
Supplementary: Simultaneous Similarity-based Self-Distillation for Deep
Metric Learning

A. More Benchmark & Implementation Details
In this part, we report all relevant benchmark details omitted in the main document as well as further implementation details.

A.1. Benchmarks

CUB200-2011 (Wah et al., 2011) contains 200 bird classes over 11,788 images, where the first and last 100 classes with
5864/5924 images are used for training and testing, respectively.
CARS196 (Krause et al., 2013) contains 196 car classes and 16,185 images, where again the first and last 98 classes with
8054/8131 images are used to create the training/testing split.
Stanford Online Products (SOP) (Oh Song et al., 2016) is build around 22,634 product classes over 120,053 images and
contains a provided split: 11318 selected classes with 59551 images are used for training, and 11316 classes with 60502
images for testing.

A.2. Implementation

We now provide further details regarding the training and testing setup utilized. For any study except the comparison against
the state-of-the-art (Table 2) which uses different backbones and embedding dimensions, we follow the setup used by (Roth
et al., 2020b)1: This includes a ResNet50 (He et al., 2016) with frozen Batch-Normalization (Ioffe & Szegedy, 2015),
normalization of the output embeddings with dimensionality 128 and optimization with Adam (Kingma & Ba, 2015) using a
learning rate of 10−5 and weight decay of 3 · 10−4. The input images are randomly resized and cropped from the original
image size to 224× 224 for training. Further augmentation by random horizontal flipping with p = 0.5 is applied. During
testing, center crops of size 224× 224 are used. The batchsize is set to 112.

Training runs on CUB200-2011 and CARS196 are done over 150 epochs and 100 epochs for SOP for all experiments
without any learning rate scheduling, except for the state-of-the-art experiments (see again 2). For the latter, we made use
of slightly longer training to account for conservative learning rate scheduling, which is similarly done across reference
methods noted in tab. 2. Schedule and decay values are determined over validation subset performances. All baseline DML
objectives we apply our self-distillation module S2SD on use the default parameters noted in (Roth et al., 2020b) with
the single exception of Margin Loss on SOP, where we found class margins β = 0.9 to be more beneficial for distillation
than the default β = 1.2. This was done as changing from β = 1.2 to β = 0.9 had no notable impact on the baseline
performance. Finally, similar to (Kim et al., 2020), we found a warmup epoch of all MLPs to improve convergence on SOP.
Spectral decay computations in §5.3 follow the setting described in Supp. D.

We implement everything in PyTorch (Paszke et al., 2017). Experiments are done on GPU servers containing Nvidia Titan
X, P100 and T4s, however memory usage never exceeds 12GB. Each result is averaged over five seeds, and for the sake of
reproducibilty and result validity, we report mean and standard deviation, even though this is commonly neglected in DML
literature.

1Repository: github.com/Confusezius/Revisiting_Deep_Metric_Learning_PyTorch

github.com/Confusezius/Revisiting_Deep_Metric_Learning_PyTorch

Simultaneous Similarity-based Self-Distillation for Deep Metric Learning

B. Baseline Methods
This section provides a more detailed explanation of the DML baseline objectives we used alongside our self-distillation
module S2SD in the experimental section 4. For additional details, we refer to the supplementary material in (Roth et al.,
2020b). For the mathematical notation, we refer to Section 3.1. We use ψ = f ◦ φ to denote the feature network φ with
embedding f , and ψi the embedding of a sample xi. Finally, alongside the method descriptions we provide the used
hyperparameters.

Margin Loss (Wu et al., 2017) builds on triplet/pair-based losses, but introduces both class-specific, learnable boundaries
{βyk}k=1...C (with number of classes C) between positive and negative pairs, as well as distance-based sampling for
negatives:

Lmargin =
∑

xi,xj∈PB

[m+ (−1)Iyi=yj (βyi − d(ψi, ψj))]+ (9)

p(xj |xi, yi 6= yj) = min

(
λ,

[
d(ψi, ψj)

n−2(1− 1

4
d(ψi, ψj)

2)
n−3
2

]−1
)

(10)

where PB denotes the available pairs in minibatch B, and n the embedding dimension. Throughout this work, we use
β = 1.2 except for S2SD on SOP, where we found β = 0.9 to work better without changing the baseline performance. We
set the learning rate for the class boundaries as 5 · 10−4, and margin m = 0.2.

Regularized Margin Loss (Roth et al., 2020b) proposes a simple regularization scheme on the margin loss that increases
the number of directions of significant variance in the embedding space by randomly exchanging a negative sample with a
positive one with probability pswitch. For ResNet-backbones, we use pswitch = 0.4 for CUB200, pswitch = 0.35 for CARS196
and pswitch = 0.15 for SOP as done in (Roth et al., 2020b). For Inception-based backbones, we set pswitch = 0.15 for
CUB200 and CARS196 and pswitch = 0.3 for SOP.

Multisimilarity Loss (Wang et al., 2019) incorporates more similarities into training by operating directly on all positive
and negative samples for an anchor xi, while also incorporating a sampling operation that encourages the usage of harder
training samples:

d∗c(i, j) =


dc(ψi, ψj) dc(ψi, ψj) > minj∈Pi

dc(ψi, ψj)− ε
dc(ψi, ψj) dc(ψi, ψj) < maxk∈Ni

dc(ψi, ψk) + ε

0 otherwise
(11)

Lmultisim =
1

b

∑
i∈B

 1

α
log[1 +

∑
j∈Pi

exp(−α(d∗c(ψi, ψj)− λ))]


+
∑
i∈B

[
1

β
log[1 +

∑
k∈Ni

exp(β(d∗c(ψi, ψk)− λ))]

] (12)

where dc denotes the cosine similarity instead of the euclidean distance, and Pi/Ni the set of positives and negatives for xi
in the minibatch, respectively. We use the default values α = 2, β = 40, λ = 0.5 and ε = 0.1.

C. Evaluation Metrics
The evaluation metrics used throughout this work are recall @ 1 (R@1), recall @ 2 (R@2) and Normalized Mutual
Information (NMI), capturing two distinct embedding space properties.

Recall@K, see e.g. in (Jegou et al., 2011), especially Recall@1 and Recall@2, is the primary metric used to compare
the performance of DML methods and approaches, as it offers strong insights into retrieval performances of the learned
embedding spaces. Given the set of embedded samples ψi ∈ Ψ with ψi = ψ(xi) and xi ∈ X , and the sorted set of k nearest
neighbours for any sample φa,

Fka = min sort
d(φa,·)

arg min
F⊂X ,|F|=k

∑
xf∈F

d(φa, φf) (13)

Simultaneous Similarity-based Self-Distillation for Deep Metric Learning

Recall@K is measured as

Recall@K =
1

|X |
∑
xi∈X

{
1 ∃xk ∈ Fki s.t.yk = yi

0 otherwise
(14)

which evaluates how likely semantically corresponding pairs (as determined here by the labelling yi ∈ Y) will occur in a
neighbourhood of size k.

Normalized Mutual Information (NMI), see (Manning et al., 2010), evaluates the clustering quality of the embedded
samples Ψ (taken from X). It is computed by first clustering with K cluster centers, usually corresponding to the number
of classes available, using a cluster method of choice s.a. K-Means (Lloyd, 1982). This assigns each sample xi a cluster
label/id ωi based on the nearest cluster centroid. With ηk = {i|ωi = ωk} the set of samples with cluster label, Ω = {ηk}Kk
the set of cluster sets, νk = {i|yi = yk} the set of samples with true label yk and Υ = {νk}Kk the set of class label sets, the
Normalized Mutual Information is given as

NMI(Ω,Υ) =
I(Ω,Υ)

2 · (H(Ω) +H(Υ))
(15)

with mutual information I(·, ·) and entropy H(·).

D. Generalization Metrics
Embedding Space Density. Given sets of embeddings Ψ, we first define the average inter-class distance as

πinter(Ψ) =
1

Zinter

∑
yl,yk,l 6=k

d(µ(Ψyl), µ(Ψyk)) (16)

which measures the average distances between groups of embeddings with respective classes yl and yk, estimated by the
respective class centers µ(·). Zinter denotes a normalization constant based on the number of available classes. We also
introduce the average intra-class distance as the mean distance between samples within their respective class

πintra(Ψ) =
1

Zintra

∑
yl∈Y

∑
ψi,ψj∈Ψyl

,i6=j

d(ψi, ψj) (17)

again with normalization constant Zintra and set of embeddings with class yl, Ψyl . Given these two quantities, the embedding
space density is then defined as

πratio(Ψ) =
πintra(Ψ)

πinter(Ψ)
(18)

and effectively measured how densely samples and classes are grouped together. (Roth et al., 2020b) show that optimizing
the DML problem while keeping the embedding space density high, i.e. without aggressive clustering, encourages better
generalization to unseen test classes.

Spectral Decay. The spectral decay metric ρ(Ψ) defines the KL-divergence between the (sorted) spectrum of D singular
values Ssingular

Ψ (obtained via Singular Value Decomposition (SVD)) and a D-dimensional uniform distribution UD, and is
inversly related to the entropy of the embedding space:

ρ(Ψ) = DKL

(
UD,Ssingular

Ψ

)
(19)

It does not account for class distributions. (Roth et al., 2020b) show that doing DML while encouraging a high-entropy
feature space notably benefits the generalization performance. In our experiments, we disregard the first 10 singular vectors
(out of 128) to highlight the feature diversity. This is important, as we evaluate the spectral decay within the same objectives,
which results in the first few singular values to be highly similar.

Simultaneous Similarity-based Self-Distillation for Deep Metric Learning

Figure 4. Additional ablations. (A) Increasing target dimensions offers notable improvements. We opt for a target dimension of 2048
due to slightly higher mean improvements. For multiple embedding branches (#B), there seems to be an optimum at four branches. (B)
Furthermore, feature distillation gives another notable boost. However, this only holds for the globally averaged penultimate feature
representation. When distilling more fine-grained feature representations, performance degenerates (where #P denotes smaller pooling
windows applied to the penultimate feature representation). (C) We show that detached auxiliary branches for distillation are crucial to
higher improvements, as we want the reference embedding space to approximate the higher-dimensional one.

E. Additional Experiments
This part extends the set of ablations experiments performed in section 5.4 in the main paper.
a. Detaching target spaces for distillation. We examine whether it is preferable to detach the target embeddings from the
distillation loss (see eq. 3), as we want the reference embedding space to approximate the higher-dimensional relations.
Similarly, we do not want the target embedding networks gi to reduce high-dimensional to lower-dimensional relations to
optimizer for the distillation constraint. As can be seen in fig 4C, it is indeed the case that detaching the target embedding
spaces is notably beneficial for a stronger reference embedding, supporting the previous motivation.
b. Influence of varying target dimensions. As noted at the beginning of section 4, we set the target dimension for dual
self-distillation (DSD) to d = 2048, which we motivate through a small ablation study in fig. 4A, with TD denoting the
target dimension of choice. As can be seen, benefits plateau when the target dimension reaches more than four times the
reference dimension. However, to be directly comparable to high-dimensional reference settings, we set d = 2048 as default.
c. Ablating multiple distillation scales. Going further, we extend the module with additional embedding branches to the
multiscale self-distillation approach (MSD), all operating in different, but higher-than-reference dimension. As already
shown in Figure 3B in the main paper, there is a benefit of multiscale distillations by encouraging reusable sample relations.
In this part, we motivate the choice of four target branches (as noted in sec. 4). Looking at figure 4A, where B denotes the
number of additional target spaces, we can see a benefit in multiple additional target spaces of ascending dimension. As the
improvements saturate after B = 4, we simply set this as the default value. However, the additional benefits of going to
multiscale from dual distillation are not as high as going from no to dual target space distillation, showcasing the general
benefit of high-dimensional concurrent self-distillation. Finally, we highlight that a multiscale approach slightly outperforms
a multibranch distillation setup (Fig. 4A, Multi-B) where each target branch has the same target dimension of 2048 while
introducing less additional parameters.
d. Finer-grained feature distillation. As already shown in section 4 and again in figure 4B, we see benefits of feature
distillation, using the (globally averaged) normalized penultimate feature space. It therefore makes sense to investigate
the benefits of distilling even more fine-grained feature representation. Defining P = [(3, 3), (1, 1), (2, 2), (4, 1)] as the
pooling window size applied to the non-average penultimate feature representation, we investigate less compressed feature
representation space. As can be seen in fig. 4B, where P denotes the index to P , there appears to be no benefits in distilling
feature representations higher up the network.
e. Runtime comparison of base dimensionalities. We highlight relative retrieval times at different base dimensionalities
in Tab. 3 using faiss (Johnson et al., 2017) on a NVIDIA 1080Ti and a synthetic set of N = 250000 embeddings
of dimensionality d ∈ [32, 64, 128, 256, 512, 1024, 2048]. With S2SD matching d = 64/128 to base dimensionalities
d = 512/2048 (see §5.3), runtime can be reduced by up to a magnitude.

Dimensionality d 32 64 128 256 512 1024 2048
Runtime (s) 1.54±0.00 1.98±0.00 2.71±0.00 4.35±0.00 7.38±0.01 13.83±0.02 27.21±0.17

Table 3. Sample retrieval times for 250000 embeddings with varying base dimensionalities.

Simultaneous Similarity-based Self-Distillation for Deep Metric Learning

F. Pseudo-Code
1 import torch, torch.nn as nn, torch.nn.functional as F
2 from F import normalize as norm
3

4 """
5 Parameters:
6 self.base_criterion: base DML objective
7 self.trgt_criteria: list of DML objectives for target spaces
8 self.trgt_nets: Module list of auxiliary embedding MLPs
9 self.dist_gamma: distillation weight

10 self.it_before_feat_distill: iterations before feature distill
11 """
12

13 def forward(self, batch, labels, pre_batch, **kwargs):
14 """
15 Args:
16 batch: image embeddings, shape: bs x d
17 labels: image labels, shape: bs
18 pre_batch: penultimate network features, shape: bs x d*
19 """
20 bs, batch = len(batch), norm(batch, dim=-1)
21

22 ### Compute ref. sample relations and loss on ref. embedding space
23 base_smat = batch.mm(batch.T)
24 base_loss = self.base_criterion(batch, labels, **kwargs)
25

26 ### Do global average pooling (and max. pool if wanted)
27 avg_pre_batch = nn.AdaptiveAvgPool2d(1)(pre_batch).view(bs,-1)
28 avg_pre_batch += nn.AdaptiveMaxPool2d(1)(pre_batch).view(bs,-1)
29

30 ### Computing MSDA loss (Targets & Distillations)
31 dist_losses, trgt_losses = [], []
32 for trgt_crit,trgt_net in zip(self.trgt_criteria,self.trgt_nets):
33 trgt_batch = norm(trgt_net(avg_pre_batch),dim=-1)
34 trgt_loss = trgt_crit(trgt_batch, labels, **kwargs)
35 trgt_smat = trgt_batch.mm(trgt_batch.T)
36 base_trgt_dist = self.kl_div(base_smat, trgt_smat.detach())
37 trgt_losses.append(trgt_loss)
38 dist_losses.append(base_trgt_dist)
39

40 ### MSDA loss
41 multi_dist_loss = (base_loss+torch.stack(trgt_losses).mean())/2.
42 multi_dist_loss += self.dist_gamma*torch.stack(dist_losses).mean()
43

44 ### Distillation of penultimate features -> MSDFA
45 src_feat_dist = 0
46 if self.it_count>=self.it_before_feat_distill:
47 n_avg_pre_batch = norm(avg_pre_batch, dim=-1).detach()
48 avg_feat_smat = n_avg_pre_batch.mm(n_avg_pre_batch.T)
49 src_feat_dist = self.kl_div(base_smat, avg_feat_smat.detach())
50

51 ### Total S2SD training objective
52 total_loss = multi_distill_loss + self.dist_gamma*src_feat_dist
53 self.it_count+=1
54 return total_loss
55

56 def kl_div(self, A, B, T=1):
57 log_p_A = F.log_softmax(A/self.T, dim=-1)
58 p_B = F.softmax(B/self.T, dim=-1)
59 kl_d = F.kl_div(log_p_A, p_B,reduction=’sum’)*T**2/A.size(0)
60 return kl_d

Listing 1. PyTorch Implementation for S2SD.

Simultaneous Similarity-based Self-Distillation for Deep Metric Learning

G. Detailed Evaluation Results
This table contains all method ablations for a fair evaluation as used in Section 5.2 and Table 1.

Table 4. Detailed Comparison of Recall@1 and NMI performances against well performing DML objectives examined in section 5.2.
This is the complete version to table 1. All results are computed over 5-run averages. (∗) For Margin Loss and SOP, we found β = 0.9 to
give better distillation results without notably influencing baseline performance.

Benchmarks→ CUB200-2011 CARS196 SOP

Approaches ↓ R@1 NMI R@1 NMI R@1 NMI

Margin(∗) 63.09± 0.46 68.21± 0.33 79.86± 0.33 67.36± 0.34 78.43± 0.07 90.40± 0.03
+ DSD 65.11± 0.18 69.65± 0.44 83.19± 0.18 69.28± 0.56 79.05± 0.12 90.52± 0.18
+ DSDA 65.77± 0.55 69.85± 0.25 83.92± 0.08 69.95± 0.21 77.78± 0.15 90.29± 0.08
+ MSD 66.13± 0.34 70.83± 0.27 83.63± 0.31 69.80± 0.36 79.26± 0.15 90.60± 0.10
+ MSDA 66.14± 0.32 70.82± 0.18 84.31± 0.12 70.17± 0.30 78.04± 0.11 90.45± 0.05
+ MSDF 67.58± 0.32 71, 47± 0.19 85.55± 0.23 71.68± 0.54 79.63± 0.14 90.70± 0.09
+ MSDFA 67.21± 0.23 71.43± 0.25 86.45± 0.35 71.46± 0.24 78.82± 0.09 90.49± 0.06

R-Margin 64.93± 0.42 68.36± 0.32 82.37± 0.13 68.66± 0.47 77.58± 0.11 90.42± 0.03
+ DSD 66.58± 0.08 70.03± 0.41 84.64± 0.16 70.87± 0.18 77.86± 0.10 90.50± 0.03
+ DSDA 67.11± 0.43 70.39± 0.48 84.32± 0.36 70.85± 0.16 77.79± 0.11 90.37± 0.04
+ MSD 66.81± 0.27 70.47± 0.16 85.01± 0.10 71.67± 0.40 78.00± 0.06 90.47± 0.04
+ MSDA 67.31± 0.41 71.01± 0.24 85.34± 0.17 71.85± 0.20 77.93± 0.06 90.29± 0.08
+ MSDF 68.12± 0.30 71.80± 0.33 85.78± 0.22 72.24± 0.31 78.57± 0.09 90.58± 0.02
+ MSDFA 68.58± 0.26 71.64± 0.40 86.81± 0.35 71.48± 0.29 78.00± 0.11 90.41± 0.02

Multisimilarity 62.80± 0.70 68.55± 0.38 81.68± 0.19 69.43± 0.38 77.99± 0.09 90.00± 0.02
+ DSD 65.57± 0.26 70.08± 0.33 83.51± 0.20 70.30± 0.05 78.23± 0.04 90.08± 0.04
+ DSDA 66.60± 0.43 70.74± 0.40 84.42± 0.28 70.36± 0.34 77.92± 0.12 89.99± 0.04
+ MSD 65.80± 0.16 70.53± 0.01 83.98± 0.10 71.34± 0.09 78.42± 0.09 90.09± 0.03
+ MSDA 66.96± 0.36 70.77± 0.05 85.04± 0.14 71.09± 0.23 77.98± 0.05 90.02± 0.04
+ MSDF 67.04± 0.29 71.87± 0.19 85.69± 0.19 72.77± 0.13 78.59± 0.08 90.09± 0.06
+ MSDFA 67.68± 0.29 71.40± 0.21 85.89± 0.15 71.45± 0.26 78.07± 0.06 89.88± 0.10

H. Evaluation Results using mAP@R
This table measures performance of methods investigated in Table 1 using the mAP@R(@1000) metric used in (Roth et al.,
2020b). The results here coincide with those measured using Recall@1. This comes at no surprise, as both metrics are
strongly correlated when measuring the performance of Deep Metric Learning methods (Roth et al., 2020b).

I. Detailed Ablation Results
Detailed values to the ablation experiments done in section 5.4 and E.

Simultaneous Similarity-based Self-Distillation for Deep Metric Learning

Table 5. Detailed Comparison of mAP@R (as used in (Roth et al., 2020b) and (Musgrave et al., 2020) and based on the formulation used
in (Roth et al., 2020b)) against well performing DML objectives examined in section 5.2.. All results are computed over 5-run averages.
(∗) For Margin Loss and SOP, we found β = 0.9 to give better distillation results without notably influencing baseline performance. Bold
denotes best results per objective and dataset. Bluebold denotes best performance per dataset.

Benchmarks→ CUB200-2011 CARS196 SOP

Approaches ↓ mAP mAP mAP

Margin(∗) 32.63± 0.40 32.50± 0.28 46.90± 0.16
+ DSD 33.85± 0.38 34.01± 0.39 47.39± 0.18
+ MSD 34.79± 0.35 34.64± 0.31 48.17± 0.07
+ MSDF 35.68± 0.29 35.26± 0.41 48.24± 0.10
+ MSDFA 35.98± 0.23 35.98± 0.40 47.04± 0.26

R-Margin 33.38± 0.27 34.57± 0.30 46.02± 0.14
+ DSD 34.46± 0.30 35.12± 0.22 46.20± 0.19
+ MSD 35.11± 0.41 35.78± 0.40 46.59± 0.16
+ MSDF 35.99± 0.36 37.32± 0.40 47.08± 0.17
+ MSDFA 36.25± 0.37 37.67± 0.35 46.71± 0.16

Multisimilarity 30.92± 0.49 31.92± 0.44 46.23± 0.08
+ DSD 33.20± 0.34 33.67± 0.27 46.21± 0.15
+ MSD 34.00± 0.35 34.67± 0.26 46.45± 0.11
+ MSDF 35.16± 0.32 35.52± 0.51 46.52± 0.17
+ MSDFA 35.35± 0.24 35.13± 0.35 45.39± 0.28

Table 6. Additional ProxyAnchor (Kim et al., 2020) results with and without S2SD variants using the proposed, but different, default
architecture in (Kim et al., 2020) to highlight that S2SD works equally well on already strong proxy-based objectives objectives with
different architectural settings as well.

Benchmarks→ CUB200-2011 CARS196 SOP

Setting R@1 NMI R@1 NMI R@1 NMI

ProxyAnchor 64.58± 0.23 68.95± 0.24 82.55± 0.41 69.49± 0.30 78.33± 0.08 90.24± 0.06
+ DSD 65.50± 0.47 69.97± 0.55 83.52± 0.11 70.76± 0.17 78.33± 0.08 90.24± 0.06
+ MSD 65.92± 0.28 69.88± 0.21 83.99± 0.33 70.95± 0.19 78.47± 0.03 90.29± 0.06
+ MSDF 66.71± 0.12 70.60± 0.24 85.20± 0.09 71.19± 0.18 78.50± 0.04 90.31± 0.03

Table 7. Experiment: Comparison of concurrent self-distillation against standard 2-stage distillation. This table also shows that training
without distillation (Joint) or training in high dimension while learning a detached low-dimensional embedding layer (Concur.) does not
benefit performance notably. See fig. 3A. All results are computed over 5-run averages.

Experiment Setting R@1

Distillation

Best Teacher (d=1024) 66.04± 0.17
Base Student (d=128) 62.70± 0.53

Distill Student (d=128) 63.89± 0.14
Concur. Student (d=128) 63.08± 0.42

Joint Student (d=128) 62.93± 0.22
DSD (d=128) 65.57± 0.26

DSDA (d=128) 66.51± 0.18
MSDA (d=128) 66.96± 0.36

MSDFA (d=128) 67.68± 0.29

Simultaneous Similarity-based Self-Distillation for Deep Metric Learning

Table 8. Experiment: Benefit of self-distillation across embedding dimensionalities. These results go along with 3B. All results are
computed over 5-run averages.

Experiment Setting R@1 Setting R@1

Embedding Dimensionality

Base (d=16) 48.18± 0.54 MSD (d=256) 66.90± 0.11
Basic (d=32) 54.54± 0.42 MSD (d=512) 67.07± 0.02
Basic (d=64) 59.31± 0.26 MSD (d=1024) 66.69± 0.11

Basic (d=128) 62.70± 0.53 MSD (d=2048) 66.68± 0.18
Basic (d=256) 64.39± 0.30 MSDA (d=16) 51.57± 0.39
Basic (d=512) 65.95± 0.19 MSDA (d=32) 61.55± 0.23
Basic (d=1024) 66.04± 0.17 MSDA (d=64) 64.94± 0.50
Basic (d=2048) 66.03± 0.20 MSDA (d=128) 66.96± 0.36

DSD (d=16) 49.92± 0.09 MSDA (d=256) 67.63± 0.34
DSD (d=32) 59.75± 0.78 MSDA (d=512) 67.76± 0.26
DSD (d=64) 62.75± 0.15 MSDA (d=1024) 67.79± 0.10

DSD (d=128) 65.57± 0.26 MSDA (d=2048) 67.33± 0.09
DSD (d=256) 66.34± 0.07 MSDF (d=16) 51.99± 0.57
DSD (d=512) 66.89± 0.15 MSDF (d=32) 61.61± 0.41
DSD (d=1024) 66.57± 0.11 MSDF (d=64) 65.31± 0.23
DSD (d=2048) 66.54± 0.28 MSDF (d=128) 66.66± 0.29
DSDA (d=16) 50.77± 0.71 MSDF (d=256) 67.47± 0.11
DSDA (d=32) 60.13± 0.45 MSDF (d=512) 67.59± 0.03
DSDA (d=64) 63.84± 0.36 MSDF (d=1024) 67.40± 0.15
DSDA (d=128) 66.51± 0.18 MSDF (d=2048) 67.01± 0.35
DSDA (d=256) 67.13± 0.24 MSDFA (d=16) 52.96± 0.44
DSDA (d=512) 67.54± 0.24 MSDFA (d=32) 61.98± 0.36

DSDA (d=1024) 67.27± 0.22 MSDFA (d=64) 65.19± 0.40
DSDA (d=2048) 67.33± 0.30 MSDFA (d=128) 67.68± 0.29

MSD (d=16) 50.51± 0.21 MSDFA (d=256) 68.48± 0.28
MSD (d=32) 60.00± 0.28 MSDFA (d=512) 69.06± 0.14
MSD (d=64) 63.74± 0.24 MSDFA (d=1024) 69.08± 0.22
MSD (d=128) 65.80± 0.16 MSDFA (d=2048) 69.29± 0.35

Table 9. Experiment: Methods of distillation between reference and target embedding spaces. See fig. 3C. Used Method: DSDA. All
results are computed over 5-run averages.

Experiment Setting R@1

Distillation Methods

R-KL 66.51± 0.18
Cos 65.73± 0.27
Eucl 65.61± 0.28

KL-Full 65.91± 0.32
KL-Mean 64.00± 0.55

Basic 62.70± 0.53

Table 10. Experiment: Structure of the secondary branch. More specifically, this table contains specific values used in fig. 3D. Used
Method: DSDA. All results are computed over 5-run averages.

Experiment Setting R@1

Secondary Branch Structure

2 Layers 66.51± 0.18
3 Layers 66.03± 0.29
4 Layers 65.76± 0.65
Linear 65.28± 0.48
Basic 62.70± 0.53

Table 11. Experiment: Different distillation hierarchies. See fig. 3E. Used Method: MSDA. All results are computed over 5-run averages.
Experiment Setting R@1

Distillation Hierarchies

Basic 62.70± 0.53
Straight 66.96± 0.36

Fully 65.58± 0.46
Stacked 65.21± 0.25

Simultaneous Similarity-based Self-Distillation for Deep Metric Learning

Table 12. Experiment: Influence of distillation weight γ. See fig. 3F. Used Method: DSD. All results are computed over 5-run averages.
Experiment Setting R@1 CUB200 R@1 CARS196 R@1 SOP

Weight Ablation

0.0 62.70± 0.53 81.32± 0.36 77.78± 0.06
0.2 62.85± 0.41 81.65± 0.40 78.22± 0.07
1.0 62.92± 0.16 81.92± 0.51 78.71± 0.10
5.0 63.88± 0.19 82.96± 0.10 79.05± 0.12
20.0 65.43± 0.21 83.50± 0.35 78.72± 0.10
50.0 65.57± 0.26 83.51± 0.33 78.10± 0.13

250.0 65.04± 0.33 82.25± 0.62 77.41± 0.12
1000.0 63.32± 0.36 77.00± 0.66 77.01± 0.08
2000.0 62.76± 0.31 72.72± 0.85 76.37± 0.11
5000.0 62.05± 0.62 70.90± 0.97 75.42± 0.20

Table 13. Experiment: Evaluation target dimensions and levels of multiscale distillation. See fig. 4A. All results are computed over 5-run
averages.

Experiment Setting R@1

Target Dimensionalities

Basic 62.70± 0.53
DSDA, TD=256 64.82± 0.18
DSDA, TD=512 66.44± 0.31

DSDA, TD=1024 66.25± 0.26
DSDA, TD=2048 66.51± 0.18

MultiScale distillation

MSDA, #B=2 66.76± 0.23
MSDA, #B=4 66.96± 0.36
MSDA, #B=8 66.72± 0.25

MSDA, #B=16 66.59± 0.20

Table 14. Experiment: Is it beneficial to distill more fine-grained features? See fig. 4B. All results are computed over 5-run averages.
Experiment Setting R@1

Earlier Features

Basic 62.70± 0.53
MSDA 66.96± 0.36

MSDFA 67.68± 0.29
MSDFA, #P=1 66.13± 0.22
MSDFA, #P=2 65.49± 0.12
MSDFA, #P=3 66.22± 0.24
MSDFA, #P=4 65.96± 0.04

Table 15. Experiment: Is it necessary to detach auxiliary branches for distillation? See fig. 4C. All results are computed over 5-run
averages.

Experiment Setting R@1

Branch Detaching

Basic 62.70± 0.53
DSDA, Detached 66.51± 0.18

DSDA, Non-Detach 65.08± 0.23
MSDA, Detached 66.96± 0.36

MSDA, No-Detach 65.34± 0.07

