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Abstract
Gradient-based methods for two-player games
produce rich dynamics that can solve challenging
problems, yet can be difficult to stabilize and un-
derstand. Part of this complexity originates from
the discrete update steps given by simultaneous or
alternating gradient descent, which causes each
player to drift away from the continuous gradient
flow — a phenomenon we call discretization drift.
Using backward error analysis, we derive mod-
ified continuous dynamical systems that closely
follow the discrete dynamics. These modified dy-
namics provide an insight into the notorious chal-
lenges associated with zero-sum games, including
Generative Adversarial Networks. In particular,
we identify distinct components of the discretiza-
tion drift that can alter performance and in some
cases destabilize the game. Finally, quantifying
discretization drift allows us to identify regular-
izers that explicitly cancel harmful forms of drift
or strengthen beneficial forms of drift, and thus
improve performance of GAN training.

1. Introduction
The fusion of deep learning with two-player games has pro-
duced a wealth of breakthroughs in recent years, from Gen-
erative Adversarial Networks (GANs) (Goodfellow et al.,
2014) through to model-based reinforcement learning (Sut-
ton & Barto, 2018; Rajeswaran et al., 2020). Gradient de-
scent methods are widely used across these settings, partly
because these algorithms scale well to high-dimensional
models and large datasets. However, much of the recent
progress in our theoretical understanding of two-player dif-
ferentiable games builds upon the analysis of continuous
differential equations that model the dynamics of train-
ing (Singh et al., 2000; Heusel et al., 2017; Nagarajan &
Kolter, 2017), leading to a gap between theory and prac-
tice. Our aim is to take a step forward in our understanding
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of two player games by finding continuous systems which
better match the gradient descent updates used in practice.

Our work builds upon Barrett & Dherin (2021), who use
backward error analysis to quantify the discretization drift
induced by using gradient descent in supervised learning.
We extend their work and use backward error analysis to
understand the impact of discretization in the training dy-
namics of two-player games. More specifically, we quantify
the Discretization Drift (DD), the difference between the
solutions of the original ODEs defining the game and the
discrete steps of the numerical scheme used to approximate
them. To do so, we construct modified continuous systems
that closely follow the discrete updates. While in supervised
learning DD has a beneficial regularization effect (Barrett &
Dherin, 2021), we find that the interaction between players
in DD can have a destabilizing effect in adversarial games.

Contributions: Our primary contribution, Theorems 3.1
and 3.2, provides the continuous modified systems which
quantify the discretization drift in simultaneous and alternat-
ing gradient descent for general two-player differentiable
games. Both theorems are novel in their scope and gen-
erality, as well as their application toward understanding
the effect of the discretization drift in two-player games
parametrized with neural networks. Theorems 3.1 and 3.2
allow us to use dynamical system analysis to describe GD
without ignoring discretization drift, which we then use to:

• Provide new stability analysis tools (Section 4).

• Motivate explicit regularization methods which drasti-
cally improve the performance of simultaneous gradi-
ent descent in GAN training (Section 7.3).

• Pinpoint optimal regularization coefficients and shed
new light on existing explicit regularizers (Table 1).

• Pinpoint the best performing learning rate ratios for
alternating updates (Sections 5 and 7.2).

• Explain previously observed but unexplained phenom-
ena such as the difference in performance and stability
between alternating and simultaneous updates in GAN
training (Section 6).



2. Background
Backward Error Analysis: Backward error analysis was
devised to study the long-term error incurred by following
an ODE numerical solver instead of an exact ODE solu-
tion (Hairer & Lubich, 1997; Hairer et al., 2006). The
general idea is to find a modified version of the original
ODE that follows the steps of the numerical solver exactly.
Recently, Barrett & Dherin (2021) used this technique to
uncover a form of DD, called implicit gradient regulariza-
tion, arising in supervised learning for models trained with
gradient descent. They showed that for a model with pa-
rameters θ and loss L(θ) optimized with gradient descent
θt = θt−1 − h∇θL(θ), the first order modified equation is
θ̇ = −∇θL̃(θ), with modified loss

L̃(θ) = L(θ) +
h

4
‖∇θL(θ)‖2 (1)

This shows that there is a hidden implicit regularization ef-
fect, dependent on learning rate h that biases learning toward
flat regions, where test errors are typically smaller (Barrett
& Dherin, 2021).

Two-player games: A well developed strategy for under-
standing two-player games in gradient-based learning is to
analyze the continuous dynamics of the game (Singh et al.,
2000; Heusel et al., 2017). Tools from dynamical systems
theory have been used to explain convergence behaviors and
to improve training using modifications of learning objec-
tives or learning rules (Nagarajan & Kolter, 2017; Balduzzi
et al., 2018; Mazumdar et al., 2019). Many of the insights
from continuous two-player games apply to games that are
trained with discrete updates. However, discrepancies are
often observed between the continuous analysis and discrete
training (Mescheder et al., 2018). In this work, we extend
backward error analysis from the supervised learning setting
– a special case of a one-player game – to the more general
two-player game setting, thereby bridging this gap between
the continuous systems that are often analyzed in theory and
the discrete numerical methods used in practice.

3. Discretization drift
Throughout the paper we will denote by φ ∈ Rm and
θ ∈ Rn the row vectors representing the parameters of
the first and second player, respectively. The players up-
date functions will be denoted correspondingly by f(φ,θ) :
Rm × Rn → Rm and by g(φ,θ) : Rm × Rn → Rn. In
this setting, the partial derivative ∇θf(φ,θ) is the n×m
matrix (∂θifj)ij with i = 1, . . . , n and j = 1, . . . ,m.

We aim to understand the impact of discretizing the ODEs

φ̇ = f(φ,θ), (2)

θ̇ = g(φ,θ), (3)
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Figure 1. Visualization of our approach, given by backward error
analysis. For each player (we show only θ for simplicity), we
find the modified ODE ˙̃

θ which captures the change in parameters
introduced by the discrete updates with an error of O(h3). The
modified ODE follows the discrete update more closely than the
original ODE θ̇, which has an error of O(h2).

using either simultaneous or alternating Euler updates. We
derive a modified continuous system of the form:

φ̇ = f(φ,θ) + hf1(φ,θ) (4)

θ̇ = g(φ,θ) + hg1(φ,θ) (5)

that closely follows the discrete Euler update steps; the local
error between a discrete update and the modified system
is of order O(h3) instead of O(h2) as is the case for the
original continuous system given by Equations (2) and (3).
If we can neglect errors of order O(h3), the terms f1 and
g1 above characterize the DD of the discrete scheme, which
can be used to help us understand the impact of DD. For
example, it allows us to compare the use of simultaneous
and alternating Euler updates, by comparing the dynamics
of their associated modified systems as characterized by the
DD terms f1 and g1.

We can specialize these modified equations using f =
−∇φL1 and g = −∇θL2, where L1 and L2 are the loss
functions for the two players. We will use this setting later to
investigate the modified dynamics of simultaneous or alter-
nating gradient descent. We can further specialize the form
of these updates for common-payoff games (L1 = L2 = E)
and zero-sum games (L1 = −E, L2 = E).

3.1. DD for simultaneous Euler updates

The simultaneous Euler updates with learning rates αh and
λh respectively are given by

φt = φt−1 + αhf(θt−1,φt−1) (6)
θt = θt−1 + λhg(θt−1,φt−1) (7)

Theorem 3.1 The discrete simultaneous Euler updates in



(6) and (7) follow the continuous system

φ̇ = f − αh

2
(f∇φf + g∇θf)

θ̇ = g − λh

2
(f∇φg + g∇θg)

with an error of size O(h3) after one update step.

Remark: A special case of Theorem 3.1 for zero-sum games
with equal learning rates can be found in Lu (2021).

3.2. DD for alternating Euler updates

For alternating Euler updates, the players take turns to
update their parameters, and can perform multiple updates
each. We denote the number of alternating updates of the
first player (resp. second player) by m (resp. k). We scale
the learning rates by the number of updates, leading to the
following updates φt := φm,t and θt := θk,t where

φi,t = φi−1,t +
αh

m
f(φi−1,t,θt−1), i = 1 . . .m, (8)

θj,t = θj−1,t +
λh

k
g(φm,t,θj−1,t), j = 1 . . . k. (9)

Theorem 3.2 The discrete alternating Euler updates in (8)
and (9) follow the continuous system

φ̇ = f − αh

2

(
1

m
f∇φf + g∇θf

)
θ̇ = g − λh

2

(
(1− 2α

λ
)f∇φg +

1

k
g∇θg

)
with an error of size O(h3) after one update step.

Remark: Equilibria of the original continuous systems (i.e.,
points where f = 0 and g = 0) remain equilibria of the
modified continuous systems.

Definition 3.1 The discretization drift for each player has
two terms: one term containing a player’s own update func-
tion only - terms we will call self terms - and a term that
also contains the other player’s update function - which we
will call interaction terms.

3.3. Sketch of the proofs

Following backward error analysis, the idea is to modify
the original continuous system by adding corrections in
powers of the learning rate: f̃ = f + hf1 + h2f2 + · · ·
and g̃ = g + hg1 + h2g2 + · · · , where for simplicity in this
proof sketch, we use the same learning rate for both players
(detailed derivations can be found in the Supplementary
Material). We want to find corrections fi, gi such that the
modified system φ̇ = f̃ and θ̇ = g̃ follows the discrete
update steps exactly. To do that we proceed in three steps:

Step 1: We expand the numerical scheme to find a rela-
tionship between φt and φt−1 and θt and θt−1 up to order
O(h2). In the case of the simultaneous Euler updates this
does not require any change to Equations (6) and (7), while
for alternating updates we have to expand the intermediate
steps of the integrator using Taylor series.

Step 2: We compute the Taylor’s series of the modified
equations solution, yielding:

φ̃(h) = φt−1 + hf + h2(f1 +
1

2
(f∇φf + g∇θf)) +O(h3)

θ̃(h) = θt−1 + hg + h2(g1 +
1

2
(f∇φg + g∇θg)) +O(h3),

where all the f ’s, g’s, and their derivatives are evaluated at
(φt−1, θt−1).

Step 3: We match the terms of equal power in h so that the
solution of modified equations coincides with the discrete
update after one step. This amounts to finding the correc-
tions, fi’s and gi’s, so that all the terms of order higher than
O(h) in the modified equation solution above will vanish;
this yields the first order drift terms f1 and g1 in terms of f ,
g, and their derivatives. For simultaneous updates we obtain
f1 = − 1

2 (f∇φf + g∇θf) and g1 = − 1
2 (f∇φg + g∇θg),

and by construction, we have obtained the modified trun-
cated system which follows the discrete updates exactly up
to order O(h3), leading to Theorem 3.1.

Remark: The modified equations in Theorems 3.1 and 3.2
closely follow the discrete updates only for learning rates
where errors of size O(h3) can be neglected. Beyond this,
higher order corrections are likely to contribute to the DD.

3.4. Visualizing trajectories

To illustrate the effect of DD in two-player games, we use a
simple example adapted from Balduzzi et al. (2018):

φ̇ = f(φ, θ) = −ε1φ+ θ; θ̇ = g(φ, θ) = ε2θ − φ (10)

In Figure 2 we validate our theory empirically by visualizing
the trajectories of the discrete Euler steps for simultaneous
and alternating updates, and show that they closely match
the trajectories of the corresponding modified continuous
systems that we have derived. To visualize the trajectories of
the original unmodified continuous system, we use Runge-
Kutta 4 (a fourth-order numerical integrator that has no DD
up to O(h5) in the case where the same learning rates are
used for the two players — see Hairer & Lubich (1997) and
Supplementary Material for proofs). We will use Runge-
Kutta 4 as a baseline throughout the paper.

4. The stability of DD
The long-term behavior of gradient-based training can be
characterized by the stability of its equilibria. Using stability
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Figure 2. The modified continuous flow captures the effect of DD
in simultaneous and alternating Euler updates.
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Figure 3. Discretization drift can change the stability of a game.
ε1 = ε2 = 0.09 and a learning rate 0.2.

analysis of a continuous system to understand discrete dy-
namics in two-player games has a fruitful history; however,
prior work ignored discretization drift, since they analyse
the stability of the original game ODEs. Using the modi-
fied ODEs given by backward error analysis provides two
benefits here: 1) they account for the discretization drift,
and 2) they provide different ODEs for simultaneous and
for alternating updates, capturing the specificities of the two
optimizers.

The modified ODE approach gives us a method to analyze
the stability of the discrete updates: 1) Choose the system
and the update type – simultaneous or alternating – to be
analyzed; 2) write the modified ODEs for the chosen system
as given by Theorems 3.1 and 3.2; 3) write the correspond-
ing modified Jacobian, and evaluate it at an equilibrium; 4)
determine the stability of the equilibrium by computing the
eigenvalues of the modified Jacobian.

Steps 1 and 2 are easy, and step 4 is required in the stability
analysis of any continuous system. For step 3, we provide
a general form of the modified Jacobian at the equilibrium
point of the original system, where f = 0 and g = 0:

J̃ =

[
∇φf̃ ∇θ f̃
∇φg̃ ∇θ g̃

]
= J − h

2
K (11)

where J is the unmodified Jacobian and K is a matrix that
depends on the update type. For simultaneous updates (see
Supplementary Material for alternating updates) K =[
α(∇φf)

2 + α∇φg∇θf α∇θf∇φf + α∇θg∇θf
λ∇φg∇θg + λ∇φf∇φg λ(∇θg)

2 + λ∇θf∇φg

]
.

Using the method above we show (in the Supplementary
Material), that, in two-player games, the drift can change
a stable equilibrium into an unstable one, which is not the
case for supervised learning (Barrett & Dherin, 2021). For
simultaneous updates with equal learning rates, this recovers
a result of Daskalakis & Panageas (2018) derived in the con-
text of zero-sum games. We show this by example: consider
the game given by the system of ODEs in Equation (10) with
ε1 = ε2 = 0.09. The stability analysis of its modified ODEs
for the simultaneous Euler updates shows they diverge when
αh = λh = 0.2. We use the same example to illustrate the
difference in behavior between simultaneous and alternating
updates: the stability analysis shows the modified ODEs
for alternating updates converge to a stable equilibrium. In
both cases, the results obtained using the stability analysis
of the modified ODEs is consistent with empirical outcomes
obtained by following the corresponding discrete updates,
as shown in Figure 3; this would not have been the case had
we used the original system to do stability analysis, which
would have always predicted convergence to an equilibrium.

The modified ODEs help us bridge the gap between theory
and practice: they allow us to extend the reach of stability
analysis to a wider range of techniques used for training,
such as alternating gradient descent. We hope the method
we provide will be used in the context of GANs, to expand
prior work such as that of Nagarajan & Kolter (2017) to
alternating updates. However, the modified ODEs are not
without limitations: they ignore discretization errors smaller
than O(h3), and thus they are not equivalent to the discrete
updates; methods that directly assess the convergence of
discrete updates (e.g. Mescheder et al. (2017)) remain an
indispensable tool for understanding discrete systems.

5. Common-payoff games
When the players share a common loss, as in common-payoff
games, we recover supervised learning with a single loss
E, but with the extra-freedom of training the weights cor-
responding to different parts of the model with possibly
different learning rates and update strategies (see for inst-
nace You et al. (2018) where a per-layer learning rate is used
to obtain extreme training speedups at equal levels of test
accuracy). A special case occurs when the two players with
equal learning rates (α = λ) perform simultaneous gradient
descent. In this case, both modified losses exactly recover
Equation (1). Barrett & Dherin (2021) argue that minimiz-
ing the loss-gradient norm, in this case, has a beneficial
effect.

In this section, we instead focus on alternating gradient
descent. We partition a neural network into two parts, cor-
responding to two sets of parameters, φ for the parameters
closer to the input and θ for the parameters closer to the
output. This procedure freezes one part of the network while
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Figure 4. In common-payoff games alternating updates lead to
higher gradient norms and unstable training.

training the other part and alternating between the two parts.
This scenario may arise in a distributed training setting, as a
form of block coordinate descent. In the case of common-
payoff games, we have the following as a special case of
Theorem 3.2 by substituting f = −∇φE and g = −∇θE:
Corollary 5.1 In a two-player common-payoff game with
common loss E, alternating gradient descent – as described
in equations (8) and (9) - with one update per player follows
a gradient flow given by the modified losses

L̃1 = E +
αh

4

(
‖∇φE‖2 + ‖∇θE‖2

)
(12)

L̃2 = E +
λh

4

(
(1− 2α

λ
) ‖∇φE‖2 + ‖∇θE‖2

)
(13)

with an error of size O(h3) after one update step.

The term (1− 2α
λ ) ‖∇φE‖2 in Eq. (13) is negative when the

learning rates are equal, seeking to maximize the gradient
norm of player φ. According to Barrett & Dherin (2021),
we expect less stable training and worse performance in
this case. This prediction is verified in Figure 4, where we
compare simultaneous and alternating gradient descent for
a MLP trained on MNIST with a common learning rate.

6. Analysis of zero-sum games
We now study zero-sum games, where the two adversarial
players have opposite losses−L1 = L2 = E. We substitute
the updates f = ∇φE and g = −∇θE in the Theorems in
Section 3 and obtain:
Corollary 6.1 In a zero-sum two-player differentiable
game, simultaneous gradient descent updates - as described
in equations (6) and (7) - follows a gradient flow given by
the modified losses

L̃1 = −E +
αh

4
‖∇φE‖2 −

αh

4
‖∇θE‖2 , (14)

L̃2 = E − λh

4
‖∇φE‖2 +

λh

4
‖∇θE‖2 , (15)

with an error of size O(h3) after one update step.

Remark: Discretization drift preserves the adversarial struc-
ture of the game, with the interaction terms maximizing the

gradient norm of the opposite player, while the self terms
are minimizing the player’s own gradient norm.

Remark: The modified losses of zero-sum games trained
with simultaneous gradient descent with different learning
rates are no longer zero-sum.

Corollary 6.2 In a zero-sum two-player differentiable
game, alternating gradient descent - as described in equa-
tions (8) and (9) - follows a gradient flow given by the
modified losses

L̃1 = −E +
αh

4m
‖∇φE‖2 −

αh

4
‖∇θE‖2 (16)

L̃2 = E − λh

4
(1− 2α

λ
) ‖∇φE‖2 +

λh

4k
‖∇θE‖2 (17)

with an error of size O(h3) after one update step.

Remark: The modified losses of zero-sum games trained
with alternating gradient descent are not zero sum.

Remark: Since (1 − 2α
λ ) < 1 in the alternating case there

is always less weight on the term encouraging maximizing
‖∇φE‖2 compared to the simultaneous case under the same
learning rates. For αλ >

1
2 both players minimize ‖∇φE‖2.

6.1. Dirac-GAN: an illustrative example

Mescheder et al. (2018) introduce the Dirac-GAN as an
example to illustrate the often complex training dynamics
in zero-sum games. We follow this example to provide an
intuitive understanding of DD. The generative adversarial
network (Goodfellow et al., 2014) is an example of two-
player game that has been successfully used for distribution
learning. The generator G with parameters θ learns a map-
ping from samples of the latent distribution z ∼ p(z) to the
data space, while the discriminator D with parameters φ
learns to distinguish these samples from data. Dirac-GAN
aims to learn a Dirac delta distribution with mass at zero; the
generator is modeling a Dirac with parameter θ: G(z) = θ
and the discriminator is a linear model on the input with
parameter φ: Dφ(x) = φx. This results in the zero-sum
game given by:

E = l(θφ) + l(0) (18)

where l depends on the GAN formulation used (l(z) =
− log(1 + e−z) for instance). The unique equilibrium point
is θ = φ = 0. All proofs for this section are in the Supple-
mentary Material, together with visualizations.

Reconciling discrete and continuous updates in Dirac-GAN:
The continuous dynamics induced by the gradient field from
Equation (18) preserve θ2 + φ2, while for simultaneous gra-
dient descent θ2+φ2 increases with each update (Mescheder
et al., 2018); different conclusions are reached when analyz-
ing the dynamics of the original continuous system versus



the discrete updates. We show that the modified ODEs given
by equations (14) and (15) resolve this discrepancy, since
simultaneous gradient descent modifies the continuous dy-
namics to increase θ2+φ2, leading to consistent conclusions
from the modified continuous and discrete dynamics.

Explicit regularization stabilizes Dirac-GAN: To counter-
act the instability in the Dirac-GAN induced by the in-
teraction terms we can add explicit regularization with
the same functional form: L1 = −E + u‖∇θE‖2 and
L2 = E + ν‖∇φE‖2 where u, ν are of O(h). We find
that the modified Jacobian for this modified system with
explicit regularization is negative definite if u > hα/4 and
ν > hλ/4, so the system is asymptotically stable and con-
verges to the optimum. Notably, by quantifying DD, we are
able to find the regularization coefficients which guarantee
convergence and show that they depend on learning rates.

7. Experimental analysis of GANs
To understand the effect of DD on more complex adversar-
ial games, we analyze GANs trained for image generation
on the CIFAR10 dataset. We follow the model architec-
tures from Spectral-Normalized GANs (Miyato et al., 2018).
Both players have millions of parameters. We employ the
original GAN formulation, where the discriminator is a bi-
nary classifier trained to classify data from the dataset as
real and model samples as fake; the generator tries to gen-
erate samples that the discriminator considers as real. This
can be formulated as a zero-sum game:

E = Ep∗(x) logDφ(x) + Epθ(z) log(1−Dφ(Gθ(z))

When it comes to gradient descent, GAN practitioners often
use alternating, not simultaneous updates: the discriminator
is updated first, followed by the generator. However, recent
work shows higher-order numerical integrators can work
well with simultaneous updates (Qin et al., 2020). We will
show that DD can be seen as the culprit behind some of
the challenges in simultaneous gradient descent in zero-sum
GANs, indicating ways to improve training performance in
this setting. For a clear presentation of the effects of DD, we
employ a minimalist training setup. Instead of using popular
adaptive optimizers such as Adam (Kingma & Ba, 2015), we
train all the models with vanilla stochastic gradient descent,
without momentum or variance reduction methods.

We use the Inception Score (IS) (Salimans et al., 2016)
for evaluation. Our training curves contain a horizontal
line at the Inception Score of 7.5, obtained with the same
architectures we use, but with the Adam optimizer (the
score reported by Miyato et al. (2018) is 7.42). All learn-
ing curves correspond to the best 10% of models for the
corresponding training setting from a sweep over learning
rates and 5 seeds - for a discussion of variance across seeds
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Figure 5. The effect of DD on zero-sum games. Alternating up-
dates perform better (left), and with equal learning rates (right),
RK4 has O(h5) drift and performs better.

and corresponding plots, as well as best top 20% and 30%
of models see the Supplementary Material. We also re-
port box plots showing the performance quantiles across
all hyperparameter and seeds, together with the top 10%
of models. For SGD we use learning rates {5× 10−2, 1×
10−2, 5× 10−3, 1× 10−3} for each player; for Adam, we
use learning rates {1×10−4, 2×10−4, 3×10−4, 4×10−4},
which have been widely used in the literature (Miyato et al.,
2018). When comparing to Runge-Kutta (RK4) to assess
the effect of DD we always use the same learning rates for
both players. We present results using additional losses,
via LS-GAN (Mao et al., 2017), and report FID results
(Heusel et al., 2017) and full experimental details in the Sup-
plementary Material. The code associated with this work
can be found at https://github.com/deepmind/
deepmind-research/dd_two_player_games.

7.1. Does DD affect training?

We start our experimental analysis by showing the effect of
DD on zero-sum games. We compare simultaneous gradi-
ent descent, alternating gradient descent and Runge-Kutta
4 updates, since they follow different continuous dynam-
ics given by the modified equations we have derived up
to O(h3) error. Figure 5 shows simultaneous gradient de-
scent performs substantially worse than alternating updates.
When compared to Runge-Kutta 4, which has a DD error of
O(h5) when the two players have equal learning rates, we
see that Runge-Kutta performs better, and that removing the
drift improves training. Multiple updates also affect training,
either positively or negatively, depending on learning rates -
see Supplementary Material.

7.2. The importance of learning rates in DD

While in simultaneous updates (Eqs (14) and (15)) the in-
teraction terms of both players maximize the gradient norm
of the other player, alternating gradient descent (Eqs (16)
and (17)) exhibits less pressure on the second player (genera-
tor) to maximize the norm of the first player (discriminator).
In alternating updates, when the ratio between the discrim-
inator and generator learning rates exceeds 0.5, both play-

https://github.com/deepmind/deepmind-research/dd_two_player_games
https://github.com/deepmind/deepmind-research/dd_two_player_games
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Figure 6. Alternating gradient descent performs better for learning
rate ratios which reduce the adversarial nature of DD. The same
learning rate ratios show no advantage in the simultaneous case.

ers are encouraged to minimize the discriminator’s gradient
norm. To understand the effect of learning rate ratios in train-
ing, we performed a sweep where the discriminator learning
rates α are sampled uniformly between [0.001, 0.01], and
the learning rate ratios α/λ are in {0.1, 0.2, 0.5, 1, 2, 5},
with results shown in Figure 6. Learning rate ratios greater
than 0.5 perform best for alternating updates, and enjoy a
substantial increase in performance compared to simultane-
ous updates.

7.3. Improving performance by explicit regularization

We investigate whether canceling the interaction terms be-
tween the two players can improve training stability and
performance in zero-sum games trained using simultaneous
gradient descent. We train models using the losses:

L1 = −E + c1 ‖∇θE‖2 (19)

L2 = E + c2 ‖∇φE‖2 (20)

If c1, c2 are O(h) we can ignore the DD from these regu-
larization terms, since their effect on DD will be of order
O(h3). We can set coefficients to be the negative of the coef-
ficients present in DD, namely c1 = αh/4 and c2 = λh/4;
we thus cancel the interaction terms which maximize the
gradient norm of the other player, while keeping the self
terms, which minimize the player’s own gradient norm. We
show results in Figure 7: canceling the interaction terms
leads to substantial improvement compared to SGD, ob-
tains the same peak performance as Adam (though requires
more training iterations) and recovers the performance of
Runge-Kutta 4 (Figure 5). Unlike Adam, we do not ob-
serve a decrease in performance when trained for longer
but report higher variance in performance across seeds - see
Supplementary Material.

Connection with Symplectic Gradient Adjustment (SGA):
Balduzzi et al. (2018) proposed SGA to improve the dynam-
ics of gradient-based method for games, by counter-acting
the rotational force of the vector field. Adjusting the gra-
dient field can be viewed as modifying the losses as in
Equation (20); the modification from SGA cancels the inter-
action terms we identified. However, it is unclear whether
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Figure 7. Simultaneous updates: Explicit regularization canceling
the interaction terms of DD improves performance, both for the
best performing models (left) and across a sweep (right).
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Figure 8. Comparison with Symplectic Gradient Adjustment
(SGA) and Consensus Optimization (CO): DD motivates the form
of explicit regularization and provides the optimal regularization
coefficients, without requiring a larger hyperparameter sweep.

the fixed coefficients of c1 = c2 = 1
2 used by SGA are

always optimal while our analysis shows the strength of
DD changes with the exact discretization scheme, such as
the step size. Indeed, as our experimental results in Fig-
ure 8(a) show, adjusting the coefficient in SGA strongly
affects training.

Connection with Consensus Optimization (CO): Mescheder
et al. (2017) analyze the discrete dynamics of gradient de-
scent in zero-sum games and prove that, under certain as-
sumptions, adding explicit regularization that encourages
the players to minimize the gradient norm of both players
guarantees convergence to a local Nash equilibrium. Their
approach includes canceling the interaction terms, but also
requires strengthening the self terms, using losses:

L1 = −E + c1 ‖∇θE‖2 + s1 ‖∇φE‖2 (21)

L2 = E + s2 ‖∇θE‖2 + c2 ‖∇φE‖2 , (22)

where they use s1 = s2 = c1 = c2 = γ where γ is a hyper-
parameter. In order to understand the effect of the self and
interaction terms, we compare to CO, as well as a similar
approach where we use coefficients proportional to the drift,
namely s1 = αh/4 and s2 = λh/4; this effectively doubles
the strength of the self terms in DD. We show results in Fig-
ure 8(b). We first notice that CO can improve results over
vanilla SGD. However, similarly to what we observed with
SGA, the regularization coefficient is important and thus re-
quires a hyperparameter sweep, unlike our approach which
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Figure 9. Alternating updates: DD tells us which explicit regular-
ization terms to use; canceling only the discriminator interaction
term improves sensitivity across hyperparameters (right).

uses the coefficients provided by the DD. We further notice
that strengthening the norms using the DD coefficients can
improve training, but performs worse compared to only can-
celing the interaction terms. This shows the importance of
finding the right training regime, and that strengthening the
self terms does not always improve performance.

Alternating updates: We perform the same exercise for alter-
nating updates, where c1 = αh/4 and c2 = λh/4(1− 2α

λ ).
We also study the performance obtained by only canceling
the discriminator interaction term, since when α/λ > 0.5
the generator interaction term minimizes, rather than maxi-
mizes, the discriminator gradient norm and thus the gener-
ator interaction term might not have a strong destabilizing
force. We observe that adding explicit regularization mainly
brings the benefit of reduced variance when canceling the
discriminator interaction term (Figure 9). As for simultane-
ous updates, we find that knowing the form of DD guides us
to a choice of explicit regularization: for alternating updates
canceling both interaction terms can hurt training, but the
form of the modified losses suggests that we should only
cancel the discriminator interaction term, with which we
can obtain some gains.

Does canceling the interaction terms help for every choice
of learning rates? The substantial performance and stability
improvement we observe applies to the performance ob-
tained across a learning rate sweep. For individual learning
rate choices however, canceling the interaction terms is not
guaranteed to improve learning.

7.4. Extension to non-zero-sum GANs

Finally, we extend our analysis to GANs with the non-
saturating loss for the generator EG = − logDφ(Gθ(z))
introduced by Goodfellow et al. (2014), while keeping the
discriminator loss unchanged as ED = Ep∗(x) logDφ(x) +
Epθ(z) log(1−Dφ(Gθ(z)). In contrast with the dynamics
from zero-sum GANs we analyzed earlier, changing from
simultaneous to alternating updates results in little change in
performance - as can be seen in Figure 10. Despite having
the same adversarial structure and the same discriminator
loss, changing the generator loss changes the relative perfor-
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Figure 10. The effect of DD depends on the game: its effect is less
strong for the non-saturating loss.

mance of the different discrete update schemes. Since the
effect of DD strongly depends on the game, we recommend
analyzing the performance of discrete numerical schemes
on a case by case basis. Indeed, while for general two-player
games we cannot always write modified losses as for the
zero-sum case – see the Supplementary Material for a dis-
cussion – we can use Theorems 3.1 and 3.2 to understand
the effect of the drift for specific choices of loss functions.

8. Related work
Backward error analysis: There have been a number of
recent works applying backward error analysis to machine
learning in the one-player case (supervised learning), which
can potentially be extended to the two-players settings. In
particular, Smith et al. (2021) extended the analysis of Bar-
rett & Dherin (2021) to stochastic gradient descent. Kunin
et al. (2021) used modified gradient flow equations to show
that discrete updates break certain conservation laws present
in the gradient flows of deep learning models. Franca et al.
(2020) compare momentum and Nesterov acceleration us-
ing their modified equations. França et al. (2021) used
backward error analysis to help devise optimizers with a
control on their stability and convergence rates. Li et al.
(2017) used modified equation techniques in the context of
stochastic differential equations to devise optimizers with
adaptive learning rates. Other recent works such as Unlu &
Aitchison (2020) and Jastrzebski et al. (2020) noticed the
strong impact of implicit gradient regularization in the train-
ing of over-parametrized models with SGD using different
approaches. These works provide evidence that DD has a
significant impact in deep learning, and that backward error
analysis is a powerful tool to quantify it. At last, note that a
special case of Theorem 3.1 for zero-sum games with equal
learning rates can be found in Lu (2021).

Two-player games: As one of the best-known examples
at the interface of game theory and deep learning, GANs
have been powered by gradient-based optimizers as other
deep neural networks. The idea of an implicit regulariza-
tion effect induced by simultaneous gradient descent in
GAN training was first discussed in Schäfer et al. (2020);
the authors show empirically that the implicit regulariza-



Explicit First player (φ) Second player (θ)

DD (S) 7 αh
4 ‖∇φE‖2 − αh

4 ‖∇θE‖2 −λh4 ‖∇φE‖2 + λh
4 ‖∇θE‖2

DD (A) 7 αh
4m ‖∇φE‖2 − αh

4 ‖∇θE‖2 (2α−λ)h
4 ‖∇φE‖2 + λh

4k ‖∇θE‖2

Cancel DD interaction terms (S) X αh
4 ‖∇θE‖2 λh

4 ‖∇φE‖2

Cancel DD interaction terms (A) X αh
4 ‖∇θE‖2 − (2α−λ)h

4 ‖∇φE‖2

SGA (S) X 1
2 ‖∇θE‖2 1

2 ‖∇φE‖2

Consensus optimization (S) X η ‖∇φE‖2 + η ‖∇θE‖2 η ‖∇φE‖2 + η ‖∇θE‖2

Locally stable GAN (S) X X η ‖∇φE‖2

ODE-GAN (S) X η ‖∇θE‖2 X

Table 1. Comparing DD with explicit regularization methods in zero-sum games. SGA (without alignment, see the Supplementary
Material and Balduzzi et al. 2018), Consensus Optimization (Mescheder et al., 2017), Locally Stable GAN (Nagarajan & Kolter, 2017),
ODE-GAN (Qin et al., 2020). We assume a minθ minφ game with learning rates αh and λh and number of updatesm and k, respectively.
S and A denote simultaneous and alternating updates.

tion induced by gradient descent can have a positive effect
on GAN training, and take a game theoretic approach to
strengthening it using competitive gradient descent (Schäfer
& Anandkumar, 2019). By quantifying the DD induced by
gradient descent using backward error analysis, we shed
additional light on the regularization effect that discrete up-
dates have on GAN training, and show it has both beneficial
and detrimental components (as also shown in Daskalakis
& Panageas (2018) with different methods in the case of
simultaneous GD). Moreover, we show that the explicit reg-
ularization inspired by DD results in drastically improved
performance. The form of the modified losses we have de-
rived are related to explicit regularization for GANs, which
has been one of the most efficient methods for stabilizing
GANs as well as other games. Some of the regularizers
constrain the complexity of the players (Miyato et al., 2018;
Gulrajani et al., 2017; Brock et al., 2018), while others
modify the dynamics for better convergence properties (Qin
et al., 2020; Mescheder et al., 2018; Nagarajan & Kolter,
2017; Balduzzi et al., 2018; Wang et al., 2019; Mazumdar
et al., 2019). Our approach is orthogonal in that, with back-
ward analysis, we start from understanding the most basic
gradient steps, underpinning any further modifications of
the losses or gradient fields. Importantly, we discovered
a relationship between learning rates and the underlying
regularization. Since merely canceling the effect of DD
is insufficient in practice (as also observed by Qin et al.
(2020)), our approach complements regularizers that are
explicitly designed to improve convergence. We leave to
future research to further study other regularizers in com-
bination with our analysis. We summarize some of these
regularizers in Table 1.

To our knowledge, this is the first work towards finding
continuous systems which better match the gradient descent
updates used in two player games. Studying discrete al-
gorithms using continuous systems has a rich history in
optimization (Su et al., 2016; Wibisono et al., 2016). Re-

cently, models that directly parametrize differential equa-
tions demonstrated additional potential from bridging the
discrete and continuous perspectives (Chen et al., 2018;
Grathwohl et al., 2018).

9. Discussion
We have shown that using modified continuous systems to
quantify the discretization drift induced by gradient descent
updates can help bridge the gap between the discrete op-
timization dynamics used in practice and the analysis of
the original systems through continuous methods. This al-
lowed us to cast a new light on the stability and performance
of games trained using gradient descent, and guided us to-
wards explicit regularization strategies inspired by these
modified systems. We note however that DD merely mod-
ifies a game’s original dynamics, and that the DD terms
alone can not fully characterize a discrete scheme. In this
sense, our approach only complements works analyzing the
underlying game (Shoham & Leyton-Brown, 2008). Also,
it is worth noting that our analysis is valid for learning rates
small enough that errors of size O(h3) can be neglected.

We have focused our empirical analysis on a few classes of
two-player games, but the effect of DD will be relevant for
all games trained using gradient descent. Our method can
be expanded beyond gradient descent to other optimization
methods such as Adam (Kingma & Ba, 2015), as well as to
the stochastic setting as shown in Smith et al. (2021). We
hope that our analysis of gradient descent provides a useful
building block to further the understanding and performance
of two-player games.
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