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Abstract

In representation learning, there has been re-
cent interest in developing algorithms to disen-
tangle the ground-truth generative factors behind
a dataset, and metrics to quantify how fully this
occurs. However, these algorithms and metrics of-
ten assume that both representations and ground-
truth factors are flat, continuous, and factorized,
whereas many real-world generative processes in-
volve rich hierarchical structure, mixtures of dis-
crete and continuous variables with dependence
between them, and even varying intrinsic dimen-
sionality. In this work, we develop benchmarks,
algorithms, and metrics for learning such hierar-
chical representations.

1. Introduction

Autoencoders aim to learn structure in data by compress-
ing it to a lower-dimensional representation with minimal
loss of information. Although they have proven useful in
many applications (LeCun et al., 2015), the individual di-
mensions of their representations are often inscrutable, even
when the underlying data is generated by simple processes.
Motivated by needs for interpretability (Alvarez-Melis &
Jaakkola, 2018; Marx et al., 2019), fairness (Creager et al.,
2019), and generalizability (Bengio et al., 2013), as well
as a basic intuition that representations should model the
data correctly, a subfield has emerged which applies rep-
resentation learning algorithms to synthetic datasets and
checks how well representation dimensions “disentangle”
the known ground-truth factors behind the dataset.

Perhaps the most common disentanglement approach has
been to learn continuous vector representations whose di-
mensions are statistically independent (and evaluate them
using metrics that assume ground-truth factors are also in-
dependent), reasoning that factorization is a useful proxy
(Ridgeway, 2016; Higgins et al., 2017; Chen et al., 2018;
Kim & Mnih, 2018). However, this problem is not identifi-
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able (Locatello et al., 2018), and it seems unlikely that con-
tinuous, factorized, fixed-dimensional representations are
the optimal choice for modeling many real-world generative
processes, which are often highly structured, with nested
parameters that only become active in particular cases.

As a concrete example, consider the problem of learning
representations of medical phenotypes of patients with and
without diabetes mellitus, a complex disease with multiple
types and subtypes (American Diabetes Association, 2005).
Some underlying factors of phenotype variation—as well
as the intrinsic complexity of these variations—are likely
specific to the disease, its types, or its subtypes (Ahlqvist
et al., 2018). A representation that faithfully modeled the
true factors of variation would need to be deeply hierarchi-
cal, with some dimensions only active for certain subtypes.
Ideally, it also should also be possible to learn such represen-
tations even if these subtypes (and the number of dimensions
needed to parameterize them) are unknown.

Our approach in this paper is ambitious: we introduce (1) a
flexible framework for modeling deep hierarchical structure
in datasets, (2) novel algorithms for learning both structure
and structured autoencoders entirely from data, which we
apply to (3) novel benchmark datasets, and evaluate with (4)
novel hierarchical disentanglement metrics. Our framework
is based on the idea that data may lie on multiple manifolds
with different intrinsic dimensionalities, and that certain
(nested groups of) dimensions may only be active for a
subset of the data. Though at first glance this approach
seems it should worsen, not improve, identifiability, our
structure assumptions also serve as an inductive bias that
empirically help us learn representations that more faithfully
(and explicitly) model ground-truth generative processes.

2. Related Work

In this section, we review work related to our notion of “hi-
erarchical disentangled representations.” However, there are
many notions of hierarchy that can be introduced into rep-
resentations (or into definitions of disentanglement), some
of which have little in common except a shift in focus away
from flatness or factorization.

Still, the problem of learning a flat, factorized representation
has received significant attention over the years. Much of the
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initial work, e.g. from Schmidhuber (1992), Zemel (1994),
and Comon (1994), was motivated by classic problems like
source separation or biological and information-theoretic ar-
guments about minimum description length (Barlow, 1961).
More recently, Ridgeway (2016) argued that factorization
was often a useful real-world proxy for disentanglement
in the seminal sense of Bengio (2013), which motivated
the development of a number of popular methods for train-
ing variational autoencoders (VAEs, Kingma & Welling
(2013)) to reconstruct data from compressed flat vectors,
but with minimal total correlation (TC) between their com-
ponents (Higgins et al., 2017; Chen et al., 2018; Kim &
Mnih, 2018; Dupont, 2018; Kim et al., 2019; Jeong & Song,
2019). We build on these approaches in our work, which we
also tie back to some of their original motivating problems
like minimum description length (see §8.1).

There are, however, a number of limitations to learning fac-
torized representations. To begin with, the problem was ac-
tually shown by Locatello et al. (2018) to be non-identifiable,
at least without weak supervision (Locatello et al., 2020a;
Klindt et al., 2021). More pressingly, though, factorization
sometimes prevents us from learning representations that
disentangle independent causal mechanisms with nontrivial
structure (Parascandolo et al., 2018; Trauble et al., 2020),
which is actually how Bengio (2013) defined the challenge
of disentanglement. Our goal in this work is to learn repre-
sentations that can identify and explicitly model this kind of
structure when it exists.

Still, there are a wide variety of ways to incorporate struc-
ture into representations or disentanglement. One is simply
to change the disentanglement objective, e.g. to encourage
different degrees of factorization within and across sub-
groups (Esmaeili et al., 2018). Another is to change the
representation architecture such that “low-level” compo-
nents are drawn conditionally on “high-level” components
from some fixed hierarchy or graphical model (Sgnderby
et al., 2016; Siddharth et al., 2017; Singh et al., 2019). Oth-
ers use mixed discrete-continuous representations where
continuous representation components are either “global”
(marginally independent) or “local” to a specific categor-
ical value (conditionally independent, and sometimes in-
active when the categorical takes other values) (Sorrenson
et al., 2020; Choi et al., 2020). Typically, though, these
approaches only support shallow hierarchies that must be
specified by the user in advance, or require instance-level
supervision (Yang et al., 2020). Our work is closest to the
global-local approach of Choi et al. (2020), but we support
arbitrarily deep hierarchies, and also learn them from data.

Other related approaches not directly in this line of research
include relational autoencoders (Wang et al., 2014), which
model structure between non-iid flat data, and graph neural
networks (Defferrard et al., 2016), which learn flat represen-
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Figure 1. User interface analogy for our model of representation
hierarchy. In traditional flat representations, all dimensions are ac-
tive simultaneously, no matter whether they are continuous (shown
as sliders) or discrete (shown as radio buttons). In our model,
groups of dimensions may only be active for specific values of
discrete dimensions, and groups can be nested.

tations of structured data. In contrast, we model structure
within flat inputs. Also relevant are advances in object rep-
resentations, such as slot attention (Locatello et al., 2020b).
While this area has generally not focused on hierarchically
nested objects, it does learn structure and seamlessly han-
dles sets; we view our method as complementary. Finally,
our hierarchy detection method is closely related to work in
manifold learning. We build on work in multiple- and robust
manifold learning (Mahapatra & Chandola, 2017; Mahler,
2020), contributing new innovations on top of them.

3. Hierarchical Disentanglement Framework

In this section, we outline our framework for modeling hier-
archical structure in representations. In our framework, we
associate individual data points with paths down a dimen-
sion hierarchy (examples in Fig. 2). Dimension hierarchies
consist of dimension group nodes (shown as boxes), each
of which can have any number of continuous dimensions
(shown as ovals) and an optional categorical variable (dia-
monds) that leads to other groups based on its value. For
any data point, we “activate” only the dimensions along its
corresponding path. Notation-wise, root(Z) denotes the
group at the root of a hierarchy, and children(Z;) denotes
the child groups of a categorical dimension Z;. In the con-
text of a dataset, for a dimension Z; or a dimension group
g, on(Z;) or on(g) denotes the subset of the dataset where
that Z; or g is active.

As a potentially more intuitive analogy (as well as a visu-
alization method), we can also understand hierarchical rep-
resentations in terms of user interfaces with nested groups
of sliders and radio buttons (Fig. 1). While traditional rep-
resentations might consist of a single group of constantly
visible sliders (or a mixture of sliders and radio buttons),
hierarchical representations contain subgroups that only ap-
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Chopsticks, depth=2, either slope or intercept Chopsticks, depth=3, both slope and intercept
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Figure 2. Examples and ground-truth variable hierarchies for Spaceshapes and two different variants of Chopsticks. Continuous variables
are shown as circles and discrete variables are shown as diamonds. Discrete variables have subhierarchies of additional variables that are
only active for particular discrete values. See also Fig. 1-style interactive visualizations of hierarchical representations explicitly trained to
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match ground-truth for each dataset respectively.

pear when parent radio buttons take particular values. For
such representations, only a subset of dimensions need to be
visible to users at any given time, even if many are required
to model the dataset—which could significantly improve
interpretability (Ross et al., 2021), if the hierarchy itself is
comprehensible.

Although in this work we only consider tree-structured hier-
archies, our framework could be extended to support multi-
ple categoricals per node or even DAGs, such that instances
can be associated with directed flows down multiple paths.

4. Hierarchical Disentanglement Benchmarks

In this section, both to clarify our framework and enable
testing of our algorithms, we introduce several synthetic
benchmark datasets with ground-truth hierarchical structure
(see Fig. 2 for instances and dimension hierarchies).

4.1. Spaceshapes

Our first benchmark dataset is Spaceshapes, a binary 64x64
image dataset meant to hierarchically extend dSprites, a
shape dataset common in the disentanglement literature
(Matthey et al., 2017). Like dSprites, Spaceshapes images
have location variables x and y, as well as a categorical
shape with three options (in our case, moon, star, and
ship). However, depending on shape, we add other continu-
ous variables with qualitatively different effects: moons have
a phase; stars have a sharpness to their shine; and ships
have an angle. Finally, ships can optionally have a jet,
which has a length (jetlen), but this is only defined at the
deepest level of the hierarchy. The presence of jetlen al-
ters the intrinsic dimensionality of the representation; it can
be either 3D or 4D depending on the path. As in dSprites,
variables are sampled from continuous or discrete uniforms.
An interactive visualization of a representation trained to
model this ground-truth hierarchy can be viewed here.

4.2. Chopsticks

Our second benchmark, Chopsticks, is actually a family of
arbitrarily deep timeseries datasets. Chopsticks samples are
64D linear segments, each of which can have a uniform-
sampled slope and/or intercept; different dataset vari-
ants can have one, the other, both, or either but not both.
For all variants, segments initially span the whole inter-
val. However, we then flip a coin to determine whether to
chop the segment, in which case we add a uniform offset to
the slope and/or intercept of the right half. We repeat this
process recursively up to a configurable maximum depth,
biasing probabilities so that we have equal probability of
stopping at each level; each chop requires increasing local
dimensionality to track additional slopes and intercepts. Al-
though the underlying process is quite simple, the structure
can be made arbitrarily deep, making it a useful benchmark
for testing structure learning. We provide more details in
§A.2, and interactive visualizations are also available for
the depth-2 either and depth-3 both variants.

Although these datasets are designed to have clear hierar-
chical structure, there are certain ambiguities in how to
structure aspects of the dimension hierarchies, which we
discuss in §6.1.

5. Hierarchical Disentanglement Algorithms

We next present a method for learning hierarchical disentan-
gled representations from data alone. We split the problem
into two brunch-themed algorithms, MIMOSA (which in-
fers hierarchies) and COFHAE (which trains autoencoders).

5.1. Learning Hierarchies with MIMOSA

The goal of our first algorithm, MIMOSA (Multi-manifold
IsoMap On Smooth Autoencoder), is to lea{n a hierarchy H
from data, as well as an assignment vector A,, of data points
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Algorithm 1 MIMOSA(X)

1: Encode the data X using a smooth autoencoder to reduce the initial dimensionality. Store as Z.

AN A i

return the hierarchy and component assignments.

Construct a neighborhood graph on Z using a Ball Tree (Omohundro, 1989).

Run LocalSVD (Algorithm 3) on each point in Z and its neighbors to identify local manifold directions.

Run BuildComponent (Algorithm 5) to successively merge neighboring points with similar local manifold directions.
Run MergeComponents (Algorithm 6) to combine similar components over longer distances and discard outliers.
Run ConstructHierarchy (Algorithm 7) to create a dimension hierarchy based on which components enclose others.

to hierarchy leaves. MIMOSA consists of the following
steps (see Appendix for Algorithms 3-7 and complexity,
and Fig. 3 for a detailed example):

Dimensionality Reduction (Algorithm 1, line 1): We start
by performing an initial reduction of X to Z using a flat
autoencoder. While we could start with Z = X, performing
this reduction saves computation as later steps (e.g. finding
neighbors) scale linearly with |Z|. Although this requires
choosing | Z|, we find the exact value is not critical as long
as it exceeds the (max) intrinsic dimensionality of the data.
We also find it important to use differentiable activation
functions (e.g. Softplus rather than ReLU) to keep latent
manifolds smooth; see Fig. A.4 for more.

Manifold Decomposition (Algorithms 3-6): We next de-
compose Z into a set of manifold “components” by com-
puting SVDs locally around each point and merging neigh-
boring points with sufficiently similar subspaces. We then
perform a second merging step over longer lengthscales,
combining equal-dimensional components with similar lo-
cal SVDs along their nearest boundary points and discarding
small outliers, which we found was necessary to handle in-
terstitial gaps when two manifolds intersect. The core of
this step is based on a multi-manifold learning method (Ma-
hapatra & Chandola, 2017), but we make efficiency as
well as robustness improvements by combining ideas from
RANSAC (Fischler & Bolles, 1981) and contagion dynam-
ics (Mahler, 2020). The merging step is a new contribution.

It bears emphasis that manifold decomposition, which
groups points based on the similarity of local principal com-
ponents, is distinct from clustering, which groups points
based on proximity. In the examples we consider, even hier-
archical iterative clustering methods like OPTICS (Ankerst
et al., 1999) will not suffice, as nearby points may lie on
different manifolds.

Hierarchy Identification (Algorithm 7): Finally, we con-
struct a tree by drawing edges from low-dimensional com-
ponents to the higher-dimensional components that best
“enclose” them, which we define using a ratio of inter-
component to intra-component nearest neighbor distances;
we believe this is novel. We use this tree and the component
dimensionalities to construct a dimension hierarchy and a
set of assignments from points to paths, which we output.

Hyperparameters: Each of these steps has several hyper-
parameters, and we provide a full listing and sensitivity
study in §A.5. The one we found most critical was the
minimum SVD similarity to merge neighboring points.

5.2. Training Autoencoders with COFHAE

Algorithm 2 COFHAE(X)

1: hierarchy, assignments = MIMOSA(X) # Algorithm 1

2: HAEy = init_hierarchical_autoencoder(hierarchy)

3: Dy = init_discriminator()

4: for x,a ~ minibatch(X, assignments) do

5:  a',z =HAEg.encode(x; ) # Algorithm 8

6: 2’ = HAEy.decode(concat(a’, z)) # normal NN
7: 2 = copy(z)
8.
9

fori=1..|z0| do

: shuffle 2/ ; over minibatch indices where on(z. ;)
10:  end for
11: Lo=Ly(a x) + M La(a,a) — Ao log%
12: Ly = —log Dy(z") —log(l — Dy(z))
13: 6 = descent_step(6, Ly)
14: 1 = descent_step(¢, Ly)
15: end for
16: return HAEy

Our first stage, MIMOSA, gives us the hierarchy and as-
signments of data down it. In the second stage, COFHAE
(COnditionally Factorized Hierarchical AutoEncoder, Al-
gorithms 2 and 8), we learn an autoencoder that respects
this hierarchy via (differentiable) masking operations that
impose structure on flat representations.

Hierarchical Encoding (Algorithm 8): Instances x pass
through a neural network encoder to an initial vector z,,.,
whose dimensions correspond to both continuous and cate-
gorical dimensions. We then pass each set of categoricals
through a softmax with temperature 7, and use them to re-
cursively mask the entirety of z,,. based on the hierarchy.
We finally split this masked vector into a continuous vector
z and a list of estimated assignments o', outputting both.

Supervising Assignments: Although we lack ground-truth
during training, we do have assignments a from MIMOSA
(for at least a subset of the dataset). We add a penalty
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Figure 3. Breakdown of MIMOSA for the depth-2 either version of Chopsticks, colored by ground-truth assignments. MIMOSA
learns an initial 4D softplus AE representation (left), decomposes it into lower-dimensional components by grouping together neighboring
points with similar local SVDs (second from left), merges them over longer distances while discarding outliers (second from right), and
finally uses enclosure relationships to infer a hierarchy (right). In this case, correspondence between the assignment of points to learned
components vs. ground-truth is very close (99.8% purity, covering 93.7% of the training set, and with no H-error—see §6.2 for definitions
of these metrics). Similar examples are shown for other datasets in Figs. A.11-A.16 of the Appendix.

L,(a',a), weighted by A1, to make encoded o’ match a.

Conditional Factorization: Kim & Mnih (2018) penal-
ize the total correlation (TC) between dimensions of flat
continuous representations z with two tricks. First, noting
that TC is the KL divergence between ¢(z) (the joint dis-
tribution of the encoded z) and g(z) = Hljzzll q(z;) (the
product of its marginals), they approximate samples from
d(z) by randomly permuting the values of each z; across
batches (Arcones & Gine, 1992). Second, they approximate
the KL divergence between the two distributions using the
density ratio trick (Sugiyama et al., 2012) on an auxiliary dis-

criminator Dy, (z), where K L(q(z)||3(2)) =~ log %
if Dy (z) outputs accurate probabilities of z having been
sampled from ¢g. We adopt a similar approach, except in-
stead of permuting each z; across the full batch B, we only
permute it where it is active, i.e. BN on(z;) (defined using
the hardened version of the mask). This approximates a
hierarchical version of g(z) where each dimension distribu-
tion is a mixture of 0 and the product of its active marginals.
Dy, (z) then lets us estimate the KL between this distribution
and ¢(z), which we penalize and weight with As.

This approach presumes ground-truth continuous variables
should be conditionally independent given categorical val-
ues, which is a major assumption. However, it is less
strict than the assumption taken by many disentanglement
methods, i.e. that continuous variables are independent
marginally, and it may remain useful as an inductive bias.

6. Hierarchical Disentanglement Metrics

In this section, we develop metrics for quantifying how well
learned representations and hierarchies match ground-truth.

6.1. Desiderata and Invariances

Our goal in designing metrics is to measure whether we have
learned the “right representation,” both in terms of global
structure and specific variable correspondences. In an ideal
world, we would measure whether a learned representation
Z is identically equal to a ground-truth V. However, most
existing disentanglement metrics are invariant to permu-
tations, so that dimensions V; can be reordered to match
different Z;, as well as univariate transformations, so that
the values of Z; do not need to be identical to V;. In the case
of methods like the SAP score (Kumar et al., 2017), these
univariate transformations must be linear, but as the unifor-
mity of scaling can be arbitrary, we permit general nonlinear
transformations, as long as they are 1:1, or invertible.

Hierarchical representations have an additional ambiguity
about the right “vertical” placement of continuous vari-
ables. For example, on Spaceshapes, the phase, shine,
and angle variables could all be “merged up” to a single
top-level variable whose effect changes based on shape.
Alternatively, x and y position could be “pushed down” and
duplicated for each shape despite their analogous effects
(see Fig. A.10 for an illustration). In terms of our user inter-
face analogy from Fig. 1 (or our specific implementation),
“merge up” and “push down” transformations correspond to
moving sliders into or out of outlined groups, but keeping
their effects on the outputs the same, as well as preserving
the structure of nested radio buttons. To a user interacting
with such representations, they would appear almost iden-
tical, except some slider labels might change with radio
button settings. Because of this functional near-equivalence,
we defer the problem of deciding the most natural vertical
placement of continuous variables to future work, and make
our main metrics invariant to them.
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6.2. MIMOSA Metrics: H-error, Purity, Coverage

The first metric we use to evaluate MIMOSA is H -error,
which measures whether learned hierarchy H has the same
essential structure as the ground-truth hierarchy H. We
define H-error in terms of the tree edit distance of Zhang &
Shasha (1989) (i.e. minimum number of insertions, edits, or
deletions to transform H into H ), but between normalized
“merged up” representations of each hierarchy; details are in
§A.3. This metric is 0 if and only if both hierarchies are the
same up to the transformations described in §6.1.

The second MIMOSA metric is purity, which measures
whether the assignments output by MIMOSA match ground-
truth. To compute it, we iterate over each leaf in H , find the
leaf in H to which most of its assigned points belong, and
then compute the fraction that belong to the majority. Then
we average these scores across H, weighting by the number
of points in each leaf. This metric only falls below 1 if leaves
contain points with different ground-truth assignments.

The final metric we use to evaluate MIMOSA is coverage.
Since MIMOSA discards small outlier components, it is
possible that the final set of assignments will not cover the
full training set. If almost all points are discarded this way,
the other metrics may not be meaningful. As such, we
measure coverage as the fraction of the training set which
is not discarded. We note that hyperparameters can be
tuned to ensure high coverage without knowing ground-
truth assignments.

6.3. COFHAE Metrics: R* and R? Scores

Per our desiderata, we seek to check whether every ground-
truth variable V; can be mapped invertibly to some learned
dimension Z;. As a preliminary definition, we say that a
learned Z; corresponds to a ground-truth V; over some set
S C R if a bijection between them exists; that is,

If(): S = Rst f(V;) = Zyand f1(Z;) = Vi (1)
We say that Z disentangles V' if all V; have a corresponding
Z;. To measure the extent to which bijections exist, we can
simply try to learn them (over random splits of many paired
samples of V; and Z;). Concretely, for each pair of learned
and true dimensions, we train univariate models to map in
both directions, compute their coefficients of determination
(R?), and take their geometric mean:

f= ?rg%Etrain [(f(X) - Y)?]
_SUE) -y
> (E[Y]-Y)?
2(X=Y)|  [RR(Y—=X)],,

R*(X—=Y) = Eqest (2)

VIR

where we average over train/test splits (we use 5), assume
F is sufficiently flexible to contain the optimal bijection

R}Y(X&Y) =

(we use gradient-boosted decision trees), and assume our
dataset is large enough to reliably identify f € F. In the
limit, R2(X «+Y") can only be 1 if a bijection exists, as any
region of non-zero mass in the joint distribution of X and
Y where this is false would imply E[(f(X) — Y)?] > 0 or
E[(f(Y) — X)?] > 0. In the special case that Y is discrete
rather than continuous, we use classifiers for f and accuracy
instead of R?, but the same argument holds.

To measure whether a ser of variables Z disentangles an-
other set of variables V', we check if, for each V;, there is at
least one Z; for which RQ(V7; « Zj) =1

RYV,Z) = W ZmaxRQ(V = Z;), 3)

We call this the “right-representation” R2, or R* score. Note
that this metric is related to the existing SAP score (Kumar
et al., 2017), except we allow for nonlinearity, require high
R? in both directions, and take the maximum over each
score column rather than the difference between the top two
entries (which avoids assuming ground-truth is factorized).

Although R* is useful for measuring correspondence be-
tween sets of variables that are both always active, it does
not immediately apply to hierarchical representations unless
inactive variables are represented somehow, e.g. as 0 (an ar-
bitrary implementation decision that affects R? by changing
E[Y]). It also lacks invariance to merge-up and push-down
operations. Instead, we seek conditional correspondence
between V; and a set of dimensions in Z, defined as

forallV; € on(V;)3 2, = {Z;, Z, .. .} s.t.
(@) V; corresponds to Z; over on(V;) Non(Z;),
(b)on(Z;) Non(Zy) = Pforall j # k,and
(€) U.cz, on(z) = on(Vi),

or rather that we can find some tiling of on(V}) into regions
where it corresponds 1:1 with different Z; which are never
active simultaneously. This allows for one Z; to correspond
to non-overlapping elements of V' (e.g. merging up), as well
as for one V; to be modeled by non-overlapping elements of
Z (e.g. pushing down).

“4)

We can then formulate a conditional R2 score which quanti-
fies how closely conditional correspondence holds:

R%(Vi, g) =max <r§16agx (R (V(—)Z |on )N on(g))
20y, nylonVi) Non(g)|
),

g’ €E€children(Z;)
for a dimension group g; the overall disentanglement is:

V]

R V&2Z) = ﬁ > R2(V;, root(Z)). (5)
=1
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In the special case that V and Z are flat, R? reduces to R*.
We note that even for flat representations, the R* score may
be a useful measure of disentanglement when ground-truth
variables are not factorized.

7. Experimental Setup

Benchmarks: We ran experiments on nine benchmark
datasets: Spaceshapes, and eight variants of Chopsticks
(varying slope, intercept, both, and either at re-
cursion depths of 2 and 3). See §4 for more details, and
Fig. A.1 for preliminary experiments on noisy data.

Algorithms: In addition to COFHAE with MIMOSA, we
trained a number of flat baselines. As fully continuous
baselines, we trained autoencoders (AE), variational autoen-
coders (Kingma & Welling, 2013) (VAE), the [3-total corre-
lation autoencoder (Chen et al., 2018) (TCVAE), and Factor-
VAE (Kim & Mnih, 2018). As mixed discrete-continuous
baselines, we trained JointVAE (Dupont, 2018) and Cas-
cadeVAE (Jeong & Song, 2019), providing them with the
ground-truth structure of discrete variables.! Finally, we
ran COFHAE ablations using the ground-truth hierarchy
and assignments, testing all possible combinations of loss
terms and comparing conditional vs. marginal TC penalties;
results are in Fig. 5. See §A.1 for training and model details.

Metrics: To evaluate hierarchies, we computed purity, cov-
erage, and H-error (§6.2). Results are in Table 1. To mea-
sure disentanglement, we primarily use R2 (§6.3); results
for all datasets and models are in Fig. 4. We also compute
the following baseline metrics: the SAP score (Kumar et al.,
2017) (SAP), the mutual information gap (Chen et al., 2018)
(MIG, estimated using 2D histograms), the Factor VAE score
(Kim & Mnih, 2018) (FVAE), and the DCI disentanglement
score (Eastwood & Williams, 2018) (DCI). Most imple-
mentations were adapted from disentanglement_lib
(Locatello et al., 2018). We also compute our marginal R*
score. Results across metrics are shown for a subset of
datasets and models in Fig. 6.

Hyperparameters: COFHAE is only given instances X,
which complicates cross-validation. However, we can still
tune its hyperparameters to ensure assignments a’ match
MIMOSA outputs a and reconstruction loss for x is low
(which fail to can happen if the adversarial term dominates).
Over a grid of 7 in {3, 2,1}, A; in {10,100, 1000}, and
A2 in {1,10, 100}, we select the model with the lowest
training reconstruction loss £, from the % with the lowest
assignment loss £,. For MIMOSA, hyperparameters can be
tuned to ensure high coverage (purity and H-error require
side-information); see §A.5 for more details.

!Note that Cascade VAE only supports a single categorical vari-
able, but we give it cardinality equal to the total number of paths
down the true hierarchy.

For our baselines, we show results at 5=5 for TCVAE,
~=10 for FactorVAE, =1, C,=C.=10 for JointVAE, and
Be=2 for CascadeVAE (with other hyperparameters set to
the same settings as the original paper). However, we tested
each method across a variety of strength and capacity hyper-
parameters, and show more complete results in Fig. A.7.

Disentanglement results over 5 restarts
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Figure 4. Hierarchical disentanglement results for representation
learning methods (baselines and COFHAE + MIMOSA) over all
nine datasets. COFHAE almost perfectly disentangles ground-truth
on the six simplest versions of Chopsticks, with some degrada-
tions on the two most complex versions (with very deep hierar-
ches) and on Spaceshapes (with a shallower hierarchy, but higher-
dimensional inputs). Baseline methods were generally much more
entangled, though JointVAE, S-TCVAE, and CascadeVAE are
competitive in certain cases.

COFHAE Ablations
(Chopsticks, depth=2, both)

10 @ =
Q

08 |:|8©

g8

.53

02

# Flat

@ H (Hier)

[0 H+TC(Z]on)

O H+A

& H+A4TC(2)

@ H+A4+TC(Z|on)
&b HHA+Z

scare

4
c

R

Figure 5. Ablation study for COFHAE on the depth-2 both ver-
sion of Chopsticks (over 5 restarts). Hierarchical disentanglement
is low for flat AEs (Flat); adding the ground-truth hierarchy H
improves it (Hier H), as does also adding supervision for ground-
truth assignments A (H+A). Adding a FactorVAE-style marginal
TC penalty (H+A+T'C(Z)) does not appear to help disentangle-
ment, but making that TC penalty conditional (H+A+T'C(Z|on),
i.e. COFHAE) brings it close to the near-optimal disentanglement
of a hierarchical model whose latent representation is fully su-
pervised (H-+A+Z). However, the hierarchical conditional TC
penalty fails to produce this same disentanglement without any
supervision over assignments (H+7C(Z)).
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MIMOSA Chopsticks, depth=2 Chopsticks, depth=3 Space-
Metric inter \ slope \ both \ either || inter \ slope \ both \ either shapes
Purity 1.0+0.0 | 1.0+0.0 | 1.0£0.0 | 1.04£0.0 || .98£0.0 | .95+0.0 | .94£0.0 .93+0.0 1.0+0.0

Coverage || .9940.0 | .994+0.0 | .96+0.0 | .94£0.0 || .98+0.0 | .98+0.0 | .82+0.01 | .75£0.01 1.0+0.0

H-error 0.04£0.0 | 0.0+0.0 | 0.0+0.0 | 0.0£0.0 || 0.0£0.0 | 0.0£0.0 | 0.0£0.0 | 2.40+0.89 || 0.0+0.0

Table 1. MIMOSA results across all datasets, with means and standard deviations across 5 restarts. In general, MIMOSA components
contained points only from single ground-truth sets of paths (purity), were inclusive of most points in the training set (coverage), and
resulting in perfectly accurate hierarchies (H errors), with the greatest or only exception being the Chopsticks depth-3 either dataset

(where we tended to miss 2-3 of the 8 deepest 3D components).
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Figure 6. Comparison of disentanglement metrics across two
datasets and four models. Only R* and R? correctly and consis-
tently award near-optimal scores to the supervised H+A+Z model.

8. Results and Discussion

MIMOSA consistently recovered the right hierarchies.

Per Table 1, we consistently found the right hierarchy for all
datasets except depth-3 either-Chopsticks, but even there
results were close, generally recovering 12 out of 14 nodes
(see Fig. A.16 for more details). Purity and coverage were
also high, often near perfect as in Spaceshapes or depth-2
Chopsticks.

COFHAE significantly outperformed baselines. Per
Fig. 4, COFHAE R! scores were near-perfect for 6 out
of 9 datasets, and were highest on all (both in terms of mean
and maximum). On Spaceshapes and the depth-3 either
and both versions of Chopsticks, scores were slightly worse.
Part of this suboptimality could be due to non-identifiability.
For Spaceshapes and the both versions of Chopsticks, di-
mension group nodes contain multiple continuous variables,
which even conditionally can be modeled by multiple fac-
torized distributions (Locatello et al., 2018). However, op-
timization issues could also be at fault, as we do not see
suboptimal R on Chopsticks until a depth of 3, and even
supervised H+A+Z models occasionally fail to converge
on Spaceshapes. Kim & Mnih (2018) note that the rela-
tively low-dimensional discriminator used by FactorVAE
is easier to optimize than the generally high-dimensional
discriminators used in GANs, which are notoriously tricky
to train (Mescheder et al., 2018). In our case, flattened hi-

erarchy vectors can be high-dimensional (e.g. Fig. A.17),
and in any given batch, instances corresponding to different
paths down the hierarchy may have different numbers of
samples (potentially requiring larger batch sizes or stratified
sampling to ensure sufficient coverage). Finally, alongside
non-identifiability and optimization issues, MIMOSA errors
(e.g. merge-up/push-down differences for Spaceshapes and
suboptimal purity and coverage for Chopsticks) also may
play a role, as evidenced by performance improvements
in our full COFHAE ablations in Fig. A.6. Despite all of
these issues, COFHAE is still closer to optimal, at best and
on average, than any of our baseline algorithms (even on
Spaceshapes, where it is possible for a flat representation
to disentangle all features except jet length). We note also
that our baselines often performed worse with increasing
disentanglement penalty strength (Fig. A.7), with the closest
COFHAE competitor, JointVAE, achieving its best results
at its minimal tested value y=1 (i.e. equivalent to a normal
VAE). These results are consistent with the fact that mini-
mizing marginal rather than conditional TC on these datasets
prevents models from learning the right representation.

R? provides more insight into disentanglement than
baselines. One way to evaluate an evaluation metric is
to test it against a precisely known quantity. In this case,
we know the H+ A+ Z model, whose encoder is supervised
to match ground-truth, should receive a near-perfect score.
The only metrics to do this consistently are R* and R*. Note
that the DCI disentanglement score, based on the entropy of
normalized feature importances from an estimator predict-
ing single ground-truth factors from all learned dimensions,
comes close. Intuitively, this metric could behave similarly
to R* if its estimator was trained to be sparse (placing im-
portance on as few dimensions as possible). However, using
RZs of univariate estimators is more direct, and also incor-
porates information from the DCI informativeness score.

Another way to evaluate an evaluation metric is to test
whether quantitative differences capture salient qualitative
differences. To this point, specifically to compare R* and
R, we consider several examples in Fig. A.8 and Fig. A.9.
First, we see that for the Spaceshapes COFHAE model in
Fig. A.8c (or here), its R2 score (0.89) is higher than its R*
(0.79). This increase is due to the fact that R* penalizes
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“push-down” differences (§6.1) between the learned and true
factors representing x and y position, while R? is invari-
ant to them. However, the overall increase is less dramatic
than one might expect due to modest decreases in corre-
spondence scores for other dimensions (e.g. 0.98—0.89 for
jetlen), which occur because R is not biased by spuri-
ous equality between dimensions which are both inactive.
Another example of a difference between R* and R? (il-
lustrating invariance to “merging up” rather than “pushing
down”) is for the Spaceshapes S-TCVAE in Fig. A.8b. In
this case, histograms show that one 3-TCVAE variable (Z3)
corresponds closely to both moon phase and star shine
(and to a lesser extent, jetlen), only one of which is active
at a time. The R* score (0.47) assigns low scores to these
correspondences, but R (0.69) properly factors them in.

COFHAE and MIMOSA subcomponents improve per-
formance. Though COFHAE contains many moving parts,
results in Fig. 5 and Fig. A.6 suggest they all count. Au-
toencoders only achieve optimal disentanglement if pro-
vided with the hierarchy, assignments, and a conditional
(not marginal) penalty on the TC of continuous variables;
no partial subset suffices. In the Appendix, Fig. A.5 shows
ablations and sensitivity analyses for MIMOSA that validate
its subcomponents are important as well.

8.1. Remark on Identifiability and Parsimony

From Locatello et al. (2018), we know all forms of TC min-
imization permit multiple solutions (though they often im-
prove disentanglement empirically, especially when ground-
truth factors are non-Gaussian). However, what about the
other components of our method, such as MIMOSA?

MIMOSA does not minimize an objective function, so ques-
tions of identifiability might seem moot. However, we could
reformulate it as trying to find a small set of low-dimensional
and bounded-curvature manifolds that approximately con-
tain a large fraction of the data. More concretely, we could
place penalties or constraints on, e.g., the cardinality, di-
mensionality, and mean or percentiles of error and principal
curvature magnitudes over the set. Such a problem might
well be identifiable (up to the transformations discussed in
§6.1), though analyzing it is beyond the scope of this work.

However, perhaps a better-motivated formulation that covers
both MIMOSA and COFHAE would be to return to min-
imum description length (MDL)—the same problem that
motivated much of the initial research into factorized rep-
resentations (Barlow, 1961; Zemel, 1994). As an example,
assume we are given a dataset of IV instances, % of which
lie on a 1D manifold, and % of which lie on an 8D manifold.
If we must encode instances as flat vectors of 32-bit floats,
those vectors will need to be at least 8D for accurate recon-
struction, meaning the dataset’s description length will be
8 % 32 % N = 256N bits (plus the size of the model, which

is negligible for sufficiently large /NV). However, if we use
a disentangled hierarchical representation, we need either
1 or 8 floats to represent each instance (plus a single bit
to distinguish between them). In that case, the description
length would be (% * 8% 32) + (L % 1%32) + 1)N = 61N
bits, which is minimal (assuming the model is not much
larger). The problem of learning factorized representations
within each manifold might remain non-identifiable, but the
MDL argument for doing so remains the same as in Zemel
(1994). This example suggests that (disentangled) hierar-
chical representations might spontaneously emerge as the
(partially identifiable) solution to MDL objectives, at least
for datasets that lie on multiple manifolds.

9. Conclusion

In this work, we introduced a novel formulation of hierar-
chical disentanglement, where ground-truth representation
dimensions are organized into a tree and activated or deac-
tivated based on the values of categorical dimensions. We
presented benchmarks, algorithms, and metrics for learning
and evaluating such hierarchical representations.

There are a number of promising avenues for future work.
One is extending our methods to handle a wider variety of
underlying structures, e.g. dimension DAGs, or integrating
our methods with object representation techniques to better
model generative processes involving ordinal variables or
unordered sets (Locatello et al., 2020b). Another is to better
solve or understand hierarchical disentanglement as we have
already formulated it, e.g. by improving robustness to noise
(Fig. A.1) or providing a better theoretical understanding of
identifiability, perhaps through the lens of description length.
Finally, there are ample opportunities to apply these tech-
niques to real-world data that we expect to have hierarchical
multiple-manifold structure, such as patient phenotype or
population genetics datasets.

More generally, we feel it is important for representation
learning to move beyond flat vectors, and work towards
explicitly modeling the rich structure contained in the real
world. Symbolic Al and cognitive science researchers have
made compelling arguments that future Al progress should
be evaluated not by improvements in accuracy or recon-
struction error, but by how well models build their own
interpretable models of the world (Lake et al., 2017). Our
work takes steps in this direction.
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