RK) keeps decreasing when the sim-
plex becomes less regular and RK keeps increasing above
ε. Thus, LM(v1

i1 , · · · ,vK
iK )×

(
1− τ(S)f(ε+ 4− RK)

)
is treated as a matching predictor and a distance function
among the matched nodes in both clean and attacked cases.
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Figure 2: Defense against Intra-graph Assembly Attacks

It is equal to 0 for the attacked case when the simplex is com-
pletely regular and RK ≤ ε. It is approximately equal to
LM(v1

i1 , · · · ,vK
iK ) = 0 for the clean case, since wt

1 = wt
2

and rK = 0 and thus wt
1 · wt

2 + (K − 1)r2K >> 0, e.g.,
g(x) ≤ 0.043 · · · when |x| ≥ 1.

The above discussion is about defenses against inter-graph
dispersion attacks on all K graphs. However, the attacker
may perturb only some of K graphs. A heuristic strategy
is to exclude nodes uk

ik if the inner products between they
and many other nodes deviate too many from −(K − 1)r2K .
We treat uk

ik as unattacked nodes and reuse the simplex
detection technique to validate the attacks on the rest nodes.

A defender has no idea about which part of the graph is mod-
ified or not. A simple margin-based loss will dramatically
change the structure of entire graph in the embedding space,
especially modify the structure associated with clean nodes.
This will result in the matching performance downgrade of
clean nodes. Thus, the above simplex detection technique is
proposed to detect perturbed nodes and differentiate them
from clean nodes. Different defense strategies are adopted
for these two types of nodes, which is reflected in Eq.(14).

4. Defense against Intra-graph Assembly
Attacks

Theorem 5 demonstrates that the phase-type distribution can
be used to approximate any positive-valued distribution. We
will utilize the phase-type distribution and maximum likeli-
hood estimation method (Chakravarthy & Alfa, 1996; As-
mussen et al., 1996) to estimate the distribution of perturbed
graphs and maximize the distances among the perturbed
nodes within the same graphs to defense against intra-graph
assembly attacks, for separating the nodes in a narrow space
into a wide space, such that the interference from the similar
neighbors of the perturbed nodes is significantly reduced.

Theorem 5 The set of phase-type distributions is dense
in the field of all positive-valued distributions, namely, it
can be used to approximate any positive-valued distribu-

tion (O’Cinneide, 1990).

Definition 3 Consider a continuous-time Markov process
with m + 1 (m ≥ 1) states, such that states 1, · · · ,m are
transient states and state 0 is an absorbing state, a non-
negative random variable u has a phase-type distribution if
its distribution function is given as follows.

F (x) = P (u ≤ x) = 1− αeTx1

≡ 1− α(

∞∑
n=0

xn

n!
Tn)1, x ≥ 0,

(15)

where F (x) is the distribution function of u. 1 ∈ Rm is an
all-one column vector. α ∈ Rm is a sub-stochastic vector of
order m, i.e., α is a row vector with non-negative elements
and α1 ≤ 1. T is a sub-generator of order m, i.e., T is
an m ×m matrix such that (1) all diagonal elements are
negative; (2) all off-diagonal elements are non-negative; (3)
all row sums are non-positive; and (4) T is invertible.

As the embedded nodes uk
1 , · · · ,uk

Nk ∈ RK−1 in each
graph Gk (1 ≤ k ≤ K − 1) lie in (K − 1)-dimensional
space, we will utilize the multivariate phase-type distribu-
tion to estimate their distribution. Without loss of generality,
let a (K − 1)-dimensional random variable u denote all
embedded nodes in Gk.

Definition 4 For a (K − 1)-dimensional random variable
u = [u1, · · · ,uK−1] and 0 ≤ x1 ≤ · · · ≤ xK−1, a multi-
variate phase-type distribution is defined as follows.

F̄ (x1, · · · , xK−1)=P (u1 > x1, · · · ,uK−1 > xK−1)

= αeTx1D1e
T(x2−x1)D2 · · · eT(xK−1−xK−2)DK−11

(16)

where F̄ (x1, · · · , xK−1) is the survival function of u. Dk

(1 ≤ k ≤ K − 1) is a diagonal matrix with the diagonal
elements of 0 or 1. The absolutely continuous component of
the joint distribution F has the following density.

f(x1, · · · , xK−1) = (−1)K−1αeTx1(TD1 −D1T)

eT(x2−x1)(TD2 −D2T) · · · eT(xK−1−xK−2)TDK−11
(17)

Assuming that u has the same boundary on all K − 1 di-
mensions, i.e., 0 ≤ x1 = · · · = xK−1 = x, we have

F̄ (x1, · · · , xK−1) = αeTxD1 (18)

where D =
K−1∏
k=1

Dk is still a diagonal matrix with the

diagonal elements of 0 or 1. Now, we utilize maximum
likelihood estimation (MLE) (Chakravarthy & Alfa, 1996;
Asmussen et al., 1996) to estimate parameters α, T, and D.

L(α,T,D|x)=P (x) logQ(x)+(1−P (x)) log(1−Q(x)) (19)

where P (x) denotes the distribution of actual data and
Q(x) = 1 − F̄ (x1, · · · , xK−1) specifies the estimated
phase-type distribution. The partial derivatives w.r.t. the
parameters are computed below.
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Algorithm 1 Expressive Parameter Estimation

Input: graph Gk = (V k, Ek), node embeddings uk1 , · · · ,ukNk ,
boundary parameter X , initial parameters α0, T0, D0, and D0,
and number of iterations I .
Output: Estimated distribution QD(x).

1: Initialize α, T, D, and D with α0, T0, D0, and D0;
2: Normalize uk1 , · · · ,ukNk into a bounded range [0, X].
3: for i = 1 to I
4: x = i/I ∗X;
5: Compute P (x)= #(u≤[x,··· ,x])

Nk for ∀u ∈ {uk1 , · · · ,ukNk};
6: Calculate QD(x) with α, T, D, and D;
7: Utilize MLE to optimize L(α,T,D,D|x);
8: Update α, T, D, and D;
9: Return QD(x).

∂L

∂α
=

P (x)eTxD1

αeTxD1− 1
− P (x)− 1

α
= 0

∂L

∂T
=
P (x)αxeTxD1

αeTxD1− 1
− x(P (x)− 1) = 0

∂L

∂D
=
−P (x)αeTx1

1− αeTxD1
− (P (x)− 1)αeTx1

αeTxD1
= 0

(20)

We solve the above equations and get

α = 1−1D−1e−Tx(1− P (x))

T =
log(α−1(1− P (x))1−1D−1)

x

D = e−Txα−1(1− P (x))1−1

(21)

where matrix inverse operator is used to represent vectors
α−1 and 1−1 such that 1−1 × 1 = 1 and α × α−1 = 1,
although the vectors do not have the inverse.

Fitting phase-type distributions often face the dilemma of
unexpressive estimation, due to the restrict of binary diago-
nal elements of 0 or 1 in Dk (Chakravarthy & Alfa, 1996;
Asmussen et al., 1996). We propose an expressive parameter
estimation method for multivariate phase-type distribution
by introducing one additional parameter D.
Theorem 6 The estimation with F̄D(x1, · · · , xK−1) =
αeTxDD1 is more expressive than the one
with F̄ (x1, · · · , xK−1) = αeTxD1, where
D = diag(h(d1), · · · , h(dm)) is a diagonal matrix
to be estimated and h is the sigmoid function.

Proof. Please refer to Appendix A.1 for detailed proof.

Based on newly introduced expressive factorD, we have cor-
responding survival function F̄D(x1, · · · , xK−1), distribu-
tion function FD(x1, · · · , xK−1) = 1−F̄D(x1, · · · , xK−1)
(i.e., QD(x)), and likelihood function L(α,T,D,D|x).
The expressive parameter estimation of multivariate phase-
type distribution is presented in Algorithm 1.

In terms of the estimated distribution of the perturbed node
embeddings in each graph Gk (1 ≤ k ≤ K − 1), we
utilize the random-restart hill-climbing method (Russell
& Norvig, 1995) to find Y nodes uk1 , · · · , ukY with local

maximal densities. For each uky (1 ≤ y ≤ Y ), we sample
Z nearest neighbors in terms of the embedding features to
form a group and calculate the average distance dky between
pairwise node embeddings within the group.

By combining node separation for handling intra-graph as-
sembly attacks, the overall loss function is updated below.

min
M
L =LE + E(v1

i1
,··· ,vK

iK
)∈D

[
LM(v1

i1 , · · · ,v
K
iK )×

(
1− τ(S)h(ε+ 4−RK)

)]
+

K−1∑
k=1

Y∑
y=1

1

dky

(22)

The combination of minimizing LM and 1/dky by training
M offers a defense solution against intra-graph assembly
attacks. On one hand, minimizing LM can pull the matched
nodes across graphs close to each other. On the other hand,
minimizing 1/dky is like a bombing operation at the dens-
est locations and push the nodes within graphs far away
from each other, such that the interference from the similar
neighbors of the perturbed node is significantly reduced.

5. Experimental Evaluation
We will show the robustness of our IDRGM model for re-
silient graph matching over three datasets: autonomous
systems (AS) (AS), CAIDA relationships datasets (CAI),
and DBLP coauthor graphs (DBL), as shown in Table 1.

Graph matching baselines. We compare the IDRGM
model with six state-of-the-art graph matching algorithms
and two representative representative resilient Lipschitz-
bound neural architectures. FINAL (Zhang & Tong, 2016)
leverages both node and edge attributes to solve the at-
tributed network alignment problem. Its supervised version
with prior alignment preference matrix is used for the evalu-
ation. REGAL (Heimann et al., 2018) is an unsupervised
network alignment framework that infers soft alignments
by comparing joint node embeddings across graphs. and by
computing pairwise node similarity scores across networks.
MOANA (Zhang et al., 2019) is a supervised coarsening-
alignment-interpolation multilevel network alignment algo-
rithm with the supervision of a prior node similarity ma-
trix. Deep graph matching consensus (DGMC) (Fey et al.,
2020) is a supervised graph matching method that reaches
a data-driven neighborhood consensus between matched
node pairs. CONE-Align (Chen et al., 2020b) models intra-
network proximity with node embeddings and uses them
to match nodes across networks in an unsupervised man-
ner. G-CREWE (Qin et al., 2020) is a rapid unsupervised
network alignment method via both graph compression
and embedding in different coarsened networks. Group-
Sort (Anil et al., 2019; Cohen et al., 2019) is a 1-Lipschitz
fully-connected neural network that restricts the perturba-
tion propagation by imposing a Lipschitz constraint on each
layer. BCOP (Li et al., 2019b) is a Lipschitz-constrained
convolutional network with expressive orthogonal convolu-
tion operations. To our best knowledge, there are no other
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Table 1: Statistics of the Datasets

Dataset AS CAIDA
Graph G1 G2 G3 G1 G2 G3

#Nodes 10,900 11,113 11,019 16,655 16,493 16,301
#Edges 31,180 31,434 31,761 33,340 33,372 32,955

#MatchedNodes 7,943 7,884
Dataset DBLP
Graph 2013 2014 2015
#Nodes 28,478 26,455 27,543
#Edges 128,073 114,588 133,414

#MatchedNodes 4,000

Table 2: Hits@1 (%) with 5% perturbed edges

Dataset AS CAIDA DBLP
Attack Model RND NEA GMA RND NEA GMA RND NEA GMA
FINAL 25.2 19.7 21.3 23.7 20.9 20.3 12.4 9.5 9.2
REGAL 4.7 7.4 7.0 5.9 6.4 6.0 9.6 4.5 5.8
MOANA 2.8 2.5 2.6 2.5 2.1 2.1 3.8 3.1 3.1
DGMC 1.7 0.5 1.3 2.1 1.5 1.7 0.9 0.4 0.9
CONE-Align 10.2 9.4 12.3 7.8 8.3 6.8 3.2 5.3 4.6
G-CREWE 17.6 16.3 13.3 16.6 12.1 11.3 18.7 8.1 10.2
GroupSort 25.0 24.5 23.3 27.9 25.1 24.1 21.7 18.0 20.8
BCOP 18.7 18.6 19.5 23.6 17.3 18.4 15.6 14.7 15.9
IDRGM 30.7 31.3 32.1 33.8 31.7 30.5 24.3 22.7 23.4
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Figure 3: AS with varying perturbed edges

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Perturbed edges (%)

H
it
s
@

1
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
IDRGM

(a) RND Attack

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Perturbed edges (%)

H
it
s
@

1
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
IDRGM

(b) NEA Attack

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Perturbed edges (%)

H
it
s
@

1
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
IDRGM

(c) GMA Attack

Figure 4: CAIDA with varying perturbed edges

open-source defense baselines on graph matching available.
This work is the first to study integrated defense for robust
graph matching against adversarial attacks.

Attack models. We evaluate the model resilience with three
representative graph attack methods. Random attack (RND)
randomly adds and removes edges to generate perturbed
graphs. NEA (Bojchevski & Günnemann, 2019) is an ef-
ficient adversarial attack method that poison the network
structure and have a negative effect on the quality of net-
work embedding and node classification. GMA (Zhang
et al., 2020b) is the only attack model on graph matching
by estimating and maximizing the densities of nodes to be
attacked, for pushing them to dense regions in two graphs
to generate imperceptible and effective attacks.

Versions of IDRGM model. We compare four versions
of IDRGM to validate the strengths of different defense
components. IDRGM-D only utilize the simplex detection
to tackle inter-graph dispersion attacks. IDRGM-A only
employs the node separation for addressing intra-graph as-
sembly attacks. IDRGM-N uses the basic graph matching
model without any defense techniques. IDRGM operates
with the full support of both defense techniques.

Defense performance under different attack models.
We report Hits@K (Yasar & Çatalyürek, 2018; Fey et al.,
2020) to evaluate and compare our model to previous lines
of work, where Hits@K measures the proportion of cor-
rectly matched nodes ranked in the top-K list. A larger
Hits@K value demonstrates a better graph matching re-

sult. Table 2 exhibits the Hits@K of nine graph matching
algorithms on test data by three attack models over three
groups of datasets. We randomly sample 30% of known
matched node pairs as training data and the rest as test data.
We repeat the selection process of matched node pairs five
times and report the average scores. For all attack mod-
els, the number of perturbed edges is fixed to 5% in these
experiments. For random attacks, we randomly add and
remove edges with the half perturbation ratio (i.e., 2.5%)
to three groups of datasets respectively. We use the default
parameter settings for other attack models in the authors’
implementation. We have observed that among nine graph
matching methods, no matter how strong the attacks are,
the IDRGM method achieve the highest Hits@K scores on
perturbed graphs in all experiments, showing the resilience
of IDRGM to the adversarial attacks. Compared to the best
graph matching results by other methods, IDRGM, on av-
erage, achieves 21.4%, 24.6%, and 16.8% improvement of
Hits@K on AS, CAIDA, and DBLP respectively. In addi-
tion, the promising performance of IDRGM under different
attack models implies that IDRGM has great potential as a
general defense solution to other graph matching methods.

Defense performance with varying perturbation edges.
Figures 3-5 present the graph matching quality under three
attack models by varying the ratios of perturbed edges from
0% to 25%. We perform the defense test for all night algo-
rithms on the modified graphs with different perturbation
ratios. It is obvious the quality by each matching mthod de-
creases with increasing perturbed edges. This phenomenon



Integrated Defense for Resilient Graph Matching

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Perturbed edges (%)

H
it
s
@

1
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
IDRGM

(a) RND Attack

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Perturbed edges (%)

H
it
s
@

1
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
IDRGM

(b) NEA Attack

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Perturbed edges (%)

H
it
s
@

1
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
IDRGM

(c) GMA Attack

Figure 5: DBLP with varying perturbed edges
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Figure 6: AS with varying training ratios
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Figure 7: Hits@1 (%) of IDRGM variants with 5% perturbed edges
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Figure 8: Hits@1 (%) with varying parameters

indicates that current graph matching methods are sensitive
to adversarial attacks. However, IDRGM still achieves the
highest Hits@1 values (> 0.206), which are better than
other eight methods in most tests. In addition, the Hits@1
drop by our IDRGM model is slower than other methods.

Impact of training data ratios. Figure 6 shows the quality
of nine graph matching algorithms on AS by varying the
ratio of training data from 5% to 25%. The number of per-
turbed edges is fixed to 5%. We make the observations on
the quality by nine matching methods. (1) The performance
curves keep increasing when the training data ratio increases.
(2) IDRGM outperforms other methods in most experiments
with the highest Hits@1 scores (> 5.12%). When there
are many training data available (≥ 15%), the quality im-
provement by IDRGM is obvious. A reasonable explanation
is more training data makes IDRGM be more resilient to
poisoning attacks under small perturbation budget.

Ablation study. Figure 7 presents the Hits@1 scores of
graph matching on three datasets with four variants of our
IDRGM model. We observe the complete IDRGM achieves
the highest Hits@1 (> 30.7%) on AS, (> 30.5%) over
CAIDA, and (> 22.7%) on DBLP, which are obviously bet-
ter than other versions. Compared with IDRGM-A, IDRGM-
D performs better in most experiments. A reasonable ex-
planation is that they focus on different types of adversarial
attacks. IDRGM-D utilize the simplex detection technique
to tackle inter-graph dispersion attacks. IDRGM-A employ
the node separation method to defend intra-graph assembly
attacks. However, the prediction of graph matching mainly
depends on inter-graph links. Thus, addressing inter-graph
dispersion attacks is more critical to maintaining the robust-

ness of graph matching. However, IDRGM-A achieves the
better performance than IDRGM-N. These results illustrate
that both defense techniques for defending two types of
adversarial attacks are important in producing robust graph
matching results.

Impact of weight for defending inter-graph dispersion
attacks. We assign a weighting factor to τ(S)h(ε+4−RK)
in the overall loss function in Eq.(22. Figure 8 (a) measures
the performance effect of weight for the graph matching by
varying ε from 0.01 to 1. It is observed that when increasing
ε, the Precision of the IDRGM model initially increases
and finally decreases. This demonstrates that there must
exist an optimal weighting factor for for defending inter-
graph dispersion attacks. A too large weight may reduce the
ratio of defending intra-graph assembly attacks, although
addressing inter-graph dispersion attacks is more critical
to maintaining the robustness of graph matching. Thus we
suggest well handling inter-graph dispersion attacks for the
graph matching task with weight between 0.05 and 0.5.

Impact of weight for defending intra-graph assembly
attacks. In addition, we assign a weighting factor to∑K−1

k=1

∑Y
y=1

1
dk
y

in the overall loss function in Eq.(22.
Figure 8 (b) shows the impact of weight in our IDRGM
model over two groups of datasets. The performance curves
initially raise when the weight increases. Intuitively, the
IDRGM with small weight can help defend intra-graph as-
sembly attacks. Later on, the performance curves decrease
quickly when the weight continuously increases. A reason-
able explanation is that the too large weight is able to reduce
the ratio of defending inter-graph dispersion attacks, as ad-
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dressing inter-graph dispersion attacks is more important to
achieve a graph matching result.

Time complexity analysis. Let K be #graphs, Nk be
#nodes and Mk be #edges in graph Gk, |D| be the size of
training data, T be #sampled node pairs in Eq.(13), Z be
#sampled nearest neighbors in Page 6, I be #iteration of
Algorithm 1, m be #states in phase-type distribution, the
cost of simplex detection that is dominated by the computa-
tion of τ(S) in Eq.(13) isO(T (K−1)). For each graphGk,
the cost of embedding M of all nodes is O((Nk)2(K − 1)),
the cost of random-restart hill-climbing is bounded with
O(Nk), the cost of the average distance dky within each of
Y groups is O(Z2(K − 1)), the cost of distribution esti-
mation in Algorithm 1 is approximately equal to O(Im3).
The costs of computing LM and LE are O(K(K − 1)2/2)
and O(K(Mk + NkJ)(K − 1)). The cost of computing
overall loss in Eq.(22) is thus O(K(Mk +NkJ)(K − 1) +
|D|(K(K − 1)2/2 + T (K − 1)) + Z2(K − 1)2Y ). As
Mk, Nk >> all other variables, the total cost is approxi-
mately equal toO(Mk+NkJ) by ignoring other variables.

6. Related Work
Recent defense techniques on graph learning models against
adversarial attacks can be broadly classified into two cate-
gories: adversarial defense and certifiable robustness. We
have witnessed various effective adversarial defense models
to improve the robustness of graph mining models against
adversarial attacks in node classification (Zhu et al., 2019;
Xu et al., 2019b; Tang et al., 2020; Entezari et al., 2020;
Zheng et al., 2020; Zhou & Vorobeychik, 2020; Jin et al.,
2020b; Feng et al., 2020; Elinas et al., 2020; Zhang & Zit-
nik, 2020; Luo et al., 2021), network embedding (Dai et al.,
2019; Entezari et al., 2020; Wu et al., 2020b), link predic-
tion (Zhou et al., 2019a), malware detection (Hou et al.,
2019), spammer detection (Dou et al., 2020), fraud detec-
tion (Breuer et al., 2020; Zhang et al., 2020a), graph classi-
fication (Zhang & Lu, 2020; You et al., 2020), graph match-
ing (Yu et al., 2021), and influence maximization (Logins
et al., 2020). Certifiable robustness techniques aim to design
robustness certificates to measure the safety of individual
nodes under adversarial perturbation. Training learning
models jointly with these certificates can lead to a safety
guarantee of more nodes in various tasks, include node
classification (Zügner & Günnemann, 2019; Bojchevski
& Günnemann, 2019; Bojchevski et al., 2020; Zügner &
Günnemann, 2020; Wang et al., 2020f; Schuchardt et al.,
2021), graph classification (Jin et al., 2020a; Gao et al.,
2020), and community detection (Jia et al., 2020).

Graph data analysis have attracted active research in the last
decade (Cheng et al., 2009; Zhou et al., 2009; 2010; Cheng
et al., 2011; Zhou & Liu, 2011; Cheng et al., 2012; Lee et al.,
2013; Su et al., 2013; Zhou et al., 2013; Zhou & Liu, 2013;

Palanisamy et al., 2014; Zhou et al., 2014; Zhou & Liu,
2014; Su et al., 2015; Zhou et al., 2015b; Bao et al., 2015;
Zhou et al., 2015d; Zhou & Liu, 2015; Zhou et al., 2015a;c;
Lee et al., 2015; Zhou et al., 2016; Zhou, 2017; Palanisamy
et al., 2018; Zhou et al., 2018c;b; Ren et al., 2019; Zhou
et al., 2019c;b;d; Zhou & Liu, 2019; Goswami et al., 2020;
Wu et al., 2020a; 2021a; Zhou et al., 2020c;d; Zhang et al.,
2020b; Zhou et al., 2020e; 2021; Jin et al., 2021; Wu et al.,
2021b; Zhang et al., 2021). Graph matching, also well
known as network alignment, has been a heated topic in
recent years (Chu et al., 2019; Xu et al., 2019a; Wang et al.,
2020d; Chen et al., 2020a;b; Zhang & Tong, 2016; Mu et al.,
2016; Heimann et al., 2018; Li et al., 2019a; Fey et al., 2020;
Qin et al., 2020; Feng et al., 2019; Ren et al., 2020). Re-
search activities can be classified into three broad categories.
(1) Topological structure-based techniques, which rely on
only the structural information of nodes to match two or
multiple graphs, including CrossMNA (Chu et al., 2019),
MOANA (Zhang et al., 2019), GWL (Xu et al., 2019a),
DPMC (Wang et al., 2020d), MGCN (Chen et al., 2020a),
GraphSim (Bai et al., 2020), ZAC (Wang et al., 2020b),
GRAMPA (Fan et al., 2020), CONE-Align (Chen et al.,
2020b), and DeepMatching (Wang et al., 2020a); (2) Struc-
ture and/or attribute-based approaches, which utilize highly
discriminative structure and attribute features for ensuring
the matching effectiveness, such as FINAL (Zhang & Tong,
2016), ULink (Mu et al., 2016), gsaNA (Yasar & Çatalyürek,
2018), REGAL (Heimann et al., 2018), SNNA (Li et al.,
2019a), CENALP (Du et al., 2019), GAlign (Huynh et al.,
2020), Deep Graph Matching Consensus (Fey et al., 2020),
CIE (Yu et al., 2020), RE (Zhou et al., 2020b), Meta-
NA (Zhou et al., 2020a), G-CREWE (Qin et al., 2020), and
GA-MGM (Wang et al., 2020c); (3) Heterogeneous meth-
ods employ heterogeneous structural, content, spatial, and
temporal features to further improve the matching perfor-
mance, including HEP (Zheng et al., 2018), DPLink (Feng
et al., 2019), BANANA (Ren et al., 2020). Several papers
review key achievements of graph matching across online
information networks including state-of-the-art algorithms,
evaluation metrics, representative datasets, and empirical
analysis (Shu et al., 2016; Yan et al., 2020).

7. Conclusions
In this work, we have proposed an integrated defense model
for resilient graph matching. First, we identify and ana-
lyze two types of unique topology attacks in graph match-
ing: inter-graph dispersion and intra-graph assembly attacks.
Second, a simplex detection technique is proposed to tackle
inter-graph dispersion attacks. Finally, a node separation
method is developed to defend intra-graph assembly attacks.
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Günnemann, S. Collective robustness certificates. In
9th International Conference on Learning Representa-
tions, ICLR 2021, Online, May 4-7, 2021, Conference
Track Proceedings, 2021.

Shu, K., Wang, S., Tang, J., Zafarani, R., and Liu, H. User
identity linkage across online social networks: A review.
SIGKDD Explorations, 18(2):5–17, 2016.

Su, Z., Liu, L., Li, M., Fan, X., and Zhou, Y. Servicetrust:
Trust management in service provision networks. In
Proceedings of the 10th IEEE International Conference
on Services Computing (SCC’13), pp. 272–279, Santa
Clara, CA, June 27-July 2 2013.

Su, Z., Liu, L., Li, M., Fan, X., and Zhou, Y. Reliable and
resilient trust management in distributed service provision
networks. ACM Transactions on the Web (TWEB), 9(3):
1–37, 2015.

Sun, Z., Wang, C., Hu, W., Chen, M., Dai, J., Zhang, W.,
and Qu, Y. Knowledge graph alignment network with
gated multi-hop neighborhood aggregation. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Ar-
tificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pp. 222–229, 2020.

Tang, X., Li, Y., Sun, Y., Yao, H., Mitra, P., and Wang, S.
Transferring robustness for graph neural network against
poisoning attacks. In Proceedings of the 13th ACM In-
ternational Conference on Web Search and Data Mining,
WSDM 2020, Houston, TX, February 3-7, 2020, 2020.

Vijayan, V., Gu, S., Krebs, E. T., Meng, L., and Milenkovic,
T. Pairwise versus multiple global network alignment.
IEEE Access, 8:41961–41974, 2020.

Wang, B. and Gong, N. Z. Attacking graph-based classifi-
cation via manipulating the graph structure. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, pp. 2023–2040, 2019.

Wang, C., Wang, Y., Zhao, Z., Qin, D., Luo, X., and Qin,
T. Credible seed identification for large-scale structural
network alignment. Data Min. Knowl. Discov., 34(6):
1744–1776, 2020a.

Wang, F., Xue, N., Yu, J., and Xia, G. Zero-assignment
constraint for graph matching with outliers. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pp. 3030–3039, 2020b.

Wang, R., Yan, J., and Yang, X. Graduated assignment for
joint multi-graph matching and clustering with applica-
tion to unsupervised graph matching network learning.
In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020c.

Wang, T., Jiang, Z., and Yan, J. Multiple graph matching
and clustering via decayed pairwise matching composi-
tion. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pp. 1660–1667, 2020d.

Wang, T., Liu, H., Li, Y., Jin, Y., Hou, X., and Ling, H.
Learning combinatorial solver for graph matching. In
2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pp. 7565–7574, 2020e.

Wang, Y., Liu, S., Yoon, M., Lamba, H., Wang, W., Falout-
sos, C., and Hooi, B. Provably robust node classifica-
tion via low-pass message passing. In Proceedings of
the 20th IEEE International Conference on Data Mining
(ICDM’20), Online, November 17-20 2020f.

Wu, S., Li, Y., Zhang, D., Zhou, Y., and Wu, Z. Diverse
and informative dialogue generation with context-specific
commonsense knowledge awareness. In Proceedings of
the 58th Annual Meeting of the Association for Compu-
tational Linguistics, (ACL’20), pp. 5811–5820, Online,
July 5-10 2020a.

Wu, S., Li, Y., Zhang, D., Zhou, Y., and Wu, Z. Topicka:
Generating commonsense knowledge-aware dialogue re-
sponses towards the recommended topic fact. In Proceed-
ings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, (IJCAI’20), pp. 3766–3772, On-
line, January 7-15 2021a.

Wu, S., Wang, M., Zhang, D., Zhou, Y., Li, Y., and Wu, Z.
Knowledge-aware dialogue generation via hierarchical
infobox accessing and infobox-dialogue interaction graph



Integrated Defense for Resilient Graph Matching

network. In Proceedings of the 30th International Joint
Conference on Artificial Intelligence, (IJCAI’21), Online,
August 21-26 2021b.

Wu, T., Ren, H., Li, P., and Leskovec, J. Graph infor-
mation bottleneck. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020 (NeurIPS’20), On-
line, December 6-12 2020b.

Wu, Y., Liu, X., Feng, Y., Wang, Z., and Zhao, D. Neigh-
borhood matching network for entity alignment. In Pro-
ceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pp. 6477–6487, 2020c.

Xu, H., Luo, D., Zha, H., and Carin, L. Gromov-wasserstein
learning for graph matching and node embedding. In
Proceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, pp. 6932–6941, 2019a.

Xu, K., Chen, H., Liu, S., Chen, P., Weng, T., Hong, M.,
and Lin, X. Topology attack and defense for graph neural
networks: An optimization perspective. In Proceedings
of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019, pp. 3961–3967, 2019b.

Yan, J., Yang, S., and Hancock, E. R. Learning for graph
matching and related combinatorial optimization prob-
lems. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020,
pp. 4988–4996, 2020.

Yang, X., Liu, Z., and Qiaoxu, H. Incorporating discrete con-
straints into random walk-based graph matching. IEEE
Trans. Syst. Man Cybern. Syst., 50(4):1406–1416, 2020.
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