Supplement to ‘“‘Principled Simplicial Neural Networks for Trajectory
Prediction”

T. Mitchell Roddenberry “' Nicholas Glaze“! Santiago Segarra'

In this supplement, we discuss practical concerns for the implementation of simplicial neural networks. In Section 1, we
discuss how to represent chains as real vectors and boundary maps as matrices, as well as how to implement activation
functions using this representation. Then, using these convenient representations, in Section 2 we redefine SCoNe using real
vectors and matrices, rather than vectors and linear maps in the chain complex C, and then specify the hyperparameters used
in our experiments. We briefly discuss the implementation of the nullspace projection methods in Section 3, followed by a
computational complexity analysis of SCoNe in Section 4. The necessity of odd, nonlinear activation functions as stated in
Proposition 1 is proven in Section 5. The use of odd activation functions is contrasted with existing work in Section 6. We
provide more details on Theorem 1 as it pertains to C; in Section 7, before finally discussing an implementation of SCoNe
for cubical complexes in Section 8.

1. Representing Chains and Boundary Maps as Vectors and Matrices

In Algorithm 1, we specify SCoNe in terms of boundary maps acting on chains interleaved with matrix multiplication from
the right and activation functions. Here, we describe simple procedures for constructing vector representations of k—chains,
as well as matrix representations of boundary maps that act on said representations.

Let X be a simplicial complex over a set of nodes *Xj, with edges X and triangles X5. Begin by labeling the vertices
Xo with the integers {1,...,n}. Letting m = | X/, sort the edges lexicographically by their constituent nodes and label
them accordingly with the integers {1, ...,m}. Similarly, letting p = |X3|, sort the triangles lexicographically by their
constituent nodes and label them with the integers {1,...,p}. For each edge e = {4, j}, fori,j € Xp, assign to e the
orientation [¢, j],? < j. Similarly, for each triangle ¢t = {4, j, k}, assign to ¢ the orientation [i, j, k], < j < k.

1.1. Chains as Real Vectors

We represent a 1—chain as a vector in R™. Let £ = {ej, ea, . .., e, } be the set of labeled, oriented edges, and suppose for
real coefficients o, we have a 1—chain c; = Z’il a,e;. We identify c; with a vector in R™, so that in this representation
[c1]; = a; for 1 <4 < m. Similar representations as vectors of real numbers can be derived for other k—chains.

1.2. Boundary Maps as Matrices

With chains admitting natural representations as real vectors, we represent the boundary operators as matrices. First, recall
that 0, : C; — Co, and Cq, Cy are m, n—dimensional vector spaces, respectively. A matrix representation of 0, denoted by
the matrix By, then, must match these dimensions, so that B; € R™*", The entries of B are defined as follows. Again, let
E ={e1,ea,...,en} be the set of labeled, oriented edges, and let V = {v1, v, ..., v, } be the set of labeled nodes. Then,
the entries of B are given by

-1 ¢ = [Uiv]
Bilij =41 ¢ =[,vi (S-1)

0 otherwise.

“Equal contribution 'Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA. Correspondence to:
TMR <mitch@rice.edu>, NG <nkg2@rice.edu>, SS <segarra@rice.edu>.

Proceedings of the 38" International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

mailto:mitch@rice.edu
mailto:nkg2@rice.edu
mailto:segarra@rice.edu

Principled Simplicial Neural Networks for Trajectory Prediction

Table S-1. Hyperparameters for synthetic and real data experiments. The hyperparameters for the synthetic experiments were identical
between the standard and reversed settings, and changed slightly in the transfer learning setting. Hyperparameters were selected by hand,
which was reasonable due to the simple nature of the proposed architecture.

PARAMETER SYNTHETIC (STD./REV.) SYNTHETIC (TRANS.) DRIFTERS
LEARNING RATE 0.001 0.001 0.0025
TRAINING SAMPLES 800 333 160
TEST SAMPLES 200 333 40
EPOCHS 500 1000 425

Observe that this aligns with the definition of the boundary map in Eq. (1). Under this definition, B; is precisely the signed
incidence matrix of the graph (Xj, X). Moreover, the adjoint of J; is represented as the transpose of this matrix, i.e. By .

The definition of the matrix representation of 9 is slightly more complex. Let {t1,t2, ..., t,} be the set of labeled, oriented
triangles. Since 05 : Co — C; is a map from a p—dimensional vector space to an m—dimensional vector space, the matrix
representation B, must also match this, so that B, € R™*P. Foreach1 < j <mand1 <k <p,lete; = [ig, 1] be the

jth oriented edge. Then, the entries of By are defined as

-1 tr = [ig, 2]
te = [0, 0
Bal; = & =Lyioyl (S-2)
tr = lio,i1,°]

0 otherwise.

Again, one can check that this coincides with the definition of the boundary map in Eq. (1), and that B; By = 0 in accordance
with Lemma 1. Observe that the first Hodge Laplacian A; can be written as the matrix Ly = BTBl + By B2T .

1.3. Application of Elementwise Activation Functions

We construct SCoNe using an odd, elementwise activation function ¢ applied to vectors in C;. Based on the representation
of chains as vectors of real numbers defined before, the application of the activation function is fairly obvious: simply apply
¢ to each real-valued coordinate in the vector. For the sake of completeness, we outline here how activation functions can be
applied to 1—chains without using the intermediate representation as real-vectors.

Let {e1, ea,. .., e} denote the set of m = |X}| oriented edges of a simplicial complex, so that any 1—chain c¢; € C; is a
unique linear combination of these oriented edges. We extend the activation function ¢ : R — R to act on C; as follows:

dler) =Y d((cr,er)) - e (S-3)

=1
Observe that this can be equivalently computed by representing c; as a real vector and applying ¢ elementwise, as desired.

2. Implementation of SCoNe

With the representation of 1—chains as real vectors and boundary maps as matrices defined, we redefine Algorithm 1 in
terms of these real vectors and matrices, detailed in Algorithm S-1. For each experiment, we trained SCoNe using L = 3
layers, with hidden dimensions F;, = 16. It was trained using the Adam optimizer (Kingma & Ba, 2015), using the default
parameters of 51 = 0.9, B2 = 0.99, for the cross-entropy loss between the output of SCoNe and the true labeled successor
node, with an additional weight decay term with coefficient 5e—5 (Krogh & Hertz, 1992). The remaining hyperparameters
varied across experiments, and are listed in Table S-1.

Principled Simplicial Neural Networks for Trajectory Prediction

Algorithm S-1 SCoNe for Trajectory Prediction Defined in Terms of Real Vectors and Matrices

1: Input: partial trajectory [ig, %1, - -, tm—1]
2: Parameters:
boundary matrices {By,}7_, for oriented edges £ = {e1, €2, ...,€m}

number of layers L

hidden dimensions {Fg}ZLIOl, Fo=Fpy =1
weight matrices {{W§, € RFexFeai}l A2
activation function ¢

3: Initialize: c) € RI€l c¢{ = 0.
4: for j =0tom — 2do
5: if [ij,ij+1] € £ then
6: Choose ¢ such that e, = [i;,7;41]
7: [C?]g +—1
8. else
9: Choose ¢ such that e, = [i;41,%;]
10: [c9]r + —1
11: endif
12: end for
13: for{=0to L — 1do
14:
ct™ « ¢(ByBg i W
+ci Wi (S-4)
+ B{ B,c!WY)
15: end for

16: cft « Bick Wi
17: z + softmax({[c5], : 7 € N(im_1)})

18: Return: i,, < argmax; z;

3. Implementation of Nullspace Projection Methods

Examining the implementation of SCoNe, we see that the architecture consists of a map from 1-chains to 1-chains, followed
by the application of the boundary map 0; to obtain a 0-chain. In Section 6, we compared SCoNe to methods based on
projecting 1-chains into the kernel of J; or A4, following the work of Schaub et al. (2020). Of course, by Lemma 1,
applying 0; to this would always yield the zero vector, which is useless for prediction tasks. Therefore, we adjusted this by
constructing a version of the boundary map restricted to the edges adjacent to the terminal node. In practice, this amounts to
choosing the edge with the largest outgoing flow from ¢,,_1, then predicting the next node as the endpoint of that edge.

4. Computational Complexity Analysis

We establish the O(| Xy |FyFyy1 + |Xs| min{F,, F;, 1) runtime of the £*" layer of SCoNe here. Observe in Algorithm S-1
that the /*" layer of SCoNe maps a matrix in R|*11*¢ to a matrix in RI¥1/*F2 by multiplying the argument by F; x Fy
matrices from the right, and combinations of boundary maps from the left, followed by an aggregation and activation step.
One such way to compute this is by considering intermediate representations d’, defined as follows.

dj = B/ Bic{W§ (S-5)
dj = c{W{ (S-6)
d = B,B,] c{W¥. (S-7)
Then, the output is computed by
it =¢(df+di+dy). (S-8)

The complexity of computing ¢/, then, is equal to the sum of the complexities of computing d$, d4, d4 and the complexity
of taking their sum and applying ¢.

Principled Simplicial Neural Networks for Trajectory Prediction

Table S-2. Computational complexities for computing intermediate representations of a single SCoNe layer. We indicate the order of
operations in the “Expression” column using parentheses, which yields different complexities based on the size of each level of the
simplicial complex X. The best conditions for each expression in terms of the relative sizes of the levels of X are listed in the column
“Best use case.”

QUANTITY EXPRESSION COMPLEXITY BEST USE CASE
B/ (B1(ciWg)) O(|X1|FeFet1) || ~ | o]
dg B/ ((Bic))W§) O(|Xo|FeFrg1 + | X1|(Fe + Fosn)) | X1 | > [X
(B{ (Bici))Wj O(|X1|Fefeqn) |X1| ~ [Xl
d¢ ci Wt O(| X1 |FeFoy1)
B:(B; (ciW3)) O(|X1|Felloq1 + | X2| Feqr) |X2| > | A
dj B2 ((B3 ci)W5) O(|Xa|(FeFet1)) || < |A]
(B2(Bj ci))W5 O(|X1|FeFoqr + | x| Fy) |2 | > |

Observing that the matrix B is typically a sparse matrix with O(|X}|) nonzero entries, and By is typically a sparse matrix
with O(|A5|) nonzero entries, complexities for computing df, df, d4 can be derived in a straightforward manner. We remark
that the order of operations has an impact on complexity, as applying the boundary map to an input may increase or decrease
the dimension, which has an impact on the application of the weight matrix Wﬁ. For instance, if a simplicial complex has
very few triangles, one should multiply ¢! by B first when computing d&, since the lower-dimensional space Co will have
lower complexity when multiplying from the right by W5. We gather the complexities of all possible ways to evaluate these
expressions in Table S-2. Observing that each df, can be evaluated in O(|X;|FyFy11 + |Xo| min{Fy, Fy11}) time yields
the desired complexity, since the application of ¢ is only O(| X} |Fp41).

5. Proof of Proposition 1
We provide a proof of necessary and sufficient conditions for SCoNe to be an admissible architecture, as stated in
Proposition 1. We first establish the following auxiliary result.

Proposition S-1. Let ¢ : R — R be a function defined on the reals. Suppose that for some pair of real numbers a,b such
that a # —b and a # b, we have

¢(a) = —¢(b)
S-9
Hla) #0, &2
and for all v € R
p(va) = —p(vb). (8-10)

Under these conditions, ¢ is not continuous.

Proof. Since a # —b and a # b, |a| # |b|. Without loss of generality, assume |a| > [b
|7| < 1. We then have

, so that putting v = 3 satisfies

p(va) = ¢(b) (S-11)
yib = it (S-12)

for all nonnegative integers j. An immediate consequence of this is that for all nonnegative integers j, we have
¢(a) = (1) ¢ (y/a) . (S-13)

Consider the sequence {c; 521 where ¢; = 47b for each j. Observe that as j — oo, ¢; — 0 due to the fact that |y| < 1.
Moreover, by (S-13), we have that ¢(c;) = —¢(c;j4+1) for each j. Therefore, for all j > 0,

lp(c;) — plcj+1)| = 2|p(a)| > 0. (S-14)

Principled Simplicial Neural Networks for Trajectory Prediction

That is, although the sequence {c;}72; converges to 0, the sequence {¢(c;)}72; does not converge. Therefore, ¢ is not
continuous at the point 0, so that ¢ is not a continuous function, as desired. O

We now prove Proposition 1 (restated below).

Proposition S-2 (Restatement of Proposition 1). Assume that the activation function ¢ is continuous and applied element-
wise. If SCoNe (as defined in Algorithm 1) is admissible, ¢ must be an odd and nonlinear function.

Proof. We prove this statement by first establishing that SCoNe is permutation equivariant by virtue of ¢ being applied
elementwise, and then show that orientation equivariance and simplicial awareness are satisfied only if ¢ is odd and nonlinear,
respectively.

Permutation equivariance.

Let {e1,ea,...,em} be a chosen orientation of edges for a simplicial complex X, where each {eg}m is an oriented
1-simplex (and thus is a 1-chain). The activation function ¢ is applied to arbitrary c¢; € C; as follows:

= Zqﬁ((cl,eg))eg. (S-15)
j=1

Observe that ¢ commutes with permutation matrices, i.e. $(P1c1) = P1¢(cq). In particular, we take
it ¢(920, EWE + W + 9] 0,ciW). (S-16)

Letting P = {Py}7_, as in Property 1, we consider a version of (S-16) where the input c{ and the boundary maps are
permuted by P:
p(P10:P Pody PP WS + PiciW! 4 P10 P Pyd, P P1ciW)) =

p(P1020; ! WE + P1ctWE + P10 01ct W) =

H(P1(8205 S WE + ! WL + 0] 0,c!WP)) = (S-17)
P1¢(0:05 ;W5 + ;Wi + 0] d1ci W) =
Plclﬁ_l.

That is to say, each layer of SCoNe is equivariant to joint permutations of the input and the boundary maps, so that the
entirety of SCoNe is permutation equivariant, as desired.

Orientation equivariance.

To show that ¢ being odd is a necessary condition for orientation equivariance, suppose that ¢ : R — R is not odd and
is continuous. Then, there exists z € R such that ¢(x) # —¢(—x). This implies that either ¢(x) or ¢(—z) is nonzero.
Without loss of generality, then, suppose ¢(x) # 0.

Take X to be a simplicial complex with two nodes and a single edge connecting them: X = {{io}, {i1}, {io, i1}}. Finding
it convenient to represent 1-chains in this case as real numbers, let ¢ = z be a 1-chain, and let {{W§}Z_}2_, all be
contalned in R1*!, so that their application is equivalent to scalar multiplication. Set W{ = W¥ = 0 for all £, and denote
by w* the scalar component of W for each £. We now show inductively that for any nonnegative integer L, there exists an
L-layer SCoNe architecture with coefficients {we} ! that does not satisfy orientation equivariance.

For the base case, let L = 1, and consider a 1-layer SCoNe architecture:
ci = p(w’c)). (S-18)

Setting w® = 1 yields ¢] = ¢(x). One can easily see that this is not orientation equivariant, since ¢(z) # —(b(—:r:).

For the inductive step, suppose that L > 1, and that a SCoNe architecture with L — 1 layers and coefﬁ(:lents {we} /= 0 is not
orientation equivariant for the 1nput cY: denote the differently oriented outputs as clL " and c , so that c1 i Sl L —1

Ifcf ' = cf”', implying that c_ ! # 0, take w>~! = x/c{; ", so that

pw"lef ") = ¢(x) # —o(x) = —(wTefT), (S-19)

Principled Simplicial Neural Networks for Trajectory Prediction

) —
cs cs c3 c3
o c! 2 e

0 1 2 3
Co Co Co Co
- J

Figure S-1. General structure of the simplicial 2-complex convolutional neural network of Bunch et al. (2020). Each horizontal arrow
corresponds to the application of a normalized Hodge Laplacian, and diagonal arrows correspond to the application of normalized
boundary or coboundary maps. At each node, the inputs are summed then passed through the activation function ¢.

yielding an architecture that is not orientation equivariant. Otherwise, suppose for the sake of contradiction that clLJ: 14 clL: !
and for all w”~! € R we have orientation equivariance for the input c{. That is,

L—1_L—1 L—1.L—1
o(w cry)= —¢(w” ey). (S-20)
Since at least one of the 1-chains clLle, clel is nonzero, one can always choose w1 such that ¢(wL*1cf{1) is nonzero,

where c{‘?_l denotes said nonzero 1-chain. By Proposition S-1, this implies that ¢ is not a continuous function, yielding a

contradiction, as desired. Thus, under these conditions, there exists a SCoNe architecture that is not orientation equivariant.

Simplicial awareness.

Finally, we consider simplicial awareness of order 2. Suppose ¢ is an odd, linear function: it is sufficient to assume that ¢
is the identity map. Let a 1-chain c{ € C; be given arbitrarily. By Theorem 1, there exists w € Cp,x € ker(A;),y € Co
such that ¢ = 9 w + x + doy. Some simple algebra, coupled with Lemma 1, shows that when ¢ is the identity map, the
0-chain at the output of SCoNe is given by

L
et =01) (9] 1) 0] ww(j), (S-21)

=0

where each w(j) can be written as a polynomial of the weight matrices (always yielding a 1 x 1 matrix, due to the constraint
Fy = Fp41 = 1). That is, the output of SCoNe does not depend on 05, and thus fails to fulfill simplicial awareness of order
2. However, if ¢ is nonlinear, Lemma 1 does not come in to effect, since 9, o ¢ o 95 # 0, allowing for simplicial awareness,
as desired. [

6. Admissibility of Previous Simplicial Neural Networks

Simplicial neural networks similar to SCoNe were previously proposed by Ebli et al. (2020); Bunch et al. (2020). The
convolutional layer for k-(co)chains of Ebli et al. (2020) takes the following form:

N
it o ZA%C%W? , (S-22)
=0

where ¢ is an activation function applied according to the standard coordinate basis as in (S-3), and {Wf} are trainable
weight matrices. Observe that (S-22) takes a form similar to that of SCoNe, but using polynomials of the entire Hodge
Laplacian instead of considering the components 9, 9, and 6k+18,;r+1 separately. A similar argument to the proof of
Proposition 1 shows that the simplicial neural network architecture of Ebli et al. (2020) is orientation equivariant for
elementwise nonlinearity ¢ if and only if ¢ is an odd function (when k£ > 0), and simplicial awareness of orders £ — 1 and
k + 1 is satisfied as well. In particular, for a 2-dimensional simplicial complex, simplicial awareness is satisfied when k£ = 1,
as in SCoNe. Notably, since their architecture does not involve a “readout” mapping a 1-chain to a 0-chain, ¢ does not

Principled Simplicial Neural Networks for Trajectory Prediction

im(dy)

Figure S-2. Tllustration of the Hodge Decomposition for an example 1-chain. The subspace im () consists of 1-chains that are curly
around 2-simplices, while im(@lT) is determined by the differences between nodal coefficients in a 0-chain. ker(A1) corresponds to
1-chains that are not curly, and not determined by coefficients in a O-chain, unlike im(alT). Figure adapted from (Schaub et al., 2020).

have to be nonlinear, unlike the case of SCoNe. We would like to remark that the original authors used the “Leaky ReLU”
activation function in their empirical studies, which is not odd, thus failing to satisfy orientation equivariance.

The simplicial 2-complex convolutional neural network of Bunch et al. (2020) also employs convolutional layers based on
the boundary maps, albeit using normalized versions of said maps following Schaub et al. (2020). Rather than restricting
their internal states c’ to be supported on a single level of the simplicial complex as in Ebli et al. (2020) and SCoNe,
they propose an architecture that maintains representations on all levels of the simplicial complex. Ignoring the details of
normalizing the boundary maps and Hodge Laplacians, their convolutional layer takes the form

cf & (At WP + Agct W) (5-23)
g (azcgwj‘" + AW 4+ 0] cgwjo) (S-24)
o5« & (Dach WP + 0] f W), (S-25)

where cé, cf,ch are the input 0, 1, 2-chains, respectively, and ¢ is an elementwise activation function. We illustrate the

structure of this architecture in Fig. S-1. Again, a convolutional neural network composed of such layers follows a result
similar to Proposition 1, where it is admissible if and only if ¢ is odd. If one considers the chains stored at all levels of the
simplicial complex, ¢ does not need to be nonlinear, unlike SCoNe. However, if one only takes one of the levels of the
chain complex as output, similar to the output of SCoNe or the architecture of Ebli et al. (2020), the requirement of ¢ being
nonlinear comes into effect.

7. Chains, Flows, and the Hodge Decomposition

We elaborate here on using 1-chains to model flows on the edges of a simplicial complex, viewed through the lens of the
Hodge Decomposition [cf. Theorem 1]. Suppose we have a simplicial complex X, on which there is a flow over the edges.
We interpret a flow as having a magnitude and an orientation. Analogously to an electrical circuit, the magnitude of the
flow is the absolute current flowing through a wire, and the orientation is determined by the sign of the measurement as
well as the direction it is being measured in: that is, if the measurement direction is reversed, the sign of the measurement
will change. This skew-symmetric property is reflected by the vector space of 1-chains over the real numbers, since for
any oriented edge [¢, j], we have [i, j] = —[j,¢]. Indeed, this behavior mirrors that of a directional derivative on a surface:
reversing the direction of the derivative of a function merely changes the sign. Thus, we will use the term “1-chain” and
“flow” interchangeably.

With this model in mind, we now provide an interpretation of Theorem 1. First, it will be useful to understand what
integrating over a path means in this context. Let S = {i¢}}*, be a sequence of nodes, such that any two nodes that are
adjacent in the sequence are also adjacent in X: we call such a sequence a path. If S is such that the final node in the
sequence is the same as the first node, we call S a closed path. Now, let c; € C; be a 1-chain, and let cg € C; represent S
as a 1-chain in the following way:
m—1
cs = Z [ij,3711]- (S-26)

=1

Principled Simplicial Neural Networks for Trajectory Prediction

Then, we say that the integral of c; over the path S is the inner product

-1

(c1,¢5) = (1, g, teq1])- (S-27)
1

3

~
Il

We call the subspace im(9s) curly, since it corresponds to flows around 2-simplices. As pictured in Fig. S-2, these flows are
supported strictly on the boundary of 2-simplices, dictated by a curl about each 2-simplex. In particular, the pictured flow
has a curl of 1.0 about the 2-simplex [0, 1, 6], and a curl of 2.0 about [0, 4, 5]. Elsewhere, the flow takes value 0.

The subspace im (9]) is referred to as gradient, since it corresponds to flows induced by differences between so-called
“potentials” at each node. That is, for each ¢4 € im(0;") and oriented simplex [, j], there exists a co € Co such that

(Cgraa, [i; 7]) = {co, [j]) = (co, [i])- (S-28)

In Fig. S-2, each node has a potential corresponding to its label, e.g. node 3 satisfies (co, [3]) = 3.0, so that (Cgrqq, [0,3]) =
3.0. The integral of a gradient flow, analogous to the line integral of a vector field that is the gradient of a scalar field, is path
independent, in that the integral over a path of a gradient flow only depends on the starting and end points. That is, if .S and
S’ are both paths whose initial and terminal points are the same, then for any gradient flow cg,qq € im(9;'),

(Cgrad>€s) = (Cgrad; Cs')- (S-29)

In particular, the integral of a gradient flow over a closed loop S” is null: (c4qq4,Cs) = 0.

Finally, the subspace ker(A;) consists of harmonic flows. Harmonic flows satisfy two properties: the integral of a harmonic
flow around a 2-simplex is null, and the sum of the flows incident to any node is null, as exemplified in Fig. S-2. More
precisely, for any cparm € ker(Ay), [i] € Co, [Jo, J1, J2] € Cas

<Charma a2 [j07j17j2]> =0 (S-30)
(01 €harm, [i]) = 0. (S-31)

8. Hodge Laplacians for Cubical 2-Complexes

In the same way that an abstract simplicial complex can be thought of as a set of points, edges, triangles, tetrahedra, etc.,
with the property of being closed under restriction, a cubical complex is a natural analog constructed from points, edges,
squares, cubes, hypercubes, and so on. Cubical complexes arise when considering grid-structured domains (Wagner et al.,
2012), and particularly in Section 6 when considering the Berlin map data. Defining appropriate boundary maps for cubical
complexes of high dimension can be tedious, so we restrict our discussion to cubical complexes of dimension 2, or cubical
2-complexes.

We adapt the definition of Farley (2003) to more naturally capture the notion of orientation and boundary. The standard
abstract k-cube is the set {0, 1}*. By convention, we say {0, 1}° = {0}. The faces of the standard abstract k-cube are the

sets taking the form H?Zl Aj, where each A; is a nonempty subset of {0, 1}* with |A;| = 1 for exactly one index j. By

convention, we say that {0} is a face of itself. For a finite set o paired with a bijection ¢, : & — {0, 1}*, we say that a
subset o’ C o is a face of o with respect to 1), if the image of ¢’ under 1), is a face of {0, 1}*.

A cubical 2-complex X over a set V is a multiset of subsets of) paired with a set of bijections {1, : ¢ — {0, 1}*7},cx,
where k, € {0,1,2} for each o € X, with the following properties:

1. X covers V.

2. Foreacho € X, if ¢/ C o, then ¢’ € X if and only if ¢’ is a face of o with respect to 1),
We denote the set of elements of X with 2% elements as X};: the elements of X}, are naturally referred to as k-cubes, due to
the existence of a bijection with the standard abstract k-cube.

Note the similarities and differences with the case of an abstract simplicial complex: for a simplex in an abstract simplicial
complex, all of its subsets are faces, so that all of its faces are contained in the abstract simplicial complex due to closure

Principled Simplicial Neural Networks for Trajectory Prediction

@ Q @ @ 1 o (0,0) === === ===~ (0.1)
io | (0,0) (0,0)
i | (0,1) (0,1)
in | (1L1) (1,0) | |
(ia) (i) (is) (i) iz | (1,0) (L,1) (1,:0) ----------- (1:1)
o1 = 09
lioyin, i, i3] # [0y i, 3, i) {0.1}*

Figure S-3. A set does not a 2-cube make. The defined bijection between an element of a cubical 2-complex and the standard 2-cube
dictates what its faces are. Pictured are two 2-cubes over the same set of nodes, but with different bijections 1)1, 12 between the standard
abstract 2-cube. Although each 2-cube is defined over the same set of vertices, the faces induced by the bijections 11, 12 differ.

under restriction. In the case of an abstract cubical complex, we only require closure under restriction fo faces with respect
to the bijections 1),. This is more general than closure under restriction, and in fact subsumes closure under restriction for
abstract simplicial complexes. We illustrate this in Fig. S-3.

In order to define a boundary operator, we first define an appropriate notion of orientation. For 0-cubes and 1-cubes,
an orientation is the exact same as in the case of a simplicial complex. That is, if 0 = {4y} for some iy € V, the only
orientation of o is [ig]. Similarly, if o = {io, 41}, there are two orientations of o: [ig, 1] and [i1,ip]. When o € As,
extra restrictions on the notion of orientations are needed. Suppose o = {ig, i1, 2,43} is an element of X5. An ordered
sequence of the elements of ¢ is said to be an orientation with respect to 1), if each pair of cyclically adjacent elements in
the sequence forms a face of ¢ with respect to 1),. Based on adjacency being considered in a cyclic fashion, we take these
orientations modulo cyclic permutations. By convention, we say that “reversals” of an orientation change the sign, so that
[ig, i1, %2,13) = —[i3, 42,41, 10]. One can check that modulo cyclic permutations, these are the only two orientations of a
2-cube.

As before, denote by Cj, the vector space with the oriented k-simplices of X" as a canonical orthonormal basis, defined over
the field of real numbers. The boundary map 0, : C2 — C; of an oriented 2-cube is defined as follows:

0a([i0, i1, 12, 13]) = [i0, 1] + [i1, 2] + [i2, i3] — [0, 3] (S-32)

The boundary map 0 is defined as before:

A1 ([io, ia]) = [ia] — [io]- (8-33)
In this setting, Lemma 1 holds: 910> = 0. Moreover, taking the adjoint of the operators d; and d, we can construct the k!
cubical Hodge Laplacian in the expected way:

Ay = 0] O + k110441, (S-34)
with the corresponding cubical analog to the Hodge Decomposition:
Cr = im(9p11) ® im(9]) ® ker(Ay). (S-35)

Given the representation of boundary maps acting on formal sums of oriented cubes in an abstract cubical complex,
architectures analogous to SCoNe follow naturally via simple substitutions of the boundary maps.

References

Bunch, E., You, Q., Fung, G., and Singh, V. Simplicial 2-complex convolutional neural networks. In NeurIPS Workshop on
Topological Data Analysis and Beyond, 2020.

Ebli, S., Defferrard, M., and Spreemann, G. Simplicial neural networks. In NeurIPS Workshop on Topological Data Analysis
and Beyond, 2020.

Principled Simplicial Neural Networks for Trajectory Prediction

Farley, D. S. Finiteness and CAT(0) properties of diagram groups. Topology, 42(5):1065-1082, 2003. doi:10.1016/S0040-
9383(02)00029-0.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In Infernational Conference on Learning
Representations, 2015.

Krogh, A. and Hertz, J. A. A simple weight decay can improve generalization. In Advances in Neural Information Processing
Systems, pp. 950-957, 1992.

Schaub, M. T., Benson, A. R., Horn, P., Lippner, G., and Jadbabaie, A. Random walks on simplicial complexes and the
normalized Hodge 1-Laplacian. SIAM Review, 62(2):353-391, 2020. doi:10.1137/18M1201019.

Wagner, H., Chen, C., and Vugini, E. Efficient computation of persistent homology for cubical data. In Topological methods
in data analysis and visualization II, pp. 91-106. Springer, 2012.

https://doi.org/10.1016/S0040-9383(02)00029-0
https://doi.org/10.1016/S0040-9383(02)00029-0
https://doi.org/10.1137/18M1201019

	Representing Chains and Boundary Maps as Vectors and Matrices
	Chains as Real Vectors
	Boundary Maps as Matrices
	Application of Elementwise Activation Functions

	Implementation of SCoNe
	Implementation of Nullspace Projection Methods
	Computational Complexity Analysis
	Proof of MAIN-prop:admissibility
	Admissibility of Previous Simplicial Neural Networks
	Chains, Flows, and the Hodge Decomposition
	Hodge Laplacians for Cubical 2-Complexes

