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Abstract
Collecting more diverse and representative train-
ing data is often touted as a remedy for the dis-
parate performance of machine learning predic-
tors across subpopulations. However, a precise
framework for understanding how dataset prop-
erties like diversity affect learning outcomes is
largely lacking. By casting data collection as part
of the learning process, we demonstrate that di-
verse representation in training data is key not
only to increasing subgroup performances, but
also to achieving population-level objectives. Our
analysis and experiments describe how dataset
compositions influence performance and provide
constructive results for using trends in existing
data, alongside domain knowledge, to help guide
intentional, objective-aware dataset design.

1. Introduction
Datasets play a critical role in shaping the perception of
performance and progress in machine learning (ML)—the
way we collect, process, and analyze data affects the way
we benchmark success and form new research agendas
(Paullada et al., 2020; Dotan & Milli, 2020). A growing ap-
preciation of this determinative role of datasets has sparked
a concomitant concern that standard datasets used for train-
ing and evaluating ML models lack diversity along signifi-
cant dimensions, for example, geography, gender, and skin
type (Shankar et al., 2017; Buolamwini & Gebru, 2018).
Lack of diversity in evaluation data can obfuscate disparate
performance when evaluating based on aggregate accuracy
(Buolamwini & Gebru, 2018). Lack of diversity in train-
ing data can limit the extent to which learned models can
adequately apply to all portions of a population, a concern
highlighted in recent work in the medical domain (Habib
et al., 2019; Hofmanninger et al., 2020).
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Our work aims to develop a general unifying perspective
on the way that dataset composition affects outcomes of
machine learning systems. We focus on dataset allocations:
the number of datapoints from predefined subsets of the
population. While we acknowledge that numerical inclu-
sion of groups is an imperfect proxy of representation, we
believe that allocations provide a useful initial mathematical
abstraction for formulating relationships among diversity,
data collection, and statistical risk. We discuss broader
implications of our formulation in Section 5.

With the implicit assumption that the learning task is well
specified and performance evaluation from data is meaning-
ful for all groups, we ask:

Are group allocations in training data pivotal to perfor-
mance? To what extent can up-weighting underrepresented
groups help, and when might it actually hurt performance?

Taking a point of view that data collection is a critical com-
ponent of the overall machine learning process, we study the
effect that dataset composition has on group and population
accuracies. This complements work showing that simply
gathering more data can mitigate some sources of bias or un-
fairness in ML outcomes (Chen et al., 2018), a phenomenon
which has been observed in practice as well. Indeed, in
response to the Gender Shades study (Buolamwini & Gebru,
2018), companies selectively collected additional data to
decrease the exposed inaccuracies of their facial recognition
models for certain groups, often raising aggregate accuracy
in the process (Raji & Buolamwini, 2019). Given the poten-
tial for targeted data collection efforts to repair unintended
outcomes of ML systems, we next ask:

How can we describe “optimal” data allocations for differ-
ent learning objectives? Does a lack of diversity in large-
scale datasets align with maximizing population accuracy?

We show that purposeful data collection efforts can proac-
tively support intentional objectives of an ML system, and
that diversity and population objectives are often aligned.
Many datasets have recently been designed or amended to
exhibit diversity of the underlying population (Ryu et al.,
2017; Tschandl et al., 2018; Yang et al., 2020). These are
significant undertakings, as data gathering and annotation
must consider consent, privacy, and power concerns in ad-
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dition to inclusivity, transparency and reusability (Gebru
et al., 2018; Gebru, 2020; Wilkinson et al., 2016). Given the
importance of more representative and diverse datasets, and
the effort required to create them, our final question asks:

When and how can we leverage existing datasets to help
inform better allocations, towards achieving a diverse set of
objectives in a subsequent dataset collection effort?

Representation bias, or systematic underrepresentation of
subpopulations in data, is one of many forms of bias in ML
(Suresh & Guttag, 2019). Our work provides a data-focused
perspective on the design and evaluation of ML pipelines.
Our main contributions are:

1. We analyze the complementary roles of dataset allo-
cation and algorithmic interventions for achieving per-
group and total-population performance (Section 2).
Our experiments show that while algorithmically up-
weighting underrepresented groups can help, dataset
composition is the most consistent determinant of per-
formance (Section 4.1).

2. We propose a scaling model that describes the impact
of dataset allocations on group accuracies (Section 3).
Under this model, when parameters governing the rela-
tive values of within-group data are equal for all groups,
the allocation that minimizes population risk overrep-
resents minority groups.

3. We demonstrate that our proposed scaling model cap-
tures major trends of the relationship between dataset
allocations and performance (Sections 4.2 and 4.4).
We evidence that a small initial sample can be used
to inform subsequent data collection efforts to, for ex-
ample, maximize the minimum accuracy over groups
without sacrificing population accuracy (Section 4.3).

Sections 2 and 3 formalize data collection as part of the
learning problem and derive results under illustrative set-
tings. Experiments in Section 4 support these results and
expose nuances inherent to real-data contexts. Section 5
synthesizes results and delineates future work.

1.1. Additional Related Work

Targeted data collection in ML. Recent research evi-
dences that targeted data collection can be an effective way
to reduce disparate performance of ML models evaluated
across sub-populations (Raji & Buolamwini, 2019). Chen
et al. (2018) present a formal argument that the addition
of training data can lessen discriminatory outcomes while
improving accuracy of learned models, and Abernethy et al.
(2020) show that adaptively collecting data from the lowest-
performing sub-population can increase the minimum accu-
racy over groups. It is important to note, however, there are

many complications associated with simply gathering more
data as a solution to disparate performance across groups
(Jacobs & Wallach, 2019; Paullada et al., 2020).

With these complexities in mind, we study the importance
of numerical representation in training datasets in achieving
diverse objectives. Optimal allocation of subpopulations
in statistical survey designs dates back to at least Neyman
(1934), including stratified sampling methods to ensure cov-
erage across sub-populations (Lohr, 2009). For more com-
plex prediction systems, the field of optimal experimental
design (Pukelsheim, 2006) studies what inputs are most valu-
able for reaching a given objective, often focusing on linear
prediction functions. We consider a constrained sampling
structure and directly model the impact of group allocations
on subgroup performance for general model classes.

Valuing data. In economics, allocations indicate a division
of goods to various entities (Cole et al., 2013). While we fo-
cus on the influence of data allocations on model accuracies
across groups, there are many approaches to valuing data.
Methods centering on a theory of Shapley valuations (Yona
et al., 2019; Ghorbani & Zou, 2019) complement studies
of the influence of individual data points on model perfor-
mance to aid subsampling data (Vodrahalli et al., 2018).

Handling group-imbalanced data. Importance sampling
and importance weighting are standard approaches to ad-
dressing class imbalance or small groups sizes (Haixiang
et al., 2017; Buda et al., 2018), though the effects of impor-
tance weighting for deep learning may vary with regulariza-
tion (Byrd & Lipton, 2019). Other methods specifically ad-
dress differential performance between groups. Maximizing
minimum performance across groups can reduce accuracy
disparities (Sagawa et al., 2020) and promote fairer sequen-
tial outcomes (Hashimoto et al., 2018). For broader classes
of group-aware objectives, techniques exist to mitigate un-
fairness or disparate performance of black box prediction
functions (Dwork et al., 2018; Kim et al., 2019). It might
not be clear a priori which subsets need attention; Sohoni
et al. (2020) propose a method to identify and account for
hidden strata, while other methods are defined for any sub-
sets (Hashimoto et al., 2018; Kim et al., 2019). One can also
downsample or augment the input data to match a desired
distribution (Chawla et al., 2002; Iosifidis & Ntoutsi, 2018).

Notation. ∆k denotes the k-dimensional simplex. Z+ de-
notes non-negative integers and R+ non-negative reals.

2. Training Set Allocations and Alternatives
We study settings in which each data instance is associated
with a group gi, so that the training set can be expressed
as S = {xi, yi, gi}ni=1 where xi, yi denote the features and
labels of each instance. We index the discrete groups by
integers G = {1, .., |G|}, or when we specifically consider
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just two groups, we write G = {A,B}. We assume that
groups are disjoint and cover the entire population, with
γg = P(X,Y,G)∼D[G = g] denoting the population preva-
lence of group g, so that ~γ ∈ ∆|G|. Groups could represent
inclusion in one of many binned demographic categories, or
simply a general association with latent characteristics that
are relevant to prediction.

For a given population with distribution D over features,
labels, and groups, we are interested in the population level
risk, R(f̂(S);D) := E(X,Y,G)∼D[`(f̂(X), Y )], of a pre-
dictor f̂ trained on dataset S, as well as group specific
risks. Denoting the group distributions by Dg, defined as
conditional distributions, via P(X,Y )∼Dg

[X = x, Y = y] =
P(X,Y,G)∼D[X = x, Y = y,G = g]/γg, the population
risk decomposes as a weighted average over group risks:

R(f̂(S);D) =
∑

g∈G
γg · R(f̂(S);Dg) . (1)

In Section 2.2 we will assume that the loss `(ŷ, y) is a
separable function over data instances. While this holds
for many common loss functions, some objectives do not
decouple in this sense (e.g., group losses and associated
classes of fairness-constrained objectives; see Dwork et al.,
2018). We revisit this point in Sections 4 and 5.

2.1. Training Set Allocations

In light of the decomposition of the population-level risk
as a weighted average over group risks in Eq. (1), we now
consider the composition of fixed-size training sets, in terms
of how many samples come from each group.
Definition 1 (Allocations). Given a dataset of n triplets,
{xi, yi, gi}ni=1, the allocation ~α ∈ ∆|G| describes the rela-
tive proportions of each group in the dataset:

αg := 1
n

n∑

i=1

I[gi = g], g ∈ G. (2)

It will be illuminating to consider ~α not only as a property
of an existing dataset, but as a parameter governing dataset
construction, as captured in the following definition.
Definition 2 (Sampling from allocation ~α). Given the sam-
ple size n, group distributions {Dg}g∈G , and allocation
~α ∈ ∆|G|, such that ng :=αgn ∈ Z+,∀g ∈ G, to sample
from allocation ~α is procedurally equivalent to independent
sampling of |G| disjoint datasets Sg and concatenating:

S(~α, n) = ∪
g∈G
Sg (3)

Sg = {xi, yi, g}ng

i=1, (xi, yi) ∼i.i.d. Dg .

In the following sections we will generally allow alloca-
tions with ng 6∈ Z, assuming that the effect of up to |G|
fractionally assigned instances is negligible for large n.

The procedure in Definition 2 suggests formalizing data
collection as a component of the learning process in the
following way: in addition to choosing a loss function and
method for minimizing the risk, choose the relative propor-
tions at which to sample the groups in the training set:

~α∗ = argmin
~α∈∆|G|

min
f̂∈F
R
(
f̂ (S(~α, n)) ;D

)
.

In Section 3, we show that when a dataset curator can design
dataset allocations in the sense of Definition 2, they have
the opportunity to improve accuracy of the trained model.
Section 2.2 considers methods for using fixed datasets that
have groups with small training set allocation αg , relative to
γg , or high risk for some groups relative to the population.

2.2. Accounting for Small Group Allocations

In classical empirical risk minimization (ERM), one
learns a function from class F that minimizes average pre-
diction loss over the training instances (xi, yi, gi) ∈ S (we
also abuse notation and write i ∈ S) with optional regular-
ization R:

f̂(S) = argmin
f∈F

∑

i∈S
`(f(xi), yi) +R(f,S).

There are many methods for addressing small group allo-
cations in data (see Section 1.1). Of particular relevance
to our work are objective functions that minimize group
or population risks. In particular, one approach is to use
importance weighting (IW) to re-weight training samples
with respect to a target distribution defined by ~γ:

f̂ IW(S) = argmin
f∈F

∑

g∈G

γg
αg

(∑

i∈Sg

`(f(xi), yi)
)

+R(f,S).

This empirical risk with instances weighted by γg/αg =
γgn/ng is an unbiased estimate of the population risk, up
to regularization. While unbiasedness is often desirable, IW
can induce high variance of the estimator when γg/αg is
large for some group (Cortes et al., 2010), which happens
when group g is severely underrepresented in the training
data relative to their population prevalence.

Alternatively, group distributionally robust optimization
(GDRO) (Hu et al., 2018; Sagawa et al., 2020) minimizes
the maximum empirical risk over all groups:

f̂GDRO(S) = argmin
f∈F

max
g∈G

(
1
ng

∑

i∈Sg

`(f(xi), yi) +R(f,Sg)
)
.

For losses ` which are continuous and convex in the param-
eters of f , the optimal GDRO solution corresponds to the
minimizer of a group-weighted objective: 1

n

∑n
i=1 w(gi) ·

`(f(xi), yi), though this is not in general true for nonconvex
losses (see Prop. 1 of Sagawa et al., 2020, and the remark
immediately thereafter).
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Given the correspondence of GDRO (for convex loss func-
tions) and IW to the optimization of group-weighted ERM
objectives, we now investigate the joint roles of sample
allocation and group re-weighting for estimating group-
weighted risks. For prediction function f , loss function
`, and group weights w : G → R+, let L̂(w,α, n; f, `) be
the random variable defined by:

L̂(w,α, n; f, `) := 1
n

∑

i∈S(~α,n)

w(gi) · `(f(xi), yi) ,

where the randomness in L̂ comes from the draws of xi, yi
from Dgi according to procedure S(~α, n) (Definition 2), as
well as any randomness in f .

The following proposition shows that group weights and
allocations play complementary roles in risk function es-
timation. In particular, if w(g) depends on the sampling
allocations αg, then there are alternative group weights w∗

and allocation ~α∗ such that the alternative estimator has the
same expected value but lower variance.

Proposition 1 (Weights and allocations). For any loss `,
prediction function f and group distributions Dg, there ex-

ist weights with w∗(g) ∝
(
V ar(x,y)∼Dg

[`(f(x), y))]
)−1/2

such that for any triplet (~α,w, n) with
∑
g αgw(g) > 0, if

w 6∝∼ w∗,1 there exists an alternative ~α∗ with

E[L̂(w∗, ~α∗, n; f, `)] = E[L̂(w, ~α, n; f, `)]

V ar[L̂(w∗, ~α∗, n; f, `)] < V ar[L̂(w, ~α, n; f, `)] .

If w(g) > w∗(g), α∗g > αg and if w(g) < w∗(g), α∗g < αg .

Proof. (Sketch; full proof appears in Appendix A.1). For
any deterministic weighting function w : G → R+, there
exists a vector ~γ′ ∈ ∆|G| with γ′g ∝ w(g)αg such that

E[L̂(w, ~α, n; f, `)] = c · EgE(x,y)∼Dg
[`(f(x), y)],

where g ∼ Multinomial(γ′) and c =
∑
g αgw(g). For

any fixed f and any “target distribution" defined by γ′,
the (~α∗, w∗) pair which minimizes the variance of the
estimator, constrained so that w(g)αg = cγ′g ∀g, has
weights w∗ with form given above. Since the original
(α,w) pair satisfies this constraint, the pair (α∗, w∗) must
satisfy V ar[L̂(w∗, ~α∗, n; f, `)] ≤ V ar[L̂(w, ~α, n; f, `)],
while the constraint ensures that E[L̂(w∗, ~α∗, n; f, `)] =
E[L̂(w, ~α, n; f, `)].

Since the estimation of risk functions is a key component of
learning, Proposition 1 illuminates an interplay between the

1We use the symbol 6∝∼ to denote “not approximately propor-
tional to." The approximately part of this relation stems from finite
and integer sample concerns; for example, the proposition holds if
we consider w 6∝∼ w

∗ to mean ∃g ∈ G : |1− w(g)
w∗(g) | >

|G|
αgn

.

roles of sampling allocations and group-weighting schemes
like IW and GDRO. When allocations and weights are
jointly maximized, the optimal allocation accounts for an
implicit target distribution γ′ (defined above), which may
vary by objective function. The optimal weights account
for per-group variability V ar(x,y)∼Dg

[`(f(x), y))]. In Sec-
tion 4 we find that it can be advantageous to use IW and
GDRO when some groups have small αg/γg; though the
boost in accuracy is less than having an optimally allocated
training set to begin with, and diminishes when all groups
are appropriately represented in the training set allocation.

3. Allocating Samples to Minimize Risk
Having motivated the importance of group allocations, we
now investigate the direct effects of training set allocations
on group and population risks. Using a model of per-group
performance as a function of allocations, we study the opti-
mal allocations under a variety of settings.

3.1. A Per-group Power-law Scaling Model

We model the impact of allocations on performance with
scaling laws that describe per-group risks as a function of
the number of data points from their respective group, as
well as the total number of training instances.

Assumption 1 (Group risk scaling with allocation). The
group risks R(f̂ ;Dg) := E(x,y)∼Dg

[`(f̂(x), y)] scale ap-
proximately as the sum of inverse power functions on the
number of samples from group g and the total number of
samples. That is, ∃Mg > 0, σg, τg, δg ≥ 0, and p, q > 0
such that for a learning procedure which returns predictor
f̂(S), and training set S with group sizes ng≥Mg:

R
(
f̂
(
S(~α, n)

)
;Dg

)
≈ r(αgn, n;σg, τg, δg, p, q) ∀ g ∈ G

r(ng, n;σg, τg, δg, p, q) := σ2
gn
−p
g + τ2

gn
−q + δg . (4)

Assumption 1 is similar to the scaling law in Chen et al.
(2018), but includes a τ2

gn
−q term to allow for data from

other groups to influence the risk evaluated on group g. It
additionally requires that the same exponents p, q apply to
each group, an assumption that underpins our theoretical
results in Section 3. We examine the extent to which As-
sumption 1 holds empirically in Section 4.2, and will modify
Eq. (4) to include group-dependent terms pg, qg when ap-
propriate. The following examples give intuition into the
form of Eq. (4).

Example 1. When separate models are trained for each
group, using training data only from that group, we expect
Eq. (4) to apply with τg = 0 ∀g ∈ G. The parameter p could
derived through generalization bounds (Boucheron et al.,
2005), or through modeling assumptions (Example 3). ♦

Example 2. When groups are irrelevant for prediction and
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the model class F correctly accounts for this, we expect
Eq. (4) to apply with σg = 0 ∀g ∈ G. ♦

Example 3. Consider a (d+ 1)-dimensional linear model,
where two groups, {A,B}, share a weight vector β and
features x ∼ N (0,Σx), but the intercept varies by group:

yi = β>xi + cAI[gi = A] + cBI[gi = B] +N (0, σ2).

As we show in Appendix A.5, the ordinary least squares
predictor has group risks E(x,y)∼Dg

[(x>β̂ + ĉg − y)2] =
σ2 (1 + 1/ng +O(d/n)) , where the 1/ng arises because
we need samples from group g to estimate the intercept cg,
whereas samples from both groups help us estimate β. ♦

Example 3 suggests that in some settings, we can relate
σg and τg to ‘group specific’ and ‘group agnostic’ model
components that affect performance for group g. In general,
the relationship between group sizes and group risks can
be more nuanced. Data from different groups may be cor-
related, so that samples from groups similar to or different
from g have greater effect on R(f̂ ;Dg) (see Section 4.4).
Eq. 4 is meant to capture the dominant effects of training
set allocations on group risks and serves as our main struc-
tural assumption in the next section, where we study the
allocation that minimizes the approximate population risk.

3.2. Optimal (w.r.t. Population Risk) Allocations

We now study properties of the allocation that minimizes
the approximated population risk:

R̂(~α, n) :=
∑

g∈G
γgr(αgn, n;σg, τg, δg, p, q) (5)

≈
∑

g∈G
γgR(f̂(S);Dg) = R(f̂(S);D).

The following proposition lays the foundation for two corol-
laries which show that: (1) when only the population preva-
lences ~γ vary between groups, the allocation that minimizes
the approximate population risk up-represents groups with
small γg; (2) for two groups with different scaling parame-
ters σg, the optimal allocation of the group with γg < 1

2 is
bounded by functions of σA, σB , and ~γ.

Proposition 2. Given a population made up of disjoint
groups g ∈ G with population prevalences γg, under the
conditions of Assumption 1, the allocation ~α∗ ∈ ∆|G| that
minimizes the approximated population risk R̂ in eq. (5)
has elements:

α∗g =

(
γgσ

2
g

)1/(p+1)

∑
g∈G

(
γgσ2

g

)1/(p+1)
. (6)

If σg = 0 ∀g ∈ G, then any allocation in ∆|G| minimizes R̂.

The proof of Proposition 2 appears in Appendix A.2. Note
that ~α∗ does not depend on n, {τg}g∈G , or q; this will in
general not hold if powers pg differ by group.

We now study the form of ~α∗ under illustrative settings.
Corollary 1 shows that when the group scaling parameters
σg in Eq. (4) are equal across groups, the allocation that min-
imizes the approximate population risk allocates samples to
minority groups at higher than their population prevalences.
The proof of Corollary 1 appears in Appendix A.3.
Corollary 1 (Many groups with equal σg). When σg =

σ > 0, ∀g ∈ G, the allocation that minimizes R̂ in Eq. (5)
satisfies α∗g ≥ γg for any group with γg ≤ 1

|G| .

This shows that the allocation that minimizes population
risk can differ from the actual population prevalences ~γ. In
fact, Corollary 1 asserts that near the allocation ~α = ~γ, the
marginal returns to additional data from group g are largest
for groups with small αg, enough so as to offset the small
weight γg in Eq. (1). This result provides evidence against
the idea that small training set allocation to minority groups
might comply with minimizing population risk as a result
of a small relative contribution to the population risk.

Remark. A counterexample shows that α∗g ≤ γg does not
hold for all g with γg > 1/|G|. Take ~γ = [.68, .30, .01, .01]
and p = 1; Eq. (6) gives α∗2 > 0.3 = γ2 > 1/4. In general,
whether group g with γg ≥ 1/|G| gets up- or down-sampled
depends on the distribution of ~γ across all groups.

Complementing the results of Corollary 1, the next corollary
shows that ~α∗ generally depends on the relative values of σg
between groups. Inspecting Eq. (4) shows that σg defines a
limit of performance: if σ2

g is large, the only way to make
the approximate risk for group g small is to make ng large.
From Eq. (6), we know that for two groups, α∗A is increasing
in σA

σB
; Corollary 2 gives upper and lower bounds on α∗A in

terms of σA and σB . Corollary 2 is proved in Appendix A.4.

Corollary 2 (Unequal per-group constants). For two groups
{A,B} = G with γA < γB , and parameters σA, σB >
0 in Eq. (4), the allocation of the smaller group α∗A that
minimizes R̂ in Eq. (5) is upper and lower bounded as

γA(σ2
A)1/(p+1)

γA(σ2
A)1/(p+1) + γB(σ2

B)1/(p+1)
< α∗A

<
(σ2
A)1/(p+1)

(σ2
A)1/(p+1) + (σ2

B)1/(p+1)
.

When σA ≥ σB , α∗A > γA, and when σA ≤ σB , α∗A < 1/2.

Altogether, these results highlight key properties of training
set allocations that minimize population risk. Experiments
in Section 4 give further insight into the values of weights
and allocations for minimizing group and population risks
and apply the scaling law model in real data settings.
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Figure 1. Performance across ~α. Shaded regions: one stddev. above/ below mean (10 trials). Stars: population minima for each objective.
The loss metrics reported (vertical axes) are the same within panels, while the training objectives differ across solid and dashed lines.

4. Empirical Results
Having shown the importance of training set allocations
from a theoretical perspective, we now provide a comple-
mentary empirical investigation of this phenomenon. See
Appendix B for full details on each experimental setup.2

Table 1. Brief description of datasets; details in Appendix B.1.
dataset groups {A,B} γA minng target label loss metric
CIFAR-4 {animal, vehicle} 0.1 10,000 air 0/1 loss
ISIC {age≥55, age<55} 0.43 4,092 malignant 1 - AUROC
Goodreads {history, fantasy} 0.38 50,000 book rating `1 loss
Mooc {edu≤2◦, edu>2◦} 0.16 3,897 certified 1 - AUROC
Adult {female, male} 0.5 10,771 income>50K 0/1 loss

We use a wide range of datasets to give a full empirical
characterization of the phenomena of interest (see Table 1).
The CIFAR-4 dataset is comprised of bird, car, horse, and
plane image instances from CIFAR-10 (Krizhevsky, 2009).
The ISIC dataset contains images of skin lesions labelled as
benign or malignant (Codella et al., 2019). The Goodreads
dataset consists of written book reviews and numerical
ratings (Wan & McAuley, 2018). The Mooc dataset con-
tains student demographic and participation data (HarvardX,
2014). The Adult dataset consists of demographic data from
the 1994 Census (Dua & Graff, 2017). For Adult we exclude
groups from features (Appendix C.1).

In contrast to Section 2, here losses are defined over sets of
data; note that AUROC is not separable over groups, and
thus Eq. (1) does not apply for this metric.

2Code to replicate the experiments is available at https://gi
thub.com/estherrolf/representation-matters.

4.1. Allocation-aware Objectives vs. Ideal Allocations

We first investigate (a) the change in group and population
performance at different training set allocations, and (b)
the extent to which optimizing the three objective functions
defined in Section 2.2 decreases average and group errors.

For each dataset, we vary the training set allocations ~α while
fixing the training set size as n = ming ng (see Table 1)
and evaluate the per-group and population losses on subsets
of the heldout test sets.3 For the image classification tasks,
we compare group-agnostic empirical risk minimization
(ERM) to importance weighting (implemented via impor-
tance sampling (IS) batches following the findings of Buda
et al. (2018)) and group distributionally robust optimization
(GDRO) with group-dependent regularization as in Sagawa
et al. (2020). For the non-image datasets, we implement im-
portance weighting (IW) by weighting instances in the loss
function during training, and do not compare to GDRO.4

Figure 1 highlights the importance of at least a minimal rep-
resentation of each group in order to achieve low population
loss (black curves) for all objectives. For CIFAR-4, the pop-
ulation loss increases sharply for αA < 0.1 and αA > 0.8,
and for ISIC, when αA < 0.2. While not as crucial for
achieving low population losses for the remaining datasets,
the optimal allocations ~α∗ (stars) do require a minimal repre-
sentation of each group. The ~α∗ are largely consistent across
the training objectives (different star colors). The population

3We pick models and parameters via a cross-validation proce-
dure over a coarse grid of ~α; details are given in Appendix B.3.

4The gradient-based algorithm of Sagawa et al. (2020) is not
easily adaptable to the predictors we use for these datasets.

https://github.com/estherrolf/representation-matters
https://github.com/estherrolf/representation-matters
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Table 2. Estimated scaling parameters for Eq. (7). Parentheses denote standard deviations estimated by the nonlinear least squares fit.
Parameters are constrained so that τ̂g, σ̂g, δ̂g ≥ 0 and p̂g, q̂g ∈ [0, 2].

dataset Mg group g σ̂g p̂g τ̂g q̂g δ̂g

CIFAR-4 500
animal 1.9 (0.12) 0.47 (9.8e-04) 4.5e-09 (1.8e+06) 2.0 (0.0e+00) 1.1e-03 (8.9e-06)
vehicle 1.6 (0.19) 0.54 (2.0e-03) 3.2e-12 (1.1e+06) 2.0 (0.0e+00) 1.4e-03 (2.8e-06)

ISIC 200
age ≥ 55 0.61 (1.7e-03) 0.20 (1.1e-03) 1.7e-09 (1.9e+04) 1.9 (0.0e+00) 1.4e-15 (6.1e-04)
age < 55 0.26 (9.3e-04) 0.13 (0.012) 0.61 (0.044) 0.3 (7.5e-03) 7.5e-11 (7.2e-03)

Goodreads 2500
history 0.16 (1.2e-03) 0.074 (2.5e-03) 2.5 (0.058) 0.37 (2.0e-04) 0.41 (3.0e-03)
fantasy 0.62 (0.69) 0.020 (1.2e-03) 3.1 (0.093) 0.39 (1.9e-04) 7.2e-21 (0.72)

Mooc 50
edu ≤ 2◦ 0.08 (2.6e-05) 0.14 (6.0e-03) 0.73 (0.059) 0.63 (4.8e-03) 1.3e-15 (2.6e-04)
edu > 2◦ 0.038 (6.2e-04) 0.068 (6.3e-03) 0.54 (6.5e-03) 0.61 (9.8e-04) 2.8e-12 (8.0e-04)

Adult 50
female 0.078 (0.051) 0.018 (3.6e-03) 0.43 (8.3e-03) 0.59 (1.6e-03) 8.0e-16 (0.052)
male 0.066 (2.6e-05) 0.21 (1.2e-03) 0.47 (6.5e-03) 0.50 (1.1e-03) 0.16 (5.4e-06)

losses (black curves) are largely consistent across mid-range
values of αA for all training objectives. This stands in con-
trast to the per-group losses (blue and orange curves), which
can vary considerably as ~α changes. From the perspective
of model evaluation, this reinforces a well-documented need
for more comprehensive reporting of performance. From
the view of dataset design, this exposes an opportunity to
choose allocations which optimize diverse evaluation objec-
tives while maintaining low population loss. Experiments
in Section 4.3 investigate this further.

Across the CIFAR-4 and ISIC tasks, GDRO (dotted curves)
is more effective than IS (dashed curves) at reducing per-
group losses. This is expected, as minimizing the largest
loss of any group is the explicit objective of GDRO. Figure 1
shows that GDRO can also improve the population loss (see
αA > 0.7 for CIFAR-4 and αA < 0.2 for ISIC). IW (dashed
curves) has little effect on performance for Mooc and Adult
(random forest models), and actually increases the loss for
Goodreads (multiclass logistic regression model).

For all the datasets we study, the advantages of using IS or
GDRO are greatest when one group has very small train-
ing set allocation (αA near 0 or 1). When allocations are
optimized (stars in Figure 1), the boost that these methods
give over ERM diminishes. In light of Proposition 1, these
results suggest that in practice, part of the value of such
methods is in compensating for sub-optimal allocations. We
find, however, that explicitly optimizing the maximum per-
group loss with GDRO can reduce population loss more
effectively than directly accounting for allocations with IS.

Appendix C.2 shows that similar phenomena hold for differ-
ent loss functions and models on the same dataset, though
the exact ~α∗ can differ. In Appendix C.1, we show that
losses of groups with small αg can degrade more severely
when group attributes are included in the feature matrix,
likely a result of the small number of samples from which
to learn group-specific model components (see Example 3).

4.2. Assessing the Scaling Law Fits

For each dataset, we combine the results in Figure 1 with
extra subsetting runs where we vary both ng and n. We
use nonlinear least squares to estimate the parameters of
modified scaling laws, where exponents can differ by group

lossg ≈ σ2
gn
−pg
g + τ2

gn
−qg + δg . (7)

The estimated parameters of Eq. (7) given in Table 2 capture
different high-level phenomena across the five datasets. For
CIFAR-4, τ̂g ≈ 0 for both groups, indicating that most of the
group performance is explained by ng . For Goodreads, both
ng and n have influence in the fitted model, though τ̂g and
q̂g are larger than σ̂g and p̂g , respectively. For ISIC, τ̂A ≈ 0
but τ̂B 6≈ 0, suggesting other-group data has little effect on
the first group, but is beneficial to the latter. For the non-
image datasets (Goodreads, Mooc, and Adult), 0<σ̂g<τ̂g
and p̂g<q̂g for all groups.

Figure B.2 in Appendix B.5 shows that the fitted curves
capture the overall trends of per-group losses as a function
of n and ng. However, the assumptions of Proposition 2
and Corollaries 1 and 2 (e.g., equal pg for all g ∈ G) are not
always reflected in the empirical fits. Results in Section 3
use Eq. (4) to describe optimal allocations under different
hypothetical settings; we find that Eq. (7) is more realistic
in empirical settings.

The estimated models describe the overall trends (Fig-
ure B.2), but the parameter estimates are variable (Table 2),
indicating that a range of parameters can fit the data, a well-
known phenomenon in fitting power laws to data (Clauset
et al., 2009). While we caution against absolute or prescrip-
tive interpretations based on the estimates given in Table 2,
if such interpretations are desired (Chen et al., 2018), we
suggest evaluating variation due to subsetting patterns and
comparing to alternative models such as log-normal and
exponential fits (cf. Clauset et al., 2009).
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Figure 2. Pilot sample experiment. Panels show the result of the three allocations ~α ∈ [α̂∗minmax, ~γ, (1/2, 1/2)] for different sizes of the
new training sets compared with an α∗grid baseline that minimizes the maximum group loss over a grid of resolution 0.01, averaged over the
random trials. Purple circles indicate average maximum error over groups and grey diamonds indicate average population error. Ranges
denote standard errors taken over the 10 trials.

4.3. Targeted Data Collection with Fitted Scaling Laws

We now study the use of scaling models fitted on a small
pilot dataset to inform a subsequent data collection effort.
Given the results of Section 4.1, we aim to collect a training
set that minimizes the maximum loss on any group. This
procedure goes beyond the descriptive use of the estimated
scaling models in Section 4.2; important considerations for
operationalizing these findings are discussed below.

We perform this experiment with the Goodreads dataset, the
largest of the five we study. The pilot sample contains 2,500
instances from each group, drawn at random from the full
training set. We estimate the parameters of Eq. (7) using
a procedure similar to that described in Section 4.2. For a
new training set of size nnew, we suggest an allocation to
minimize the maximum forecasted loss of any group:

α̂∗minmax = argmin
~α∈∆2

max
g∈G

(
σ̂2
g(αgnnew)−p̂g + τ̂2

gn
−q̂g
new + δ̂g

)
.

For nnew ∈ [2×, 4×, 8×], the pilot sample size, we simulate
collecting a new training set by drawing nnew fresh samples
from the training set with allocation ~α = α̂∗minmax(nnew). We
train a model on this sample (ERM objective) and evaluate
on the test set. For comparison, we also sample at ~α = ~γ
(population proportions) and ~α = (0.5, 0.5) (equal alloca-
tion to both groups). We repeat the experiment, starting
with the random instantiation of the pilot dataset, for ten
trials. As a point of comparison, we also compute the results
for all α in a grid of resolution 0.01, and denote the alloca-
tion value in this grid that minimizes the average maximum
group loss over the ten trials as α∗grid.

Among the three allocation strategies we compare, α̂∗minmax
minimizes the average maximum loss over groups, across
nnew (Figure 2). In contrast, α̂∗minmax does not increase the
population loss (grey bars) over that of the other allocation
strategies. This reinforces the finding of Section 4.1 and
provides evidence that we can leverage information from
a small initial sample to help raise the minimum accuracy
over groups, without sacrificing population accuracy.

While the results in Figure 2 are promising, error bars high-
light the variation across trials. The variability in perfor-
mance across trials for allocation baseline α∗grid (which is
kept constant across the ten trials) is largely consistent with
that of the other allocation sampling strategies examined
(standard errors in Figure 2). However, the estimation of
α̂∗ in each trial does introduce additional variation: across
the ten draws of the pilot data, the range of α̂∗ values for
subsequent dataset size nnew = 10000 is [1e-04,0.05], for
nnew = 20000 it is [5e-05,0.14], and for nnew = 40000 it
is [2e-05,0.82]. Therefore, the estimated α̂∗ should be
leveraged with caution, especially if the subsequent sample
will be much larger than the pilot sample. Further caution
should be taken if there may be distribution shifts between
the pilot and subsequent samples. We suggest to interpret es-
timated α̂∗ values as one signal among many that can inform
a dataset design in conjunction with current and emerging
practices for ethical data collection (see Section 5).

4.4. Interactions Between Groups

We now shift the focus of our analysis to explore poten-
tial between- and within- group interactions that are more
nuanced than the scaling law in Eq. (4) provides for. The
results highlight the need for and encourage future work
extending our analysis to more complex notions of groups
(e.g., intersectional, continuous, or proxy groups).

As discussed in Section 3, data from groups similar to or dif-
ferent from group g may have greater effect onR(f̂(S);Dg)
compared to data drawn at random from the entire distribu-
tion. We examine this possibility on the ISIC dataset, which
is aggregated from different studies (Appendix B.1). We
measure baseline performance of the model trained on data
from all of the studies. We then remove one study at a time
from the training set, retrain the model, and evaluate the
change in performance for all studies in the test set.

Figure 3 shows the changes in performance due to leaving
out studies from the training set. Rows correspond to the
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Figure 3. Percent change in performance (AUROC / accuracy)
due to withholding a study from the training set. SONIC contains
only benign instances and 2018 JID Ed. contains only malignant
instances; for these we report % change in binary accuracy.

study withheld from the training set and columns correspond
to the study used for evaluation. Rows and columns are
ordered by % malignancy. For Figure 3 this is the same as
ordering by dataset size, SONIC being the largest study.

Consistent with our modelling assumptions and results so
far, accuracies evaluated on group g decrease as a result of
removing group g from the training set (diagonal entries of
Figure 3). However, additional patterns show more nuanced
relationships between groups.

Positive values in the upper right region of Figure 3 show
that excluding studies with low malignancy rates can raise
performance evaluated on studies with high malignancy
rates. This could be partially due to differences in label dis-
tributions when removing certain studies from the training
data. Importantly, this provides a counterpoint to an assump-
tion implicit in Assumption 1, that group risks decrease in
the total training set size n, regardless of the groups these
n instances belong to. To study more nuanced interactions
between pairs g′ 6=g, future work could modify Eq. (4) by
reparameterizing r(·) to directly account for ng′ .

Grouping by substudies within the UDA and MSK studies
reveals that even within well defined groups, interactions
between subgroups can arise. Negative off-diagonal entries
in Figure B.5b suggest strong interactions between different
groups, underscoring the importance of evaluating results
across hierarchies and intersections of groups when feasible.

Of the 16,965 images in the full training set, 7,401 are from
the SONIC study. When evaluating on all non-SONIC in-
stances (like the evaluation set from the rest of the paper),
withholding the SONIC study from the training set leads to
higher AUROC (.905) than training on all studies (0.890).
This demonstrates that more data is not always better, espe-
cially if the distributional differences between the additional

data and the target populations are not well accounted for.

5. Discussion
We study the ways in which group and population per-
formance depend on the numerical allocations of discrete
groups in training sets. While focusing on discrete groups al-
lows us to derive meaningful results, understanding similar
phenomena for intersectional groups and continuous notions
of inclusion is an important next step. Addressing the more
nuanced relationships between the allocations of different
data sources (Section 4.4) is a first step in this direction.

We find that underrepresentation of groups in training data
can limit group and population accuracies. However, naive
targeted data collection attempts can present undue burdens
of surveillance or skirt consent (Paullada et al., 2020). When
ML systems fail subpopulations due to measurement or
construct validity issues, more comprehensive interventions
are needed (Jacobs & Wallach, 2019).

Our results expose key properties of sub-group representa-
tion in training data from a statistical sampling perspective,
complementary to current and emerging practices for ethi-
cal, contextualized data collection and curation (Gebru et al.,
2018; Gebru, 2020; Denton et al., 2020; Abebe et al., 2021).
Studying the role of numerical allocation targets within eth-
ical and context-aware data collection practices will be an
important step toward operationalizing our findings.

Representation is a broad, often ambiguous concept (Chasa-
low & Levy, 2021), and numerical allocation is an imperfect
proxy of representation or inclusion. That said, if the opti-
mal allocation for a certain group is well beyond that group’s
population proportion, this may be cause to reflect on why
that is the case. Future work could consider allocations as a
lens for auditing the limits of prediction models from a data-
focused perspective and extend analysis to more objectives
and loss functions (e.g. robustness or fairness objectives).
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