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Abstract

Identifiability is a desirable property of a statisti-
cal model: it implies that the true model param-
eters may be estimated to any desired precision,
given sufficient computational resources and data.
We study identifiability in the context of represen-
tation learning: discovering nonlinear data repre-
sentations that are optimal with respect to some
downstream task. When parameterized as deep
neural networks, such representation functions
lack identifiability in parameter space, because
they are overparameterized by design. In this
paper, building on recent advances in nonlinear
Independent Components Analysis, we aim to re-
habilitate identifiability by showing that a large
family of discriminative models are in fact identi-
fiable in function space, up to a linear indetermi-
nacy. Many models for representation learning in
a wide variety of domains have been identifiable
in this sense, including text, images and audio,
state-of-the-art at time of publication. We derive
sufficient conditions for linear identifiability and
provide empirical support for the result on both
simulated and real-world data.

1. Introduction
An increasingly common methodology in machine learning
is to improve performance on a primary down-stream task
by first learning a high-dimensional representation of the
data on a related, proxy task. In this paradigm, training
a model reduces to fine-tuning the learned representations
for optimal performance on a particular sub-task (Erhan
et al., 2010). Deep neural networks (DNNs), as flexible
function approximators, have been surprisingly successful
in discovering effective high-dimensional representations
for use in downstream tasks such as image classification
(Sharif Razavian et al., 2014), text generation (Radford
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et al., 2018; Devlin et al., 2018), and sequential decision
making (Oord et al., 2018).

When learning representations for downstream tasks, it
would be useful if the representations were reproducible,
in the sense that every time a network relearns the repre-
sentation function on the same data distribution, they were
approximately the same, regardless of small deviations in
the initialization of the parameters or the optimization pro-
cedure. In some applications, such as learning real-world
causal relationships from data, such reproducible learned
representations are crucial for accurate and robust inference
(Johansson et al., 2016; Louizos et al., 2017). A rigor-
ous way to achieve reproducibility is to choose a model
whose representation function is identifiable in function
space. Informally speaking, identifiability in function space
is achieved when, in the limit of infinite data, there exists
a single, global optimum in function space. Interestingly,
Figure 1 exhibits learned representation functions that ap-
pear to be the same up to a linear transformation, even on
finite data and optimized without convergence guarantees
(see Appendix A.1 for training details).

In this paper, we account for Figure 1 by making precise the
relationship it exemplifies. We prove that a large class of
discriminative and autoregressive models are identifiable in
function space, up to a linear transformation. Our results ex-
tend recent advances in the theory of nonlinear Independent
Components Analysis (ICA), which have recently provided
strong identifiability results for generative models of data
(Hyvärinen et al., 2018; Khemakhem et al., 2019; 2020;
Sorrenson et al., 2020). Our key contribution is to bridge
the gap between these results and discriminative models,
commonly used for representation learning (e.g., (Hénaff
et al., 2019; Brown et al., 2020)).

The rest of the paper is organized as follows. In Section 2,
we describe a general discriminative model family, defined
by its canonical mathematical form, which generalizes many
supervised, self-supervised, and contrastive learning frame-
works. In Section 3, we prove that learned representations
in this family have an asymptotic property desirable for rep-
resentation learning: equality up to a linear transformation.
In Section 4, we show that this family includes a number of
highly performant models, state-of-the-art at publication for
their problem domains, including CPC (Oord et al., 2018),
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Figure 1. Left and Middle: Two learned DNN representation functions fθ1(B), fθ2(B) visualized on held-out data B. The DNNs are word
embedding models (Mnih & Teh, 2012) trained on the Billion Word Dataset (Chelba et al., 2013) (see Appendix A.1 for code release
and training details). Right: Afθ1(B) and fθ2(B), where A is a linear transformation learned after training. The overlap exhibits linear
identifiability (see Section 3): different representation functions, learned on the same data distribution, live within linear transformations
of each other in function space.

BERT (Devlin et al., 2018), and GPT-2 and GPT-3 (Radford
et al., 2018; 2019; Brown et al., 2020). Section 5.2 investi-
gates the actually realizable regime of finite data and partial
optimization, showing that representations learned by mem-
bers of the identifiable model family approach equality up to
a linear transformation as a function of dataset size, neural
network capacity, and optimization progress.

2. Model Family and Data Distribution
The learned embeddings of a DNN are a function not only
of the parameters, but also the network architecture and size
of dataset (viewed as a sample from the underlying data
distribution). This renders any analysis in full generality
challenging. To make such an analysis tractable, in this
section, we begin by specifying a set of assumptions about
the underlying data distribution and model family that must
hold for the learned representations to be similar up to a
linear transformation. These assumptions are, in fact, satis-
fied by a number of already published, highly performant
models. We establish assumptions and definitions in this
section, and exhibit models that satisfy them in depth in
Section 4.

Data Distribution We assume the existence of a gen-
eralized dataset in the form of an empirical distribution
pD(x,y,S) over random variables x, y and S with the fol-
lowing properties:

• The random variable x is an input variable, typically
high-dimensional, such as text or an image.

• The random variable y is the target variable whose
value the model predicts. In case of object classi-
fication, y is a semantically meaningful class label.
However, in our model family, y may also be a high-

dimensional context variable, such a text, image, or
sentence fragment.

• S is a set containing the possible values of y given x,
so pD(y|x,S) > 0 ⇐⇒ y ∈ S.

Note that the set of labels S is not fixed, but a random
variable. This allows supervised, contrastive, and self-
supervised learning frameworks to be analyzed together:
the meaning of S encodes the task. For supervised classi-
fication, S is deterministic and contains class labels. For
self-supervised pretraining, S contains randomly-sampled
high-dimensional variables such as image embeddings. For
deep metric learning (Hoffer & Ailon, 2015; Sohn, 2016),
the set S contains one positive and k negative samples of
the class to which x belongs.

Canonical Discriminative Form Given a data distribu-
tion as above, a generalized discriminative model family
may be defined by its parameterization of the probability of
a target variable y conditioned on an observed variable x
and a set S that contains not only the true target label y, but
also a collection of distractors y′:

pθ(y|x,S) =
exp(fθ(x)>gθ(y))∑

y′∈S exp(fθ(x)>gθ(y′))
, (1)

The codomain of the functions fθ(x) and gθ(y) is RM ,
and the domains vary according to modelling task. For
notational convenience both are parameterized by θ ∈ Θ,
but f and g may use disjoint parts of θ, meaning that they
do not necessarily share parameters.

With F and G we denote the function spaces of fθ and gθ

respectively. Our primary domain of interest is when fθ
and gθ are highly flexible function approximators, such as
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DNNs. This brings certain analytical challenges. In neural
networks, different choices of parameters θ can result in
the same functions fθ and gθ, hence the map Θ→ F × G
is many-to-one. In the context of representation learning,
the function fθ is typically viewed as a nonlinear feature
extractor, e.g., the learned representation of the input data.
While other choices meet the membership conditions for
the family defined by the canonical form of Equation (1),
in the remainder, we will focus on DNNs. We next present
a definition of identifiability suitable for DNNs, and prove
that members of the above family satisfy it, under additional
mild assumptions.

3. Model Identifiability
In this section, we derive identifiability conditions for mod-
els in the family defined in Section 2.

3.1. Identifiability in Parameter Space

Identifiability analysis answers the question of whether it is
theoretically possible to learn the parameters of a statistical
model exactly. Specifically, given some estimator θ′ for
model parameters θ∗, identifiability is the property that, for
any {θ′,θ∗} ⊂ Θ,

pθ′ = pθ∗ =⇒ θ′ = θ∗. (2)

Models that do not have this property are said to be
non-identifiable. This happens when different values
{θ′,θ∗} ⊂ Θ can give rise to the same model distribu-
tion pθ′(y|x,S) = pθ∗(y|x,S). In such a case, observing
an empirical distribution pθ∗(y|x,S), and fitting a model
pθ′(y|x,S) to it perfectly does not guarantee that θ′ = θ∗.

Neural networks exhibit various symmetries in parameter
space such that there is almost always a many-to-one corre-
spondence between a choice of θ and resulting probability
function pθ. A simple example in neural networks is that
one can swap the (incoming and outgoing) connections of
two neurons in a hidden layer. This changes the value of
the parameters, but does not change the network’s function.
Thus, when representation functions fθ or gθ are parameter-
ized as DNNs, Equation (2) is not satisfiable.

3.2. Identifiability in Function Space

For reliable and efficient representation learning, we want
learned representations fθ from two identifiable models
to be sufficiently similar for interchangeable use in down-
stream tasks. The most general property we wish to preserve
among learned representations is their ability to discrimi-
nate among statistical patterns corresponding to categorical
groupings. In the model family defined in Section 2, the data
and context functions fθ and gθ parameterize pθ(y|x,S),
the probability of label assignment, through a normalized

inner product. This induces a hyperplane boundary, for dis-
crimination, in a joint space of learned representations for
data x and context y. Therefore, in the following, we will
derive identifiability conditions up to a linear transforma-
tion, using a notion of similarity in parameter space inspired
by Hyvärinen et al. (2018).

Definition 1. Let L∼ be a pairwise relation on Θ defined as:

θ′
L∼ θ∗ ⇐⇒ fθ′(x) = Afθ∗(x)

gθ′(y) = Bgθ∗(y)
(3)

whereA andB are invertible M ×M matrices.

See Appendix B for proof that L∼ is an equivalence relation.
In the remainder, we refer to identifiability up to the equiva-
lence relation L∼ as L∼-identifiable or linearly identifiable.

3.3. Derivation of Identifiability Conditions

We next present a simple proof of the L∼-identifiability of
members of the generalized discriminative family defined
in Section 2. This result reveals sufficient conditions un-
der which a discriminative probabilistic model pθ(y|x,S)
has a useful property: the learned representations of the
input x and target random variables y for any two pairs
of parameters (θ′,θ∗) are related as θ′ L∼ θ∗, that is,
fθ′(x) = Afθ∗(x) and gθ′(y) = Bgθ∗(y).

First, we review the notation for the proof, which is intro-
duced in detail in Section 2. We then highlight an important
requirement on the diversity of the data distribution, which
must be satisfied for the proof statement to hold. We prove
the result immediately after.

Notation. The target random variables y, associated with
input random variables x, may be class labels (as in super-
vised classification), or they could be stochastically gener-
ated from datapoints x as, e.g., perturbed image patches (as
in self-supervised learning). We account for this additional
stochasticity as a set-valued random variable S, contain-
ing all possible values of y conditioned on some x. For
brevity, we will use shorthands that drop the parameters θ:
p′ := pθ′ , p

∗ := pθ∗ , f∗ := fθ∗ , f
′ := fθ′ ,g

′ := gθ′ .

Diversity condition. We assume that for any (θ′,θ∗) for
which it holds that p′ = p∗, and for any given x, by repeated
sampling S ∼ pD(S|x) and picking two points yA,yB ∈ S,
we can construct a set of M distinct tuples {(y(i)

A ,y
(i)
B )}Mi=1

such that the matrices L′ and L∗ are invertible, where L′

consists of columns (g′(y
(i)
A )− g′(y

(i)
B )), and L∗ consists

of columns g∗(y
(i)
A ) − g∗(y

(i)
B ), i ∈ {1, . . . ,M}. See

Section 3.4 for detailed discussion.
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Theorem 1. Under the diversity condition, models in the
family defined by Equation (1) are linearly identifiable. That
is, for any θ′,θ∗ ∈ Θ, and f∗, f ′,g∗,g′, p∗, p′ defined as in
Section 2,

p′ = p∗ =⇒ θ′
L∼ θ∗.

Proof. We proceed by directly constructing an invertible
linear transformation that satisfies Definition 1. Consider
yA,yB ∈ S. The likelihood ratios for these points

p′(yA|x,S)

p′(yB |x,S)
=
p∗(yA|x,S)

p∗(yB |x,S)
(4)

are equal. Substituting the model definition from Equation
(1), we find:

exp(f ′(x)>g′(yA))

exp(f ′(x)>g′(yB))
=

exp(f∗(x)>g∗(yA))

exp(f∗(x)>g∗(yB))
, (5)

where the normalizing constants have cancelled out on both
the left- and right-hand sides. Evaluating the logarithm of
both sides and simplifying yields

(g′(yA)− g′(yB))>f ′(x)

=(g∗(yA)− g∗(yB))>f∗(x). (6)

Note that this equation is true for any triple (x,yA,yB) for
which pD(x,yA,yB) > 0.

We next collectM distinct tuples (y
(i)
A ,y

(i)
B ). Using identity

(6), we now construct a system of M linear equations that
relates f ′ and f∗.

Let L′ be the (M ×M )-dimensional matrix whose i-th col-
umn is the difference vector (g′(y

(i)
A )−g′(y(i)

B )). Similarly,
let L∗ be the (M ×M )-dimensional matrix whose i-th col-
umn is (g∗(y

(i)
A )−g∗(y

(i)
B )). Then, the system of M linear

equations is

L′>f ′(x) = L∗>f∗(x).

By the diversity condition, L′ is invertible. We left-multiply
by L′−>, yielding

f ′(x) = (L∗L′−1)> f∗(x). (7)

Hence, f ′(x) = Af∗(x) for A = (L∗L′−1). Because L∗ is
also invertible, so is A. This completes the proof that p′ =
p∗ =⇒ fθ′(x) = Afθ∗(x) for invertible A. See Appendix
C for the remainder, which proves the corresponding result
for g, and completes the proof of Theorem 1.

3.4. When Does the Diversity Condition Hold?

The diversity condition guarantees the existence of the ma-
trix A in Equation (7) by ensuring that the matrices L′ and

L∗ are non-singular. Informally, this requires that the set of
possible values of y given x must be big enough–the size of
the set S is greater than some number–and the function gθ

has enough unique points in its range to ensure that there
exist M difference vectors that span its range.1

For example, consider a supervised learning model with
K classes. The random variable S is clamped to the pos-
sible labels for an image x, and is of size K. In order
for the diversity condition to hold, the number of classes
K ≥ M + 1 so that there can exist M difference vectors
gθ(y(1)) − gθ(y(j)), j = 2, . . . ,M + 1. In case of self-
supervised or deep metric learning, where S and y may
be randomly generated from x, this requirement is easy to
satisfy. The same is true for language models with large
vocabularies. However, for supervised classification with a
small number of classes, this requirement on the size of S
may be restrictive, as we discuss further in Section 4. We
stress here that our goal is to study representation learning,
rather than supervised classification, so that the fact our
result applies to supervised learning at all is an interesting
curiosity.

Along with requiring number of classes |S| = K ≥M + 1,
we implicitly assumed that the context representation func-
tion gθ has the following property: there exist M differ-
ence vectors in the range of gθ (of the form in Equation
(6) that span it. This is a mild assumption in the context
of DNNs: for random initialization and iterative weight
updates, this property follows from the stochasticity of
the distribution used to initialize the network. Briefly, a
set of M + 1 unique points y(j) such that the M vectors
gθ(y(1)) − gθ(y(j)), j = 2, . . . ,M + 1 are not linearly
independent has measure zero. For other choices of gθ , care
must be taken to ensure this condition is satisfied.

What can be said when L′ and L∗ are ill-conditioned, that
is, the ratio between maximum and minimum singular value
σmax(L)
σmin(L) (dropping superscripts when a statement apply to
both) is large? In the context of a data representation ma-
trix such as L, this implies that there exists at least one
column `j of L and constants λk for k 6= j such that
‖`j −

∑
k 6=j λk`k‖2 < ε for small ε. In other words, some

column is nearly a linear combination of the others. This im-
plies, in turn, that there exists some tuple (y(k),y(i)) such
that the resulting difference vector `j = gθ(y

(k)
A )−gθ(y

(i)
B )

can nearly (in the sense above) be written as a linear com-
bination of the other columns. Such near singularity is in
this case is caused by the choice of samples y that yield
the difference vectors. The issue could be handled by re-
sampling different data points until the condition number of
the matrices is satisfactory. This amounts to strengthening

1We note here that a second, weaker diversity condition is also
required on the data distribution and model with respect to x and
f . This is discussed in Appendix C.
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the diversity condition. We leave more detailed analysis to
future work, as the result will depend on the choice of f and
g.

4. Examples of Linearly Identifiable Models
The form of Equation (1) is already used as a general ap-
proach for a variety of machine learning problems. We
present a non-exhaustive sample of such publications, cho-
sen to exhibit the range of applications. Many of these
approaches were state-of-the-art at the time of their release:
Contrastive Predictive Coding (Hénaff et al., 2019), BERT
(Devlin et al., 2018), GPT-2 and GPT-3 (Radford et al., 2018;
2019; Brown et al., 2020), XLNET (Yang et al., 2019), and
the triplet loss for deep metric learning (Sohn, 2016). In this
section, we discuss how to interpret the functional compo-
nents of these frameworks with respect to the generalized
data distribution of Section 2 and canonical parameteriza-
tion of Equation (1). See Appendix D for reductions to the
canonical form of Equation (1).

Supervised Classification. Although the scope of this pa-
per is identifiable representation learning, under certain
conditions, standard supervised classifiers can learn identi-
fiable representations as well. In this case, the number of
classes must be strictly greater than the feature dimension,
as noted in Section 3.4. We simulate such a model in Section
5.1 to show evidence of its linear identifiability. We stress
that representation learning as pretraining for classification
is a way to ensure that the conditions on label diversity are
met, rather than relying on the supervised classifier itself
to generate identifiable representations. This paradigm is
discussed in the next subsection.

Representations learned during supervised classification can
be linearly identifiable under the following model specifi-
cation. The input random variables x represent some data
domain to be classified, such as images or word embed-
dings. The target variables y represent label assignments
for x, typically semantically meaningful. These are often
encoded these as the standard basis vectors ey, a “one-hot
encoding." The set S contains all K possible values of y.
In this case, notice that S is not stochastic: the empirical
distribution pD(S|x) is modelled as a Dirac measure with
all probability mass on the set S = {0, . . . ,K − 1} (using
integers, here, to represent distinct labels) . The representa-
tion function fθ(x) of a classifier is often implemented as
DNN that maps from the input layer to the layer just prior
to the model logits. The context map gθ(y) is given by the
weights in the final, linear projection layer, which outputs
unnormalized logits. Concretely, gθ(y) = Wey, where
W ∈ RM×M is a learnable weight matrix. In order satisfy
the diversity condition, the dimension M of the number of
classes K must be strictly greater than the dimension of the

learned representation M , that is, |S| ≥ M + 1. Finally,
the output of the final, linear projection layer is normalized
through a Softmax function, yielding the parameterization
of Equation (1).

Self-Supervised Pretraining for Image Classification.
Self-supervised learning is a framework that first pretrains a
DNN before deploying it on some other, related task. The
pretraining task often takes the form of Equation (1) and
meets the sufficient conditions to be linearly identifiable.
A paradigmatic example is Contrastive Predictive Coding
(CPC) (Oord et al., 2018). CPC is a general pretraining
framework, but we focus for the sake of clarity on its use in
image models here. CPC as applied to images involves: (1)
preprocessing an image into augmented patches, (2) assign-
ing labels according to which image the patch came from,
and then (3) predicting the representations of the patches
whether below, to the right, to the left, or above a certain
level (Oord et al., 2018).

The context function of CPC, gθ(y), encodes a particular
position in the sequence of patches, and the representa-
tion function, fθ(x), is an autoregressive function of the
previous k patches, according to some predefined patch or-
dering. Given some x, the collection of all patches from
the sequence, from a given minibatch of images, is the set
S ∼ pD(S|x), where the randomness enters via the patch
preprocessing algorithm. Since the preprocessing phase is
part of the algorithm design, it is straightforward to make
it sufficiently diverse (enough transformations of enough
patches) so as to meet the requirements for the model to be
linearly identifiable.

Multi-task Pretraining for Natural Language Genera-
tion. Autoregressive language models, such as (Mikolov
et al., 2010; Dai & Le, 2015) and more recently GPT-2 and
GPT-3 (Radford et al., 2018; 2019; Brown et al., 2020),
are typically also instances of the model family of Equa-
tion (1). Data points x are the past tokens, fθ(x) is a
nonlinear representation of the past estimated by either an
LSTM (Hochreiter & Schmidhuber, 1997) or an autoregres-
sive Transformer model (Vaswani et al., 2017), y is the next
token, and wi = gθ(y = i) is a learned representation of
the next token, often implemented as a simple look-up table,
as in supervised classification.

BERT (Devlin et al., 2018) is also a member of the lin-
early identifiable family. This model pretrains word embed-
dings through a denoising autoencoder-like (Vincent et al.,
2008) architecture. For a given sequence of tokenized text,
some fixed percentage of the symbols are extracted and set
aside, and their original values set to a special null sym-
bol, “corrupting" the original sequence. The pretraining
task in BERT is to learn a continuous representation of the
extracted symbols conditioned on the remainder of the text.
A transformer (Vaswani et al., 2017) function approximator
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is used to map from the corrupted sequence into a continu-
ous space. The transformer network is the fθ(x) function of
Equation (1). The context map gθ(y) is a lookup map into
the learned basis vector for each token.

5. Experiments
The derivation in Section 3 shows that, for models in the
general discriminative family defined in Section 2, the func-
tions fθ and gθ are identifiable up to a linear transformation
given unbounded data and assuming model convergence.
The question remains as to how close a model trained on fi-
nite data and without convergence guarantees will approach
this limit. One subtle issue is that poor architecture choices
(such as too few hidden units, or inadequate inductive pri-
ors) or insufficient data samples when training can inter-
fere with model estimation and thereby linear identifiability
of the learned representations, due to underfitting. In this
section, we study this issue over a range of models, from
low-dimensional language embedding and supervised clas-
sification (Figures 1 and 2 respectively) to GPT-2 (Radford
et al., 2019), an approximately 1.5 ∗ 109-parameter genera-
tive model of natural language (Figure 4). See Appendix A
and the code release for details needed to reproduce.

Through these experiments, we show that (1) in the small
dimensional, large data regime, linearly identifiable models
yield learned representations that lie approximately within
a linear transformation of each other (Figures 1 and 2) as
predicted by Theorem 1; and (2) in the high dimensional,
large data regime, linearly identifiable models yield learned
representations that exhibit a strong trend towards linear
identifiability. The learned representations approach a linear
transformation of each other monotonically, as a function
of dataset sample size, neural network capacity (number of
hidden units), and optimization progress. In the case of GPT-
2, which has benefited from substantial tuning by engineers
to improve model estimation, we find strong evidence of
linear identifiability.

Note on methodology: measuring linear similarity be-
tween learned representations. How can we measure
whether pairs of learned representations live within a linear
transformation of each other in function space? We adapt
Canonical Correlation Analysis (CCA) (Hotelling, 1936) for
this purpose, which finds the optimal linear transformations
to maximize correlation among two random vectors. On a
randomly selected held-out subset B ⊂ D of the training
data we compute fθ1

(B) and fθ2
(B) for two models with

parameters θ1 and θ2 respectively. Assume without loss
of generality that fθ1

(B) and fθ2
(B) are centered. CCA

finds the optimal linear transformations C andD such that
the pairwise correlations ρi between the ith columns of
C>fθ1(B) and D>fθ2(B) are maximized. We collect cor-

relations together in ρ. If after linear transformation the two
matrices are aligned, the mean of ρ will be 1; if they are in-
stead uncorrelated, then the mean of ρ will be 0. We use the
mean of ρ as a proxy for the existence of a linear transfor-
mation between fθ1

(B) and fθ2
(B). For DNNs, it is a well

known phenomenon that most of the variability in a learned
representation tends to concentrate in a low-dimensional
subspace, leaving many noisy, random dimensions (Morcos
et al., 2018). Such random noise can result in spurious high
correlations in CCA. A solution to this problem is to apply
Principal Components Analysis (PCA) (Pearson, 1901) to
each of the two matrices fθ2

(B) and fθ1
(B), projecting onto

their top-k principal components, before applying CCA.
This technique is known as SVCCA (Raghu et al., 2017).

5.1. Simulation Study: Classification by DNNs

We report first on a simulation study of linearly identifiable
K-way classification, where all assumptions and sufficient
conditions of Theorem 1 are guaranteed to be met. We gener-
ated a synthetic data distribution with the properties required
by Section 2, and chose DNNs that had sufficient capacity
to learn a specified nonlinear relationship between inputs
x and targets y. In short, the data distribution pD(x,y,S)
consists of inputs x sampled from a 2-D Gaussian with
σ = 3. The targets y were assigned among K = 18 classes
according to their radial position (angle swept out by a ray
fixed at the origin). The number of classes K was chosen
to ensure K ≥ dim[fθ(x)] + 1, the diversity condition. See
Appendix D.1 for more details.

To evaluate linear similarity, we trained two randomly ini-
tialized models of pD(y|x,S). Plots show fθ(x), the data
representation function, on random x. Figure 2b shows that
the mean CCA increases to its maximum value over train-
ing, demonstrating that the feature spaces converge to the
same solution up to a linear transformation modulo model
estimation noise. Similarly, Figure 2c shows that the learned
representations exhibit a strongly linear relationship.

5.2. Self-Supervised Learning for Image Classification

We next investigate high-dimensional, self-supervised rep-
resentation learning on CIFAR-10 (Krizhevsky et al., 2009)
using CPC (Oord et al., 2018; Hénaff et al., 2019). For
a given input image, this model predicts the identity of a
bottom image patch representation given a top patch repre-
sentation (Figure 3a.) Here, S comprises the true patch with
a set of distractor patches from across the current minibatch.
For each model we define both fθ′ and gθ′ as a 3-layer MLP
with 256 units per layer (except where noted otherwise) and
fix output dimensionality of 64.

In Figure 3b, CCA coefficients are plotted over the course
of training. As training progresses, alignment between the
learned representations increases. In Figure 3c, we artifi-
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(a) (b) (c)

Figure 2. Supervised Classification. (a) Data distribution for a linearly identifiable K-way classification problem. (b) Mean (centered)
CCA between the learned representations over the course of training. After approx. 4000 iterations, CCA finds a linear transformation that
rotate the learned representations into alignment, up to optimization error. (c) Learned representations after transformation via optimal
linear transformation. The first dimension of the first model’s feature space is plotted against the first dimension of second. The learned
representations have a nearly linear relationship, modulo estimation noise.

(a) (b) (c) (d)

Figure 3. Self-Supervised Representation Learning. Error bars are computed over 5 pairs of models. (a) Input data. Two patches are
taken (one from top half, and one from the bottom half) of an image at random. Using a contrastive loss, we predict the identity of the
bottom patch encoding from the top. (b) Linear similarity of learned representations at checkpoints (see legend). As models converge,
linear similarity increases. (c) Linear similarity as we increase the amount of data for fθ and gθ . Error bars are computed over 5 pairs of
models. (d) As we increase model size, linear similarity after convergence increases for both fθ and gθ .

cially limited the size of the dataset, and plot mean cor-
relation after training and convergence. This shows that
increasing availability of data correlates with closer align-
ment. In Figure 3d, we fix dataset size and artificially limit
the model capacity (number hidden units) to investigate the
effect of model size on the learned representations, varying
the number of hidden units from 64 to 8192. This show
that increasing model capacity correlates with increase in
alignment of learned representations.

5.3. GPT-2

Finally, we report on a study of GPT-2 (Radford et al.,
2019), a massive-scale language model. The identifiable
representation is the set of features just before the last linear
layer of the model. We use pretrained models from Hug-
gingFace (Wolf et al., 2019). HuggingFace provides four
different versions of the GPT-2: gpt2, gpt2-medium,
gpt2-large and gpt2-xl, which differ mainly in the
hyper-parameters that determine the width and depth of
the neural network layers. For approximately 2000 input
sentences, per timestep, for each model, we extracted repre-

sentations at the last layer (which is identifiable) in addition
to the representations per timestep given by three earlier
layers in the model. Then, we performed SVCCA on each
possible pair of models, on each of the four representations.
SVCCA was performed with 16, 64, 256 and 768 princi-
pal components, computed by applying SVD separately for
each representations of each model. We chose 768 as the
largest number of principal components, since that is the
representation size for the smallest model in the repository
(gpt2). We then averaged the CCA correlation coefficients
across the pairs of models. Figure 4 shows the results. The
results align well with our theory, namely that the represen-
tations at the last layer are more linearly related than the
representations at other layers of the model.

5.4. Interpretation and Summary

Theorem 1 establishes linear identifiability as an asymptotic
property of a model that holds in the limit of infinite data
and exact estimation. The experiments of this section have
shown that for linear identifiable models, when the dimen-
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Figure 4. Text Embeddings by GPT-2. GPT-2 results. Representations of the last hidden layer (which is identifiable), in addition to three
earlier layers (not necessarily identifiable) for four GPT-2 models. For each representation layer, SVCCA is computed over to all pairs of
models, over which correlation coefficients were averaged. SVCCA was applied with 16, 64, 256 and 768 principal components. The
learned representations in the last, identifiable layer more correlated than representations learned in preceding layers.

sionality is small relative to dataset size (Figures 1 and 2),
the learned embeddings are closely linearly related, up to
noise. Problems of model estimation and sufficient dataset
size are more pronounced in high dimensions. Nevertheless,
in GPT-2, representations among different trained models
do in fact approach a mean correlation coefficient of 1.0 af-
ter training (Figure 4, blue line), providing strong evidence
of linear identifiability.

6. Related Works
Prior to Hyvärinen & Morioka (2016), identifiability analy-
sis was uncommon in deep learning. We build on advances
in the theory of nonlinear ICA (Hyvärinen & Morioka, 2016;
Hyvärinen et al., 2018; Khemakhem et al., 2019). In this
section, we carefully distinguish our results from prior and
concurrent works. Our diversity assumption is similar to di-
versity assumptions in these earlier works, while differing on
certain conditions. The main difference is that their results
apply to related but distinct families of models compared
to the general discriminative family outlined in this paper.
Arguably most related is Theorem 3 of Hyvärinen et al.
(2018) and its proof, which shows that a class of contrastive
discriminative models will estimate, up to an affine transfor-
mation, the true latent variables of a nonlinear ICA model.
The main difference with our result is that they additionally
assume: (1) that the mapping between observed variables
and latent representations is invertible; and (2) that the dis-
criminative model is binary logistic regression exhibiting
universal approximation (Hornik et al., 1989), estimated
with a contrastive objective. In addition, (Hyvärinen et al.,
2018) does not present conditions for affine identifiability
for their version of the context representation function g.
It should be noted that Theorem 1 in (Hyvärinen et al.,
2018) provides a potential avenue for further generalization
of our Theorem 1 to discriminative models with non-linear
interaction between f and g.

Concurrent work (Khemakhem et al., 2020) has expanded

the theory of identifiable nonlinear ICA to a class of con-
ditional energy-based models (EBMs) with universal den-
sity approximation capability, therefore imposing milder
assumptions than previous nonlinear ICA results. Their
version of affine identifiability is similar to our result of
linear identifiability in Section 3.2. The main differences
are that Khemakhem et al. (2020) focus in both theory and
experiment on EBMs. This allows for alternative versions
of the diversity condition, assuming that the Jacobians of
their versions of f or g are full rank. This is only possible if
x or y are assumed continuous-valued; note that we do not
make such an assumption. Khemakhem et al. (2020) also
presents an architecture for which the conditions provably
hold, in addition to sufficient conditions for identifiability
up to element-wise scaling, which we did not explore in this
work. While we build on these earlier results, we are, to
the best of our knowledge, the first to apply identifiability
analysis to state-of-the-art discriminative and autoregressive
generative models.

ecent work on the asymptotics of fully-connected, infinitely
wide neural networks (Lee et al., 2017) has shown that
they converge to a Gaussian Process with a particular ap-
proximable kernel, extending earlier work on single-layer
networks (Neal, 1995). Jacot et al. (2018) prove that the
evolution of a neural network during training can also be
described by a kernel, termed the Neural Tangent Kernel
(NTK). Both are fine-grained analysis that place restric-
tions on the forms of the neural networks under analysis
in order to produce strong analytic results. Like NTK, we
take a function-space perspective, but our analysis considers
learned representation functions and their optimal solution
sets.

7. Conclusion
We have shown that representations learned by a large fam-
ily of discriminative models are identifiable up to a linear
transformation, providing a novel perspective on representa-
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tion learning using DNNs. Since identifiability is a property
of a model class, and identification is realized in the asymp-
totic limit of data and compute, we perform experiments in
the more realistic setting with finite datasets and finite com-
pute. Our empirical results show that as the representational
capacity of the model and dataset size increases, learned
representations indeed tend towards solutions that are equal
up to only a linear transformation.
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