
Supplemental Material for Benchmarks,
Algorithms, and Metrics for Hierarchical Disentanglement

Andrew Slavin Ross 1 Finale Doshi-Velez 1

A. Appendix
A.1. Training and Architecture Details

For Chopsticks, our encoders and decoders used two hid-
den layers of width 256, and our loss function Lx was
defined as a zero-centered Gaussian negative log likelihood
with σ = 0.1. For Spaceshapes, encoders and decoders
used the 7-layer convolutional architecture from Burgess
et al. (2018), and our loss function Lx was Bernoulli nega-
tive log likelihood. All models were implemented in Ten-
sorflow; code is available at https://github.com/
dtak/hierarchical-disentanglement.

For both models, the assignment loss La was set to mean-
squared error, but only for assignments that were de-
fined. This was implemented by setting undefined assign-
ment components to -1, and then defining La(a, a′) =∑
i 1[a

′
i≥0](ai − a′i)2.

All activation functions were set to ReLU (max(0, x)) or
Softplus (ln(1+ex)), e.g. for the initial smooth autoencoder,
which was also trained with dimensionality equal to one plus
the maximum intrinsic dimensionality of the dataset. We
investigate varying this parameter in Fig. A.5 and find it can
be much larger, and perhaps would have produced better
results (though nearest neighbor calculation and local SVD
computations would have been slower).

All models were trained for 50 epochs with a batch size
of 256 on a dataset of size 100,000, split 90%/10% into
train/test. We used the Adam optimizer with a learning rate
starting at 0.001 and decaying by 1

10 halfway and three-
quarters of the way through training.

For COFHAE, we selected softmax temperature τ , the as-
signment penalty strength λ1, and the adversarial penalty
strength λ2 based on training set reconstruction error and
MIMOSA assignment accuracy. Splitting off a separate val-
idation set was not necessary, as the most common problem
we faced was poor convergence, not overfitting; the adver-

1Harvard University, Cambridge, MA, USA. Correspondence
to: Andrew Slavin Ross <andrew ross@g.harvard.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

sarial penalty would dominate and prevent the procedure
from learning a model that could reconstruct X or A.

Specifically, for each restart, we ran COFHAE with τ in
{ 12 ,

2
3 , 1}, λ1 in {10, 100, 1000}, and λ2 in {1, 10, 100}.

We then selected the model with the lowest training MSE∑
n ||xn − x′n||22, but restricting ourselves to the 33.3% of

models with the lowest assignment loss
∑
n La(an, a′n).

For evaluating R4 and R4
c , we used gradient boosted deci-

sion trees, which were faster to train than neural networks.

A.2. Additional Chopsticks Details

In this section, we clarify the generative process behind the
different variants of Chopsticks, and discuss alternatives.

Chopsticks can be generated by the following Python code
(the exact code we used is slightly different due to the need
to save ground-truth factors):

def Bern(p):
return int(np.random.uniform() < p)

def Unif(a,b):
return a + np.random.uniform() * (b-a)

def stick_segment(variant, T):
slope = Unif(-0.01, 0.01) * np.arange(T)
inter = Unif(-0.2, 0.2) + np.zeros(T)
if variant == ’slope’: return slope
elif variant == ’inter’: return inter
elif variant == ’both’: return slope+inter
elif variant == ’either’:
return slope if Bern(0.5) else inter

def chopsticks(depth, variant, T=64):
stick = stick_segment(variant, T)
chop = Bern(1-np.power(2.0,-(depth-1)))
if chop:
stick2 = chopsticks(depth-1, variant, T//2)
stick[T//2:] += stick2

return stick

For all variants, at depth d ≥ 1, we sample a linear “stick”,
and then “chop” it with probability 1− 2−(d−1). If we chop
the stick, then we recursively generate a new stick of half
the length, which we add to the second half of the current
stick. We choose chop probabilities in this way so that, on
average, we have equal counts of samples at each depth.

https://github.com/dtak/hierarchical-disentanglement
https://github.com/dtak/hierarchical-disentanglement

Supplemental Material for Hierarchical Disentanglement

(a) Chopsticks instances corrupted by Gaussian noise.

(b) Effect of noise on an initial AE representation.

(c) Effect of noise on MIMOSA for two dataset variants.

Figure A.1. Illustration of the sensitivity of MIMOSA to data noise.
In preliminary experiments, we find that noise poses the greatest
problem for identifying the lowest-dimensional components, e.g.
the 1D components in (b) that end up being classified as 2D or 3D.
Tuning parameters would help, but we lack labels to cross-validate.

Although this framework already gives us a wide diversity
of datasets, we could consider others. One option is to
add noise, which hurts MIMOSA, though it depends on the
dataset (Fig. A.1). Another option is to sample slopes and
intercepts non-uniformly or even over non-convex sets; see
e.g. Fig. A.2a, where we set slope/intercept magnitudes at
least a threshold away from 0, which introduces gaps into
the initial representation. In general, MIMOSA continues
to return the right hierarchy for all such slope/intercept dis-
tributions, though COFHAE disentanglement tends to drop
when variables are sampled from Gaussians, likely because
of symmetry (with proper rescaling, we can rotate factor-
ized Gaussians in any direction and preserve factorization;
the same is not true for uniforms, though Locatello et al.
(2018) show there must exist analogous, if more complex,

(a) Effect of setting a minimum slope/intercept magnitude.

(b) Effect of overwriting rather than offsetting slope.

Figure A.2. Initial AE representations for alternative variants of
Chopsticks. Setting a minimum slope/intercept magnitude (a)
causes representations to contain gaps. Overwriting rather than
offsetting slope (b) changes the angle of lower- within higher-
dimensional manifolds. Neither change breaks MIMOSA, which
can still find the right hierarchy as long as manifolds remain simi-
larly embedded with similar local SVD angles over gaps.

transformations). Yet another possibility is to overwrite the
slope and/or intercept when recursing, rather than offset-
ting them (Fig. A.2b). Overwriting slope does not affect
MIMOSA performance, though it changes the orientation
of lower-dimensional within higher-dimensional manifolds,
which can affect COFHAE), but overwriting the intercept
can break the geometrical nesting of manifolds at large
slopes. Although we considered many of these options, we
ultimately decided it was pedagogically best for our bench-
mark to distribute instances over maximally simple (but still
arbitrarily deep) underlying manifold structures.

A.3. Computing H-error

Our H-error metric is meant to quantify the “edit distance”
between two dimension hierarchies H and Ĥ , but in a way
that is invariant to merge-up and push-down operations, as
well as reorderings of child groups. To implement it, we first
convertH and Ĥ to a canonical form where each dimension
group is labeled by the minimum downstream dimension
of its leaves (which equals the dimension of the manifold
component at the matching location in the original enclosure
hierarchy), which renders us invariant to merge-up and push-
down operations. We then reorder children in terms of the
(sorted) concatenation of their downstream labels, which
renders us invariant to child ordering in most cases. Finally,
we apply the Zhang-Shasha algorithm for tree edit distance
between ordered, labeled trees (Zhang and Shasha, 1989;
Paassen et al., 2015) to get our final H-error.

Supplemental Material for Hierarchical Disentanglement

A.4. Complexity and Runtimes

Figure A.3. Mean runtimes and percentage breakdowns for
COFHAE and MIMOSA on Chopsticks and Spaceshapes, based
on Tensorflow implementations running on single GPUs (exact
model varies between Tesla K80, Tesla V100, GeForce RTX 2080,
etc). Runtimes tend to be dominated by COFHAE, which is sim-
ilar in complexity to existing adversarial representation learning
methods (e.g. FactorVAE).

Per Fig. A.3, the total runtime of our method is dominated
by COFHAE, an adversarial autoencoder method which has
the same complexity as FactorVAE (Kim and Mnih, 2018)
(linear in dataset size N and number of training epochs, and
strongly affected by GPU speed).

MIMOSA could theoretically take more time, however,
as the complexity of constructing a ball tree (Omohun-
dro, 1989) for nearest neighbor queries is O(|Z|N logN).
As such, initial dimensionality reduction is critical; in our
Spaceshapes experiments, |Z| is 7, whereas |X| is 4096.

Other MIMOSA steps can also take time. With a
num nearest neighbors of k, the complexity of running
local SVD on every point in the dataset is O(N(|Z|2k +
|Z|k2 + k3)), providing another reason to reduce initial
dimensionality and keep neighborhood size manageable
(though ideally k should increase with |Z| to robustly learn
local manifold directions). Iterating over the dataset in
BuildComponent and computing cosine similarity will also
have complexity at least O(Nkd3(d + |Z|)) for compo-
nents of local dimensionality d, and detecting component
boundaries can actually have complexity O(Nked) (if this
is implemented, as in our experiments, by checking if pro-
jected points are contained in their neighbors’ convex hulls—
though we also explored a much cheaper O(Nk2d) strategy
of checking for the presence of neighbors in all principal
component directions that worked almost as well).

Although these scaling issues are worth noting, MIMOSA
was still relatively fast in our experiments, where runtimes
were dominated by neural network training (Fig. A.3).

A.5. MIMOSA Hyperparameters

In this section, we list and describe all hyperparameters for
MIMOSA, along with values that we used for our main
results. We also present sensitivity analyses in Fig. A.5.

MIMOSA initial autoencoder (Algorithm 1, line 1)

• initial dim - the dimensionality of the initial
smooth autoencoder. As the sensitivity analysis in
Fig. A.5 shows, this does not need to be as low as the
intrinsic dimensionality of the data, which MIMOSA
will estimate, and ideally should be a little larger. We
defaulted to using the maximum intrinsic dimensional-
ity plus 1; in a real-world context where this informa-
tion is not available, it can be estimated by starting at
initial dim = |X| and reducing until initial autoen-
coder reconstruction error starts increasing.

• Training and architectural details appropriate for the
data modality (e.g. convolutional layers for images).
See §A.1 for our choices.

LocalSVD (Algorithm 3)

• num nearest neighbors - the neighborhood size
for local SVD and later traversal. We used 40. Must
be larger than initial dim; could also be replaced
with a search radius.

• ransac frac - the fraction of neighbors to refit
SVD. We used 2/3. Note that we do not run traditional,
multi-step RANSAC (Fischler and Bolles, 1981), but
a more efficient two-step approximation, where we
define the loss term based an aggregation of recon-
struction errors across dimensions. Another (less ef-
ficient but potentially more robust) option would be
to iteratively re-fit SVD using the points with lowest
reconstruction error at each dimension, and check if
the resulting eigenvalues meet our cutoff criteria.

• eig cumsum thresh - the minimum fraction of
variance SVD dimensions must explain to determine lo-
cal dimensionality. We used 0.95. For noisy or sparse
data, it might be useful to reduce this parameter.

• eig decay thresh - the minimum multiplicative
factor by which SVD eigenvalues must decay to deter-
mine local dimensionality. We used 4. It might also be
useful to reduce this parameter for sparse data.

Note that our LocalSVD algorithm can be seen as a faster
version of Multiscale SVD (Little et al., 2009), which is used
in an analogous way by Mahapatra and Chandola (2017),
but would require repeatedly computing singular value de-
compositions over different search radii for each point.

BuildComponent (Algorithm 5)

• cos simil thresh - neighbors’ local SVDs must
be this similar to add to the component. This corre-

Supplemental Material for Hierarchical Disentanglement

Algorithm 3 LocalSVD(Z)

1: Run SVD on Z (a design matrix of dimension num nearest neighbors by initial dim)
2: if ransac frac < 1 then
3: for each dimension d from 1 to initial dim− 1 do
4: for each point zn do
5: Compute the reconstruction error for zn using the only first d SVD dimensions
6: end for
7: end for
8: Take the norm of reconstruction errors across dimensions, giving a vector of length num nearest neighbors

9: Re-fit SVD on points whose error-norms are less than the 100× ransac frac percentile value.
10: end if
11: for each dimension d from 1 to initial dim− 1 do
12: Check if the cumulative sum of the first d eigenvalues is at least eig cumsum thresh
13: Check if the ratio of the dth to the d+ 1st eigenvalue is at least eig decay thresh
14: if both of these conditions are true then
15: return only the first d SVD components
16: end if
17: end for
18: return the full set of SVD components otherwise

Algorithm 4 TangentPlaneCos(U, V)

1: if U and V are equal-dimensional then
2: return |det(U · V T)|
3: else
4: return 0
5: end if

Algorithm 5 BuildComponent(zi, neighbors, svds)

1: Initialize component to zi and neighbors zj not already in other components where TangentPlaneCos(svdsi, svdsj) ≥
cos simil thresh (Algorithm 4).

2: while the component is still growing do
3: Add all points zk for which at least contagion num of their neighbors z` are already in the component with

TangentPlaneCos(svdsk, svds`) ≥ cos simil thresh.
4: Skip adding any zk already in another component.
5: end while
6: return the set of points in the component

Algorithm 6 MergeComponents(components, svds)

1: Discard components smaller than min size init.
2: for each component ci do
3: Construct a local ball tree for the points in ci.
4: Set ci.edges to points not contained in the convex hull of their neighbors in local SVD space.
5: end for
6: Initialize edge overlap matrix M of size |components| by |components| to 0.
7: for each ordered pair of equal-dimensional components (ci, cj) do
8: Set Mij to the fraction of points in ci.edges for which the closest point in cj .edges has local SVD tangent plane

similarity above cos simil thresh.
9: end for

10: Average M with its transpose to symmetrize.
11: Merge all components ci 6= cj of equal dimensionality d where Mij ≥ min common edge frac(d).
12: Discard components smaller than min size merged.
13: return the merged set of components

Supplemental Material for Hierarchical Disentanglement

Algorithm 7 ConstructHierarchy(components)

1: for each component ci do
2: Set ci.neighbor lengthscale to the average distance of points to their nearest neighbors inside the component (computed

using the local ball tree from Algorithm 6)
3: end for
4: for each pair of different-dimensional components (ci, cj), ci higher-dimensional do
5: Compute the average distance from points in ci to their nearest neighbors in cj (via ball tree).
6: Divide this average distance by ci.neighbor lengthscale.
7: if the resulting ratio ≤ neighbor lengthscale mult then
8: Set cj ∈ ci (cj is enclosed by ci)
9: end if

10: end for
11: Create a root node with edges to all components which do not enclose others.
12: Transform the component enclosure DAG into a tree (where enclosing components are children of enclosed components)

by deleting edges which:

1. are redundant because an intermediate edge exists, e.g. if c1 ∈ c2 ∈ c3, we delete the edge between c1 and c3.

2. are ambiguous because a higher-dimensional component encloses multiple lower-dimensional components (i.e.
has multiple parents). In that case, preserve only the edge with the lowest distance ratio.

13: Convert the resulting component enclosure tree into a dimension hierarchy:

1. If the root node has only one child, set it to be the root. Otherwise, begin with a dimension group with a single
categorical dimension whose options point to groups containing each child.

2. For the rest of the component tree, add continuous dimensions until the total number of continuous dimensions up
to the root equals the component’s dimensionality.

3. If a component has children, add a categorical dimension that includes those child groups as options (recursing
down the tree), along with an empty group (∅) option.

14: return the dimension hierarchy

Algorithm 8 HAEθ.encode(x; τ)

1: Encode x using any neural network architecture as a flat vector zpre, with size equal to the number of continuous
variables plus the number of categorical options in HAEθ.hierarchy.

2: Associate each group of dimensions in the flat vector with variables in the hierarchy.
3: For all of the categorical variables, pass their options through a softmax with temperature τ .
4: Use the softmax outputs to recursively mask all components of zpre corresponding to variables below each option in

HAEθ.hierarchy.
5: return the masked representation, separated into discrete a′, continuous z, as well as the mask m (for determining

active dimensions later).

Figure A.4. Comparison of the latent spaces learned by MIMOSA initial autoencoders with ReLU (left) vs. Softplus (right) activations on
three versions of Chopsticks (depth=1 either, depth=2 either, and depth=3 slope). Each plot shows encoded data samples colored by
their ground-truth location in the dimension hierarchy. Because ReLU activations are non-differentiable at 0, the resulting latent manifolds
contain sharp corners where local SVD directions change discontinuously, causing issues for BuildComponent and MergeComponents
within MIMOSA (Algorithms 5 and 6). Representations learned by autoencoders with smooth activation functions work much better.

Supplemental Material for Hierarchical Disentanglement

Figure A.5. Effect of varying different hyperparameters (and ablating different robustness techniques) on MIMOSA. Default values are
shown with vertical gray dotted lines, and for each hyperparameter (top to bottom), average coverage (left), purity (middle), and H error
(right) when deviating from defaults are shown for three versions of the Chopsticks dataset. Results suggest both a degree of robustness
to changes (degradations tend not to be severe for small changes), but also the usefulness of various components; for example, results
markedly improve on some datasets with contagion num>1 and ransac frac<1 (implying contagion dynamics and RANSAC both
help). Many parameters exhibit tradeoffs between component purity and dataset coverage.

Supplemental Material for Hierarchical Disentanglement

sponds to the ε parameter from Mahapatra and Chan-
dola (2017). We used 0.99 for Chopsticks and 0.95 for
Spaceshapes; in general, we feel this is one of the most
important parameters to tune, and should generally be
reduced in the presence of noise or data scarcity.

• contagion num - only add similar points to a man-
ifold component when a threshold fraction of their
neighbors have already been added. This is use-
ful for robustness, and corresponds to the T param-
eter from Mahler (2020) (but expressed as a num-
ber rather than a fraction). We used 5 for Chop-
sticks and 3 for Spaceshapes. Values above 20% of
num nearest neighbors will likely produce poor re-
sults, and we found the greatest increases in robustness
just going from 1 (or no contagion dynamics) to 2.

MergeComponents (Algorithm 6)

• min size init - discard initial components smaller
than this, which helps speed up the algorithm (by re-
ducing the number of pairwise comparisons) and avoid
incorrect merges through single-point components. We
used 0.02% of the dataset size, or 20 points.

• min size merged - discard merged components
smaller than this, which helps exclude spurious higher-
dimensional interstitial points that appear at the bound-
aries where lower-dimensional components intersect.
We used 2% of the dataset size, or 2000 points.

• min common edge frac(d) - the minimum frac-
tion of edges that two manifold components must share
in common to merge, as a function of dimensionality
d. We used 2−d−1 + 2−d−2; this is based on the idea
that two neighboring (possibly distorted) hypercubes
of dimension d should match on one of their sides;
since they have 2d sides, the fraction of matching edge
points would be 2−d. However, for robustness (as not
all manifold segments will be hypercubes, and even
then some edge points may not match), we average
that fraction with the smaller fraction that would need
for a d+ 1 dimensional hypercube, or 2−d−1, for our
resulting 2−d−1 + 2−d−2. In general, we found that
this choice was not critical in the noiseless data case,
as matches were common for separated components
with the same true assignments and rare for others, but
it did help in cases with many intersecting components.

ConstructHierarchy (Algorithm 7)

• neighbor lengthscale mult - the threshold
for deciding whether a higher-dimensional compo-
nent “encloses” a lower-dimensional component, ex-
pressed as a ratio of (1) the average distance from
lower-dimensional component points to their near-
est neighbors in the higher-dimensional component
(inter-component distance), to (2) the average dis-

tance of points in the higher-dimensional component to
their nearest neighbors in that same component (intra-
component distance). We used 10, which we found
was robust for our benchmarks, though it may need
to be increased if ground-truth components are higher-
dimensional than those in our benchmarks.

References
Christopher P Burgess, Irina Higgins, Arka Pal, Loic

Matthey, Nick Watters, Guillaume Desjardins, and
Alexander Lerchner. Understanding disentangling in beta-
vae. arXiv preprint arXiv:1804.03599, 2018.

Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Communi-
cations of the ACM, 24(6):381–395, 1981.

Hyunjik Kim and Andriy Mnih. Disentangling by factoris-
ing. In International Conference on Machine Learning,
2018.

Anna V Little, Jason Lee, Yoon-Mo Jung, and Mauro Mag-
gioni. Estimation of intrinsic dimensionality of samples
from noisy low-dimensional manifolds in high dimen-
sions with multiscale svd. In 2009 IEEE/SP 15th Work-
shop on Statistical Signal Processing, 2009.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar
Rätsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier
Bachem. Challenging common assumptions in the unsu-
pervised learning of disentangled representations. arXiv
preprint arXiv:1811.12359, 2018.

Suchismit Mahapatra and Varun Chandola. S-isomap++:
multi manifold learning from streaming data. In 2017
IEEE International Conference on Big Data (Big Data),
pages 716–725. IEEE, 2017.

Barbara I Mahler. Contagion dynamics for manifold learn-
ing. arXiv preprint arXiv:2012.00091, 2020.

Stephen M Omohundro. Five balltree construction algo-
rithms. International Computer Science Institute Berke-
ley, 1989.

Benjamin Paassen, Bassam Mokbel, and Barbara Hammer.
A toolbox for adaptive sequence dissimilarity measures
for intelligent tutoring systems. In EDM, page 632, 2015.

Kaizhong Zhang and Dennis Shasha. Simple fast algorithms
for the editing distance between trees and related prob-
lems. SIAM journal on computing, 1989.

Supplemental Material for Hierarchical Disentanglement

Figure A.6. A fuller version of main paper Fig. 5 showing COFHAE ablations on all datasets. Hierarchical disentanglement tends to
be low for flat AEs (Flat), better with ground-truth hierarchy H (Hier H), and even better after adding supervision for ground-truth
assignments A (H+A). Adding a FactorVAE-style marginal TC penalty (H+A+TC(Z)) sometimes helps disentanglement, but making
that TC penalty conditional (H+A+TC(Z|on), i.e. COFHAE) tends to help more, bringing it close to the near-optimal disentanglement
of a hierarchical model whose latent representation is fully supervised (H+A+Z). Partial exceptions include the hardest three datasets
(Spaceshapes and depth-3 compound Chopsticks), where disentanglement is not consistently near 1; this may be due to non-identifiability
or adversarial optimization difficulties.

Figure A.7. Varying disentanglement penalty hyperparameters for baseline algorithms (TCVAE, FactorVAE, CascadeVAE, and JointVAE).
Markers indicate mean R4

c over 5 trials, with standard deviation errorbars. In contrast to COFHAE (mean performance in red, with
standard deviation in pink), no setting produces near-optimal disentanglement, and disentanglement often decreases with increasing
disentanglement penalty strength.

Supplemental Material for Hierarchical Disentanglement

(a) AE pairwise histograms and R4/R4
c scores (b) TCVAE pairwise histograms and R4/R4

c scores

(c) COFHAE pairwise histograms and R4/R4
c scores

Figure A.8. Pairwise histograms of ground-truth vs. learned variables for a flat autoencoder (top left), β-TCVAE (top right), and
the best-performing run of COFHAE (bottom) on Spaceshapes. Histograms are conditioned on both variables being active, and
dimension-wise components of the R4

c score are shown on the right. β-TCVAE does a markedly better job disentangling certain
components than the flat autoencoder, but in this case, COFHAE is able to fully disentangle the ground-truth by modeling the discrete
hierarchical structure. See Fig. A.9 for a hierarchical latent traversal, or https://hreps.s3.amazonaws.com/viz/index.
html?dataset=spaceshapes&model=cofhae for an interactive visualization.

https://hreps.s3.amazonaws.com/viz/index.html?dataset=spaceshapes&model=cofhae
https://hreps.s3.amazonaws.com/viz/index.html?dataset=spaceshapes&model=cofhae

Supplemental Material for Hierarchical Disentanglement

Figure A.9. Hierarchical latent traversal plot for the Spaceshapes COFHAE model shown in Fig. A.8c. Individual latent traversals show
the effects of linearly sweeping each active dimension from its 1st to 99th percentile value (center column shows the same input with
intermediate values for all active dimensions). Consistent with Fig. A.8c, the model is not perfectly disentangled, though primary
correspondences are clear: star shine is modeled by Z5, moon phase is modeled by Z8, ship angle is modeled by Z10, ship jetlen

is modeled by Z12, and (x, y) are modeled by (Z3, Z4), (Z6, Z7), and (Z11, Z9) respectively for each shape. See also an interactive
visualization.

Figure A.10. Three different potential hierarchies for Spaceshapes which all have the same structure of variable groups and dimensionalities,
but with different distributions of continuous variables across groups. The ambiguity in this case is that the continuous variable that
modifies each shape (phase, shine, angle) could either be a child of the corresponding shape category, or be “merged up” and combined
into a single top-level continuous variable that controls the shape in different ways based on the category. Alternatively, the location
variables x and y could instead be “pushed down” from the top level and duplicated across each shape category. In each of these cases, the
learned representation still arguably disentangles the ground-truth factors—in the sense that for any fixed categorical assignment, there is
still 1:1 correspondence between all learned and ground-truth continuous factors. We deliberately design our R4

c and H-error metrics in
§6 to be invariant to these transformations, leaving this specific disambiguation to future work.

Figure A.11. MIMOSA-learned initial encoding (left), components (middle), and hierarchy (right) for Spaceshapes. Initial points are in 7
dimensions and projected to 3D for plotting. Three identified components are 3D and one is 4D. Analogue of Fig. 3 in the main text.

https://hreps.s3.amazonaws.com/viz/index.html?dataset=spaceshapes&model=cofhae
https://hreps.s3.amazonaws.com/viz/index.html?dataset=spaceshapes&model=cofhae

Supplemental Material for Hierarchical Disentanglement

Figure A.12. MIMOSA-learned initial encoding (left), 2D and 1D components (middle), and hierarchy (right) for depth-2 Chopsticks
varying the slope. Analogue of Fig. 3 in the main text.

Figure A.13. MIMOSA-learned initial encoding (left), 2D, 1D, and 3D components (middle), and hierarchy (right) for depth-3 Chopsticks
varying the slope. Initial points are in 4 dimensions and projected to 3D for plotting. Analogue of Fig. 3 in the main text.

Figure A.14. MIMOSA-learned initial encoding (left), 2D and 4D components (middle), and hierarchy (right) for depth-2 Chopsticks
varying both slope and intercept. Initial points are in 5 dimensions and projected to 3D for plotting. Analogue of Fig. 3 in the main text.

Figure A.15. MIMOSA-learned initial encoding (left), 2D, 4D, and 6D components (middle), and hierarchy (right) for depth-2 Chopsticks
varying both slope and intercept. Initial points are in 7 dimensions and projected to 3D for plotting. Analogue of Fig. 3 in the main text.

Figure A.16. MIMOSA-learned initial encoding (left), 1D-3D components (middle), and hierarchy (right) for depth-3 Chopsticks varying
either slope or intercept. Note that the learned hierarchy is not quite correct (two nodes at the deepest level are missing). Initial points are
in 5 dimensions and projected to 3D. Analogue of Fig. 3.

Supplemental Material for Hierarchical Disentanglement

Figure A.17. Pairwise histograms of ground-truth vs. learned variables for COFHAE on the most complicated hierarchical benchmark
(Chopsticks at a recursion depth of 3 varying either slope or intercept). Histograms are conditioned on both variables being active, and
dimension-wise components of the R4

c score are shown on the right. Despite the depth of the hierarchy, COFHAE representations model
it fairly well.

