
A LD(h) = FPRD(h) doesn’t have the uniform convergence property

Recall that the false positive rate of a binary classifier can be written as

FPRD(h) ≡ Pr [h(x) = 1|y = 0]

For intuition, the fact that we condition on the event y = 0 means that for distributions in which
the probability of this event is small, a good estimate of the true loss will require more samples.
Intuitively, this contradicts the uniform convergence requirement that there is a single number of
samples that “works” for every distribution D.

Proof. Suppose X is finite and |X | = n. Fix some element x′ ∈ X , and consider the distribution
D on X × Y obtained by taking a uniform distribution over X and labeling elements via the
deterministic labeling function

y(x) =

{
0 x 6= x′

1 x = x′

Consider the classifier h that labels everyone as 1: h(x) ≡ 1. Then, FPRD(h) = 1 (since there
is a single negative example, which is incorrectly labeled as a positive). On the other hand, the
empirical estimate w.r.t any sample S ⊆ X − {x′} is zero, so for such a sample, the difference
between LS(h) and LD(h) is at a maximal value of 1. Recall that uniform convergence requires us
to estimate this difference to arbitrary precision with high probability; therefore, the “bad event”
in which x /∈ S must happen with probability at most δ. Equivalently,(

n− 1
n

)m

≤ δ

This require taking m large enough to guarantee that m ≥ log 1
δ ·

1
log n

n−1
. However, there is no

function f : (0, 1) → N that guarantees that m ≥ f (δ) satisfies this condition for every n, because
as n approaches infinity, log n

n−1 → 0, so the expression is unbounded.

B Exist L ∈ L that are not multi-group compatible

Proof. For the counter-example we focus on binary classification and individual (metric) fairness
w.r.t a binary metric (i.e., that specifies for every two individuals, whether they are identical or
completely different). Fixing a metric d : X ×X → {0, 1}, the loss function L is a combination of
accuracy and individual (metric) fairness:

LD(h) = a · LIF
D (h) + b · L0−1

D (h)
≡ a · Pr

x,x′∼DX

[
h(x) 6= h(x′) ∧ d(x, x′) = 0

]
+ b · Pr

x,y∼D
[h(x) 6= y]

Let us now construct the problem instance in question. Let the domain X be X = {xS, xT, xST},
withDX denoting the marginal distribution on X in which xS has probability 0.8, and xT, xST each
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have probability of 0.1. A distribution D is obtained as the product of DX and DY|X=x, where the
latter assigns deterministic labels: y(xS) = 0 and y(xST) = y(xT) = 1. The class H consists of the
constant classifiers, h0 and h1, and the collection of groups is G = {S, T} where S = {xS, xST} and
T = {xT, xST}. Finally, the metric specifies that xS and xST are identical, and the rest are different:

d(xS, xST) = 0, , d(xT, xST) = 1, d(xS, xT) = 1

We argue that there is no classifier satisfying the multi-PAC requirement w.r.t H and G. To see
this, we first note that

LDS(H) = b/9, LDT (H) = 0

This is because the optimal classifier for T is h1, which is perfect for both the accuracy and IF
losses; whereas for S, the best classifier is h0, which is perfect in terms of IF and has a 0-1 loss of
1/9.
Assume for contradiction that for every ε > 0, there is a classifier that satisfies the multi-PAC
requirement. From the perspective of T, the next-best classifier has a loss of 1/2. So, for multi-
PAC with ε < 1/2, it must be the case that h(xST) = 1. On the other hand, from the perspective of
S, when a � b the next-best classifier has loss 8b/9. So, for multi-PAC with ε < 7b/9, it must be
the case that h(xST) = 0. This means that for this problem instance and for ε < min {7b/9, 1/2},
there is no classifier satisfying the ε-multi-PAC requirement.

C Proof of Lemma 4.3 (compatibility→ f -proper)

Let L be any unambiguous and compatible loss. First, we note that by unambiguity, for any
singleton distribution D, the loss minimizer is unique. We can therefore denote it by h?D.
Next, we make an observation that we will use in the proof: that for any distribution D, the
classifier h : X → [0, 1] defined by

h(x) =

{
h?Dx

(x), x ∈ supp(D)
0, otherwise

minimizes the loss LD(·). That is, we are forming a new classifier h by predicting on an input
x ∈ supp(D) using the prediction of the classifier that minimizes the loss on the distribution D
restricted to x. The claim is that this classifier is competitive with the best possible loss on the
original distribution D.
We claim that the observation follows as a corollary from the compatibility assumption. Note that
this is trivially the case for any singleton distribution D (by unambiguity), so assume for con-
tradiction that there is a non-singleton distribution D for which the observation does not hold.
We define a multi-PAC problem instance as follows. For x ∈ X , let gx = {x} denote the sin-
gleton group that consists only of x. Define Gsingletons = {gx : x ∈ supp(D)} and Hsingletons ={

h?Dx
: x ∈ supp(D)

}
. Additionally, let h? denote some classifier in arg minh LD(h). Finally,
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G = Gsingletons ∪ {supp(D)}
H = Hsingletons ∪ {h?}

Note that by definition, for every group g in G, LDg(H) = 0 (because we specifically included
an optimal classifier for every group in H). Multi-PAC for the singleton groups Gsingeltons with
an arbitrarily small precision ε therefore requires that we predict h?Dx

(x) for x ∈ supp(D). But
by the assumption, the resulting classifier is not optimal for the group {supp(D)}, in violation to
multi-PAC w.r.t that group. This completes the proof of the observation.
We can now use the observation to directly prove niceness. We will do this by constructing a spe-
cific function f and showing that the classifier defined by hD(x) = f (x, ED [y|x]) always minimizes
the loss LD. Consider

f (x, v) = h?Dx,v
(x)

where Dx,v is the singleton distribution supported on x that predicts a label of 1 w.p v, and h?Dx,v
is

the loss minimizer for this distribution (which, by unambiguity, is indeed unique).
We need to prove that f satisfies the requirement in the definition of f−proper. Fix some distribu-
tion D; we need to prove that

hD ∈ arg min
h

LD(h)

where hD(x) = f (x, ED [y|x]).
By the observation, the classifier that predicts for x ∈ supp(D) using the optimal classifier for Dx
is itself optimal for D. But by construction, Dx ≡ Dx,ED [y|x], so we get:

h?Dx
(x) = h?Dx,ED [y|x]

= f (x, E
D
[y|x]) = hD(x)

In other words, the classifier that predicts for x ∈ supp(D) using the optimal classifier for Dx is
precisely hD. The observation therefore proves hD ∈ arg minh LD(h), as required.

D Proof of Lemma 4.4 ( f -proper→ learnability)

To prove the lemma, we construct a learning algorithm, MultiGroupL, and prove that when L is
compatible and has the uniform convergence property, the output of this algorithm satisfies the
requirements in the definition of multi-group learnability.
The definition of MultiGroupL is given in Algorithm 3. At a high-level, MultiGroupL accepts a class
H, collection of subgroups G and parameters ε, δ, γ, and returns a classifier by invoking a learning
algorithm for OI w.r.t an appropriate distinguisher class A. The definition of each distinguisher
A ∈ A is given separately – see Algorithm 4.
We begin by proving that if L is f -proper, then h ← MultiGroupL,f(ε, δ,H,G) satisfies the (ε, δ)-
multi-group requirement w.r.tH and G.
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Algorithm 3 MultiGroupL,f(ε, δ, γ,H,G)
1: Parameters: loss function L, function f : X × [0, 1]→ [0, 1]

2: Input: accuracy parameter ε ∈ (0, 1), failure probability δ ∈ (0, 1), minimal subgroups size
parameter γ ∈ (0, 1), hypothesis classH, collection of subgroups G.

3: Output: A classifier h satisfying the (ε, δ)-multi-group guarantee w.r.tH and G
4: Set ε′ = α = ε/4 and δ′ = η = τ = δ/4.
5: Set kG = mUC

L (ε′, δ′, |H|+ 1).
6: Set k = 10 · 1

γ · log 1
δ′ · kG .

7: Let A =
{

AL, f ,k
g,h,α | g ∈ G, h ∈ H

}
be a collection of distinguishers, as defined in Algorithm 4.

8: Invoke OI as a sub-routine to learn p̃← OI(τ, η,A).
9: return f ( p̃)

Lemma D.1. Suppose L is f -proper. Fix a distribution D over X × Y, a finite class H, a finite col-
lection of subgroups G and parameters δ, ε, γ ∈ (0, 1). Then, w.p at least 1 − δ, the predictor h ←
MultiGroupL,f(ε, δ, γ,H,G) satisfies

∀g ∈ Gγ : LDg(h) ≤ LDg(H) + ε

Proof. We begin by lower-bounding the acceptance probability of each distinguisher A ∈ A when
it receives samples from the modeled distribution D̃. Recall that this is the distribution in which
outcomes yi are sampled according to Ber( p̃(xi)), where p̃ is the predictor returned by OI.

Claim D.2. The probability that each A , Ag,h ∈ A accepts when given samples from the modeled
distribution D̃ is at least 1− 2δ′:

Pr
{(xi ,yi)}k

i=1∼D̃k
[A({(xi, yi, p̃(xi)}k

i=1) = 1] ≥ 1− 2δ′

To see why this is true, we first note that by construction, the predictor f ( p̃) (where f ( p̃)(x) =
f (x, p̃(x))) coincides with the predictor hD̃ from the definition of f−proper. Thus, invoking the
assumption that L is f -proper for the distribution Dg guarantees that

LD̃g
f ( p̃) ≤ LD̃g

(h) (4)

To relate this fact to the acceptance criteria of A, which is in terms of a sample Sg from D̃g, we
need to use the uniform convergence property of L. Recall that the distinguisher operates on
k = 10 · 1

γ · log 1
δ′ · kG samples from D̃; this was chosen precisely to guarantee that w.p at least

1 − δ′, we have at least kG samples from D̃g for every group g whose mass is at least γ. Since
kG = mUC

L (ε′, δ′, |H|+ 1), we have a uniform convergence guarantee for the class that includes H
and p̃. That is, we know that w.p at least 1− δ′

∣∣∣LSg(h)− LD̃g
(h)
∣∣∣ ≤ ε′,

∣∣∣LSg( f ( p̃))− LD̃g
( f ( p̃))

∣∣∣ ≤ ε′ (5)
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Algorithm 4 AL, f ,k
g,h,α (multi-sample Sample-Access OI distinguisher)

1: Parameters: number of samples k ∈N, group g ⊆ X , classifier h : X → [0, 1], loss function L,
function f : X × [0, 1]→ [0, 1]

2: Input: {(xi, yi, pi)}k
i=1, where xi ∈ X , yi ∈ {0, 1} and pi ∈ [0, 1]

3: Output: A binary output denoting Accept/Reject

4: Ig = {i : xi ∈ g}
5: Sg = {(xi, yi)}i∈Ig

6: Define a predictor fg as

fg(x) =

{
f (xi, pi) ∃i ∈ [k] such that x = xi

0 otherwise
(3)

7: if LSg( fg) < LSg(h) + 2α then
8: return 1
9: end if

10: return 0

Combining Equations (4) and (5), we have that with probability at least 1− 2δ′ (obtained by union
bounding with respect to the two δ′ failure probabilities we used above),

LSg( f ( p̃)) ≤ LSg(h) + 2ε′

Finally, we note that w.r.t Sg, the predictor fg defined in Equation (3) of Algorithm 4 is the same as
f ( p̃) – so the above is precisely the acceptance criterion for A in this case. We thus conclude that
the acceptance probability of A when it receives samples from the modeled distribution is at least
1− 2δ′, which concludes the proof of the claim.
Next, we argue that a direct corollary is a related lower bound on the acceptance probability of A
when it receives samples from the true distribution D.

Claim D.3. The probability that each A , Ag,h ∈ A accepts when given samples from the true distribution
D is at least 1− (2δ′ + τ + η):

Pr
{(xi ,yi)}k

i=1∼Dk
[A({(xi, yi, p̃(xi)}k

i=1) = 1] ≥ 1− (2δ′ + τ + η)

The claim follows as a direct corollary from the previous claim. By definition, since OI is a learning
algorithm for OI predictors, p̃ is (τ,A)-OI w.p at least 1− η. Recall that if p̃ is (τ,A)-OI, then we
are guaranteed that the probabilities of each A ∈ A accepting on samples from D̃ and A accepting
on samples from D differ by at most τ:∣∣∣∣∣ Pr

{(xi ,yi)}k
i=1∼Dk

[A({(xi, yi, p̃(xi)}k
i=1) = 1]− Pr

{(xi ,yi)}k
i=1∼D̃k

[A({(xi, yi, p̃(xi)}k
i=1) = 1]

∣∣∣∣∣ ≤ τ (6)

in other words, w.p at least 1− η we are guaranteed that Pr{(xi ,yi)}k
i=1∼Dk [A({(xi, yi, p̃(xi)}k

i=1) =
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1] ≥ 102δ′− τ. This implies that a lower bound on the acceptance probability in this case is exactly
1− (2δ′ + τ + η), completing the proof of the claim.
Next, we recall that by the definition of the acceptance condition for A, the condition in Equation
(6) is the same as saying that w.p at least 1− (2δ′ + τ + η) over the choice of Sg ∼ Dg,

LSg( f ( p̃)) ≤ LSg(h) + 2ε′

Again using the uniform convergence guarantee from Equation (5), this implies

LDg( f ( p̃)) ≤ LDg(h) + 4ε′

Plugging in ε′ = ε/4 and δ′ = τ = η = δ/4, we conclude that w.p at least 1− δ,

LDg( f ( p̃)) ≤ LDg(h) + ε

which is the required. This completes the proof of Lemma D.1.

To prove multi-group learnability, it remains to bound the sample complexity of Algorithm 3,
which we do in the following claim.

Claim D.4. The sample complexity of Algorithm 3 is

mgPAC
L (ε, δ, γ,H,G) = O

mH(ε, δ) · log
(
|H|·|G|

ε

)
δ4 · γ


Proof. By the definition of Algorithm 3, the number of samples required is the number of samples
required to obtain OI w.r.t (τ, η,A), whereA is a collection of |H| · |G| k−sample OI distinguishers.
By Theorem 2.8, this requires an order of O( k·log(|A|/η)

τ4 ) samples. Ignoring constant factors and
plugging in the settings of k, η and τ used in Algorithm 3,

η = O(δ)

τ = O(ε)

k = O
(

1
γ
· log

1
δ
·mUC

L (ε, δ, |H|)
)
= O

(
1
γ
· log

1
δ
·mH(ε, δ

)
we obtain the stated bound.

Note that when L has the uniform convergence property, this entire expression is indeed polyno-
mial in 1/ε, 1/δ, 1/γ and log(|H|), log(|G|), as required. Together with the previous lemma, this
concludes the proof of Lemma 4.4.
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