
Supplementary material

A An NP-Hard Problem

A.1 Proof of Theorem 4.1
Theorem A.1. Consider a given matrix M? ∈ Rd×d and a finite arm set X ⊂ Rd. Unless P=NP, there is
no polynomial time algorithm guaranteed to find the optimal solution of

max
(x(1),...,x(n))∈Xn

∑
(i,j)∈E

x(i)>M? x
(j) .

Proof. We prove the statement by reduction to the Max-Cut problem. Let G = (V,E) be a graph with

V = {1, . . . , n}. Let X = {e0, e1}, where e0 = (1, 0)
> and e1 = (0, 1)

>. Let M? =

[
0 1
1 0

]
. For any joint

arm assignment
(
x(1) . . . x(n)

)
∈ Xn, let F ⊆ E be defined as F =

{
i : x(i) = e1

}
. Note that∑

(i,j)∈E

x(i)>M?x
(j) =

∑
(i,j)∈E

1
[
x(i) 6= x(j)

]
= 2×

∑
(i,j)∈E

1 [i ∈ F, j /∈ F ] ,

where 1[·] is the indicator function. The assignement
(
x(1), . . . , x(n)

)
induces a cut (F, V \F ), and the value

of the assignment is precisely twice the value of the cut. Thus, if there was a polynomial time algorithm
solving our problem, this algorithm would also solve the Max-Cut problem.

A.2 Proof of Theorem 4.2
Theorem A.2. Let us consider the graph G = (V,E), a finite arm set X ⊂ Rd and the matrix M? given as
input to Algorithm 1. Then, the expected global reward r =

∑
(i,j)∈E x

(i)>M?x
(j) associated to the returned

allocation x =
(
x(1), . . . , x(n)

)
∈ Xn verifies:

r − rmin

r? − rmin
≥ 1

2
.

where r? and rmin are respectively the highest and lowest global reward one can obtain with the appropriate
joint arm. Finally, the complexity of the algorithm is in O(K2 + n).

Proof. Given the matrix M?, the algorithm obtains the two node-arms (x?, x
′
?) ∈ X solution of

max
(x,x′)∈X

x>M?x
′ .

Note that it is equivalent to obtain z? solution of

max
z∈Z

z> vec (M?) .

Let us analyze a round of Algorithm 1 where we assign the arm of a node in V . For sake of simplicity, we
assume that node i is assigned at round i. At round i, we count the number n(i)

1 of neighbors of i that have
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already been assigned the arm x? and we count the number n(i)
2 of neighbors of i that have already been

assigned the arm x′?. Then, node i is assigned the arm least represented among its neighbors, that is arm x?
if n(i)

2 ≥ n
(i)
1 and x′? otherwise. Eventually, the optimal edge-arm z? has been assigned max(n

(i)
1 , n

(i)
2 ) times

among node i’s neighborhood. Hence, for each node i, if we denote ri the sum of all the rewards obtained
with the edge-arms constructed only during the round i, we have

ri = max
(
n

(i)
1 , n

(i)
2

)
z>? θ? + min

(
n

(i)
1 , n

(i)
2

)
z>θ?

≥ n
(i)
1 + n

(i)
2

2
(z>? θ? + z>θ?) .

One can notice that the arm z can only be equal to vec
(
x?x

>
?

)
or vec

(
x′>? x

′>
?

)
. Let assume that vec

(
x?x

>
?

)>
θ? ≤

vec
(
x′?x

′>
?

)>
θ? without loss of generality and let consider the worst case where z is always equal to vec

(
x?x

>
?

)
.

Since z is constructed with the same node-arm x?, the allocation that constructs at each edge the edge-arm
z exists (which is allocating x? to all the nodes), thus m× z>θ? ≥ rmin.

Moreover one can also notice that m× z>? θ? ≥ r?. We thus have,

ri ≥
n

(i)
1 + n

(i)
2

2m
(r? + rmin) .

Now let us sum all the rewards obtained with the constructed edge-arms at each round of the algorithm,
that is the global reward r of the graph allocation returned by the proposed algorithm:

r =

n∑
i=1

ri

≥
n∑
i=1

n
(i)
1 + n

(i)
2

2m
(r? + rmin)

=
1

2
(r? + rmin)

=
1

2
(r? − rmin) + rmin .

Moreover, the algorithm does K2 estimation to find the best couple (x?, x
′
?) ∈ X 2, and each of the n

rounds of the algorithm is in O(1). Hence the complexity is equal to O(K2 + n).

B Deriving the stopping condition
In this section, we remind key results to derive the stopping condition. We refer the reader to Soare
et al. (2014) and references therein for additional details. Let Z ⊂ Rd2 be the set of edge-arms and let
K2 = |Z|. For m, t > 0, we consider a sequence of edge-arms zt = (z1, . . . , zmt) ∈ Zmt and the corresponding
noisy rewards (r1, . . . , rmt). We assume that the noise terms in the rewards are i.i.d., following a σ-sub-
Gaussian distribution. Let θ̂t = A−1

t bt ∈ Rd2 be the solution of the ordinary least squares problem with
At =

∑mt
i=1 ziz

>
i ∈ Rd2×d2 and bt =

∑k
i=1 ziri ∈ Rd2 . We first recall the following property.

Proposition B.1 (Proposition 1 in Soare et al. (2014)). Let c = 2σ
√

2. For every fixed sequence zt, with
probability 1− δ, for all t > 0 and for all z ∈ Z, we have

∣∣∣z>θ? − z>θ̂t∣∣∣ ≤ c‖z‖A−1
t

√
log

(
6m2t2K2

δπ

)
.
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Our goal is to find the arm z? that has the optimal expected reward z>? θ?. In other words, we want to
find an arm z ∈ Z, such that for all z′ ∈ Z, (z− z′)>θ? ≥ 0. However, one does not have access to θ?, so we
have to use its empirical estimate.

Let us consider a confidence set Ŝ(zt) centered at θ̂t ∈ Ŝ(zt) and such that P
(
θ? /∈ Ŝ(zt)

)
≤ δ, for some

δ > 0. Since θ? belongs to Ŝ(zt) with probability at least 1 − δ, one can stop pulling arms when an arm
has been found, such that the above condition is verified for any θ ∈ Ŝ(zt). More formally, the best arm
identification task will be considered successful when an arm z ∈ Z will verify the following condition for
any z′ ∈ Z and any θ ∈ Ŝ(zt):

(z − z′)>(θ̂t − θ) ≤ ∆̂t(z, z
′) ,

where ∆̂t (z, z′) = (z − z′)> θ̂t is the empirical gap between z and z′.
Using the upper bound in Proposition B.1, one way to ensure that P

(
θ? ∈ Ŝ(zt)

)
≥ 1 − δ is to define

the confidence set Ŝ(zt) as follows

Ŝ (zt) =

{
θ ∈ Rd, ∀z ∈ Z, ∀z′ ∈ Z, (z − z′)>

(
θ̂t − θ

)
≤ c‖z − z′‖(At)

−1

√
log

(
6m2t2K4

δπ

)}
.

Then, the stopping condition can be reformulated as follows:

∃z ∈ Z, ∀z′ ∈ Z, c‖z − z′‖A−1
t

√
log

(
6m2t2K4

δπ

)
≤ ∆̂t (z, z′) . (S1)

C Estimation of the unknown parameter

C.1 Proof of Theorem 5.1
To prove Theorem 5.1, we first state some useful propositions and lemmas. For any finite set X ⊂ Rd, we
define the function hX : SX → R ∪ {+∞} as follows: for any λ ∈ SX ,

hX(λ) =

{
maxx′∈X x

′>ΣX(λ)−1x′ if ΣX(λ) is invertible
+∞ otherwise .

Lemma C.1. Let X ⊂ Rd be a finite set spanning Rd and let Z = {vec (xx′>), (x, x′) ∈ X 2}. If µ? ∈ SX
is a minimizer of hX , then µ? is a solution of

min
µ∈SX

max
z∈Z

z>

(∑
x∈X

∑
x′∈X

µxµx′ vec
(
xx′>

)
vec
(
xx′>

)>)−1

z .

Proof. First, let us notice that, for any X ⊂ Rd, one has hX ≥ 0. Thus, µ? is also a minimizer of h2
X . In

addition, X is spanning Rd so hX (µ?) < +∞. Developing hX (µ?)2 yields:

hX (µ?)× hX (µ?) =

(
max
x∈X

x>ΣX(µ?)−1x

)
×
(

max
x∈X

x>ΣX(µ?)−1x

)
= max

x∈X
max
x′∈X

x>ΣX(µ?)−1xx′>ΣX(µ?)−1x′

= max
x∈X

max
x′∈X

vec
(
xx′>

)>
vec
(
ΣX(µ?)−1xx′>ΣX(µ?)−1

)
= max

x∈X
max
x′∈X

vec
(
xx′>

)> (
ΣX(µ?)−1 ⊗ ΣX(µ?)−1

)
vec
(
xx′>

)
= max

z∈Z
z>
(
ΣX(µ?)−1 ⊗ ΣX(µ?)−1

)
z ,
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where ⊗ denotes the Kronecker product. We can now focus on the central term:

ΣX(µ?)−1 ⊗ ΣX(µ?)−1 =

(∑
x∈X

µ?xxx
>

)−1

⊗

(∑
x∈X

µ?xxx
>

)−1

=

(∑
x∈X

µ?xxx
> ⊗

∑
x∈X

µ?xxx
>

)−1

=

(∑
x∈X

∑
x′∈X

µ?xµ
?
x′
(
xx> ⊗ x′x′>

))−1

=

(∑
x∈X

∑
x′∈X

µ?xµ
?
x′ vec

(
xx′>

)
vec
(
xx′>

)>)−1

,

and the result holds.

Theorem C.2. Let µ? ∈ SX be a minimizer of hX . Let λ? ∈ SZ be the distribution defined from µ? such
that, for all z = vec (xx′>), λ?z = µ?xµ

?
x′ . Then λ? is a minimizer of hZ .

Proof. From Kiefer and Wolfowitz (1960), we know that minλ∈SZ hZ(λ) = d2 and minµ∈SX hX (µ) = d.
Then, using Proposition C.1, one has

d2 = hX (µ?)× hX (µ?)

= max
z∈Z

z>

(∑
x∈X

∑
x′∈X

µ?xµ
?
x′ vec

(
xx′>

)
vec
(
xx′>

)>)−1

z .

This result implies that hZ(λ?) = d2. Since minλ∈SZ hZ(λ) = d2, λ? is a minimizer of hZ .

C.2 Proof of Theorem 5.2
To prove our confidence bound, we need the two following proposition. The first one is from Tropp et al.
(2015).

Proposition C.3 (Tropp et al. (2015), Chapter 5 and 6). Let Z1, . . . ,Zt be i.i.d. positive semi-definite
random matrices in Rd2×d2 , such that there exists L > 0 verifying 0 � Z1 � mLI. Let At be defined as
At ,

∑t
s=1 Zs. Then, for any 0 < ε < 1, one can lowerbound λmin(At) as follows:

P(λmin(At) ≤ (1− ε)λmin(EAt)) ≤ d2e
−
tε2λmin(EZ1)

2mL .

If in addition, there exists some v > 0, such that ‖E
[
(Z1 − EZ1)2

]
‖ ≤ v, then for any u > 0, one has

P (‖St‖ ≥ u) ≤ 2d2e
− u2

2mLu/3 + 2tv ,

From the second inequality, Rizk et al. (2019) derived a slightly different inequality that we use here :

Proposition C.4 (Rizk et al. (2019), Appendix A.3). Let Z1, . . . ,Zt be t i.i.d. random symmetric matrices
in Rd2×d2 such that there exists L > 0 such that ‖Z1‖ ≤ mL, almost surely. Let At ,

∑t
i=1 Zi. Then, for

any u > 0, one has:

P
(
‖At − EAt‖ ≥

√
2tvu+

mLu

3

)
≤ d2e−u .

where v ,
∥∥E[(Z1 − EZ1)2

]∥∥.
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Finally, to prove our main theorem, we need the following lemma.

Lemma C.5. One has
∥∥ΣZ(λ?)−1

∥∥ ≤ d2

νmin
, where νmin is the smallest eigenvalue of the covariance matrix

1
K2

∑
z∈Z z

>z.

Proof. Define B =
{
z ∈ Rd2 : ‖z‖ = 1

}
. First, for any semi-definite matrix A ∈ Rd2×d2 , we have ‖A‖ =

maxz∈B z>Az. Because ΣZ(λ?)−1 is positive definite and symmetric, and by Rayleigh-Ritz theorem,

∥∥ΣZ(λ?)−1
∥∥ = max

z∈B

z>ΣZ(λ?)−1z

z>z
= max

z∈B
z>ΣZ(λ?)−1z .

Let Z ∈ RK2×d2 be the matrix whose rows are vectors of Z in an arbitrary order. Notice that Z spans Rd2 ,
since X spans Rd. Now for any z ∈ B, define β(z) ∈ RK2

as a vector such that z = Z>β(z) . Then,∥∥ΣZ(λ?)−1
∥∥ = max

z∈B
β(z)>ZΣZ(λ?)−1Z>β(z)

= max
z∈B

d2∑
i=1

d2∑
j=1

β
(z)
i β

(z)
j z>i ΣZ(λ?)−1zj

≤ max
z∈B

∥∥∥β(z)
∥∥∥2

1
×max

i,j
z>i ΣZ(λ?)−1zj .

Define z̃i = ΣZ(λ?)−
1
2 zi. Clearly, maxi,j z

>
i ΣZ(λ?)−1zj = maxi,j z̃

>
i z̃j = maxi z̃

2
i . So we have

∥∥ΣZ(λ?)−1
∥∥ ≤ max

z∈B

∥∥∥β(z)
∥∥∥2

1
×max
z′∈Z

z′>ΣZ(λ?)−1z′

≤ max
z∈B

∥∥∥β(z)
∥∥∥2

1
d2 .

The last inequality comes from Kiefer and Wolfowitz equivalence theorem (Kiefer and Wolfowitz, 1960). Now
observe that β(z) can be obtained by least square regression : β(z) =

(
ZZ>

)−1
Zz =

(
Z>
)†
z where (·)† is

the Moore-Penrose pseudo-inverse. Note that ZZ> is a Gram matrix. It is known that for a matrix having

singular values {σi}i, its pseudo-inverse has singular values

{
1
σi

if σi 6= 0

0 otherwise
for all i. So for z ∈ B, we have:

∥∥∥β(z)
∥∥∥2

1
≤ K2

∥∥∥β(z)
∥∥∥2

2
≤ K2

∥∥∥(Z>)†∥∥∥2

≤ K2

σmin (Z)
2 ,

where σmin (·) refers to the smallest singular value. Let νmin (·) refer to the smallest eigenvalue. Noting that

σmin (Z)
2

= νmin

(
Z>Z

)
= K2νmin

(
1

K2

∑
z∈Z

zz>

)
,

yields the desired result.

We are now ready to state the bound on the random sampling error, relatively to the objective value
ΣZ(λ?) of the convex relaxation solution.

Theorem C.6. Let λ? ∈ SZ be a minimizer of hZ . Let 0 ≤ δ ≤ 1 and let t0 > 0 be such that

t0 = 2Ld2 log(2d2/δ)/νmin ,
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where L = maxz∈Z ‖z‖2 and νmin is the smallest eigenvalue of the covariance matrix 1
K2

∑
z∈Z z

>z. Then,
at each round t ≥ t0, with probability at least 1−δ, the randomized G-allocation strategy for graphical bilinear
bandit in Algorithm 2 produces a matrix At such that:

hZ(At) ≤ (1 + α)hZ(mt× ΣZ(λ?)) ,

where

α =
Ld2

mν2
min

√
2v

t
log

(
2d2

δ

)
+ o

(
1√
t

)
,

and v , ‖E
[
(A1 − EA1)2

]
‖.

Proof. Let (X
(1)
s )s=1,...,t, . . . , (X

(n)
s )s=1,...,t be nt i.i.d. random vectors in Rd such that for all x ∈ X ,

P
(
X

(1)
1 = x

)
= µ?x. For (i, j) ∈ E and 1 ≤ s ≤ t, we define the random matrix Z

(i,j)
s by

Z(i,j)
s = vec

(
Xi
sX

j>
s

)
vec
(
Xi
sX

j>
s

)>
.

Finally, let us define for all 1 ≤ s ≤ t, the edge-wise sum Zs ∈ Rd2×d2 , that is

Zs =
∑

(i,j)∈E

Z(i,j)
s .

One can easily notice that Z1, . . . ,Zt are i.i.d. random matrices. We define the overall sum At =
∑t
s=1 Zs

and our goal is to measure how close fZ(At) is to fZ(mt × ΣZ(λ?)), where mt corresponds to the total
number of sampled arms z ∈ Z during the t rounds of the learning procedure. By definition of At, one has

max
z∈Z

z> (EAt)
−1
z = max

z∈Z
z>

 t∑
s=1

∑
(i,j)∈E

E
[
Z(i,j)
s

]−1

z

= max
z∈Z

z>

 t∑
s=1

∑
(i,j)∈E

∑
x,x′∈X

µ?xµ
?
x′ vec (xx′>) vec (xx′>)

>

−1

z

= max
z∈Z

z>

 t∑
s=1

∑
(i,j)∈E

∑
z′∈Z

λ?z′z
′z′>

−1

z

= fZ(mtΣZ(λ?)) .

This allows us to bound the relative error as follows:

α =
fZ(At)

fZ(mt× ΣZ(λ?))
− 1

=
maxz∈Z z>

(
A−1
t − (EAt)

−1
+ (EAt)

−1
)
z

fZ(mt× ΣZ(λ?))
− 1

≤
maxz∈Z z>

(
A−1
t − (EAt)

−1
)
z

fZ(mt× ΣZ(λ?))
.
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Using the fact that fZ(mtΣZ(λ?)) = d2/mt (Kiefer and Wolfowitz, 1960), we obtain

α ≤ mt

d2
×max

z∈Z
z>
(
A−1
t − (EAt)

−1
)
z

≤ mt

d2
×max

z∈Z
‖z‖2‖A−1

t − (EAt)
−1 ‖

≤ mtL

d2
× ‖A−1

t − (EAt)
−1 ‖ .

Therefore, controlling the quantity ‖A−1
t −(EAt)

−1 ‖ will allow us to provide an upper bound on the relative
error. Notice that

‖A−1
t − (EAt)

−1 ‖ = ‖A−1
t (EAt −At) (EAt)

−1 ‖

≤ ‖A−1
t ‖ ‖EAt −At‖ ‖ (EAt)

−1 ‖ .

Using Proposition C.3, we know that for any d2e−
tλmin(EZ1)

mL < δh < 1, the following holds:

‖A−1
t ‖ ≤

‖ (EAt)
−1 ‖

1−
√

2mL
t ‖ (EZ1)

−1 ‖ log(d2/δh)
,

with probability at least 1− δh. Similarly, using Proposition C.4, for any 0 < δb < 1, we have

‖At − EAt‖ ≤
mL

3
log

d2

δb
+

√
2tv2 log

d2

δb
,

with probability at least 1 − δb. Combining these two results with a union bound leads to the following
bound, with probability 1− (δb + δh):∥∥∥A−1

t − (EAt)
−1
∥∥∥ ≤ ∥∥∥(EAt)

−1
∥∥∥2 (mL/3) log(d2/δb) +

√
2tv log(d2/δb)

1−
√

(2mL/t)
∥∥∥(EZ1)

−1
∥∥∥ log(d2/δh)

.

In order to obtain a unified bound depending on one confidence parameter 1 − δ, one could optimize over
δb and δh, subject to δb + δh = δ. This leads to a messy result and a negligible improvement. One can use
simple values δb = δh = δ/2, so the overall bound becomes, with probability 1− δ:

‖A−1
t − (EAt)

−1 ‖ ≤ 1

tm2

∥∥ΣZ(λ?)−1
∥∥2

√
2v

t
log

(
2d2

δ

) 1 +
√

m2L2 log(2d2/δ)
18vt

1−
√

2L‖ΣZ(λ?)−1‖ log(2d2/δ)
t

 .

This can finally be formulated as follows:∥∥∥A−1
t − (EAt)

−1
∥∥∥ ≤ 1

tm2

∥∥ΣZ(λ?)−1
∥∥2

√
2v

t
log

(
2d2

δ

)
+ o

(
1

t
√
t

)
.

Using the obtained bound on ‖A−1
t − E(At)

−1‖ yields

fZ(At)

fZ(mt× ΣZ(λ?))
− 1 ≤ mtL

d2
×

(
1

tm2

∥∥ΣZ(λ?)−1
∥∥2

√
2v

t
log

(
2d2

δ

)
+ o

(
1

t
√
t

))

≤ L

md2

∥∥ΣZ(λ?)−1
∥∥2

√
2v

t
log

(
2d2

δ

)
+ o

(
1√
t

)
,

By noticing that fZ(mt× ΣZ(λ?)) ≤ fZ(A?
t ) and by using Lemma C.5, the result holds.
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D Variance analysis
Star graph. The covariance matrix of the star graph can be bounded as follows:

Var(A1) � m× P · I + (nS − 1)(nS − 2)M · I + nS(nS − 1)N · I .

Since the star graph of m edges has a number of nodes nS = m/2 + 1, we have

‖Var(A1)‖ ≤ m× P + (M +N)×O
(
m2
)
.

Complete graph. As for the star graph,

Var(A1) � m× P · I + nCo(nCo − 1)(nCo − 2)M · I + nCo(nCo − 1)(nCo − 1)N · I .

Since the complete graph of m edges has a number of nodes nCo =
(
1 +
√

4m+ 1
)
/2, we have

‖Var(A1)‖ ≤ m× P + (M +N)×O
(
m
√
m
)
.

Circle graph. Again,

Var(A1) � m× P · I + 2nCiM · I + 4nCiN · I .

Since the circle graph of m edges has a number of nodes nCi = m/2, we have

‖Var(Z1)‖ ≤ m× P + (M +N)×O (m) .

Matching graph. Finally,

Var(A1) � m× P · I + nMN · I .

Since the matching graph of m edges has a number of nodes nM = m, we have

‖Var(A1)‖ ≤ m× P +m×N .

E Generalization
In this section, we provide some insights into the generalization to broader reward settings.

E.1 When M? is not symmetric
Consider the same graphical bilinear bandit setting as the one explained in the paper with the only difference
that M? is not symmetric. We recall here that in the graph G = (V,E) associated to the graphical bilinear
bandit setting, (i, j) ∈ E if and only if (j, i) ∈ E. Hence, for a given allocation (x(1), . . . , x(n)) ∈ Xn, one
can write the associated expected global reward as follows :
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∑
(i,j)∈E

x(i)>M?x
(j) =

n∑
i=1

∑
j∈N (i)
j>i

x(i)>M?x
(j) + x(j)>M?x

(i)

=

n∑
i=1

∑
j∈N (i)
j>i

x(i)>M?x
(j) +

(
x(j)>M?x

(i)
)>

=

n∑
i=1

∑
j∈N (i)
j>i

x(i)>M?x
(j) + x(i)>M>? x

(j)

=

n∑
i=1

∑
j∈N (i)
j>i

x(i)>
(
M?x

(j) + M>? x
(j)
)

=

n∑
i=1

∑
j∈N (i)
j>i

x(i)> (M? + M>?
)
x(j) .

Let us denote M̄? = M?+M>? . One can notice that M̄? is symmetric. Solving the graphical bilinear bandit
with the matrix M̄? is exactly what we propose throughout the main paper.

E.2 When the reward captures more information than the interactions between
agents

Consider the real world problems introduced in the paper, but with the difference that instead of a reward
only related to the interaction between two neighboring agents/nodes, there is an additional term that
informs about the absolute quality of the arm chosen by the agent itself. More formally we consider the
following reward r(i,j)

t for the node i:

r
(i,j)
t = x

(i)>
t M?x

(j)
t + x

(i)>
t β? + η

(i,j)
t .

where β? ∈ Rd is a second unknown parameter that allows to capture the quality of the arm chosen by the
node i independently of its neighbors.

In order to add a constant term in the reward, let us construct the set X̃ ⊂ Rd+1 such that each arm
x ∈ X is associated to a new arm x̃ ∈ X̃ defined as x̃> = (x>, 1). Moreover, let us define the matrix
M̃? ∈ R(d+1)×(d+1) as follows:

M̃? =


 M?

β?


[
0 · · · 0

]
 .

One can easily verify that for any edge (i, j) ∈ E and any time step t, the reward r
(i,j)
t can now be

written as follows:

r
(i,j)
t = x̃

(i)>
t M̃?x̃

(j)
t + η

(i,j)
t ,

which leads to the same graphical bilinear bandit setting explained in Section 3, this time in dimension d+ 1
instead of d. Hence, all the previous results hold for this more general graphical bilinear bandit problem,
provided any dependence in d is modified to d+ 1.
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F Computing µ?

In Algorithm 2, we need to find the solution µ? of minµ∈SX hX (µ). In fact we need µ? to sample from it.
We show that for any set X, the function hX is convex and we use the Frank-Wolfe algorithm (Frank et al.,
1956) to compute µ? and λ?. The convergence of the algorithm has been proven in Damla Ahipasaoglu et al.
(2008). Note that one can only compute µ? or λ? to obtain the other one thanks to C.2.

Proposition F.1. Let d > 0, for any set X ⊂ Rd, hX is convex.

Proof. Let (λ, λ′) ∈ S2
X be two distributions in SX . If either ΣX(λ) or ΣX(λ′) are not invertible, then for

any t ∈ [0, 1] one has
hX(tλ+ (1− t)λ′) ≤ thX(λ) + (1− t)hX(λ′) = +∞ .

Otherwise, for t ∈ [0, 1], we define the positive definite matrix Z(t) ∈ Rd×d as follows:

Z(t) = tΣX(λ) + (1− t)ΣX(λ′) .

Simple linear algebra (Petersen and Pedersen, 2012) yields

∂Z(t)−1

∂t
= Z(t)−1 ∂Z(t)

∂t
Z(t)−1 .

Using this result and the fact that ∂2Z(t)/∂t2 = 0, we obtain

∂2Z(t)−1

∂t2
= 2Z(t)−1 ∂Z(t)

∂t
Z(t)−1 ∂Z(t)

∂t
Z(t)−1 .

Therefore, for any x ∈ X,

∂2x>Z(t)−1x

∂t2
= 2x>Z(t)−1 ∂Z(t)

∂t
Z(t)−1 ∂Z(t)

∂t
Z(t)−1x

= 2

(
∂Z(t)

∂t
Z(t)−1x

)>
Z(t)−1

(
∂Z(t)

∂t
Z(t)−1x

)
≥ 0 ,

which shows convexity for any fixed x ∈ X. The final results yields from the fact that hX is a maximum
over convex functions.

G Additional experiment and information
We define the set of arms X ⊂ R5 that is made of |X | = 100 node-arms randomly sampled from a multivariate
5-dimensional Gaussian distribution N (0, I) and then normalized so that ‖x‖ = 1 for all x ∈ X . In all the
figures the results are averaged over 100 random repetitions of the experiments.

We propose to validate our insight and compute the evolution of ‖Var (A1) ‖ for the three types of graphs
(star, complete and circle) and different number of edges. The results are shown in Figure 1. One can notice
that we retrieve the O(m2) dependence of the variance for the star graph, the O(m

√
m) for the complete

graph and the linear dependence O(m) for the circle graph.
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Figure 1: Evolution of the variance according to the number of edges and the type of graph (star, complete,
circle), the variance being averaged over 100 repetitions.

Machine used for all the experiments. Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz - 24 CPUs used.
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