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Abstract

An agnostic PAC learning algorithm finds a pre-
dictor that is competitive with the best predictor in
a benchmark hypothesis class, where competitive-
ness is measured with respect to a given loss func-
tion. However, its predictions might be quite sub-
optimal for structured subgroups of individuals,
such as protected demographic groups. Motivated
by such fairness concerns, we study “multi-group
agnostic PAC learnability”: fixing a measure of
loss, a benchmark class H and a (potentially) rich
collection of subgroups G, the objective is to learn
a single predictor such that the loss experienced
by every group g € G is not much larger than the
best possible loss for this group within 7{. Under
natural conditions, we provide a characterization
of the loss functions for which such a predictor
is guaranteed to exist. For any such loss function
we construct a learning algorithm whose sample
complexity is logarithmic in the size of the col-
lection G. Our results unify and extend previous
positive and negative results from the multi-group
fairness literature, which applied for specific loss
functions.

1. Introduction

Machine learning tools are used to make and inform in-
creasingly consequential decisions about individuals. Exam-
ples range from medical risk prediction to hiring decisions
and criminal justice. Automated classification and risk pre-
diction come with benefits, but they also raise substantial
societal concerns. One prominent concern is that these
algorithms might discriminate against protected and/or dis-
advantaged groups. In particular, a learned predictor might
perform differently on a protected subgroup compared to the
general population. The growing literature on algorithmic
fairness has studied different concerns. Many works aim
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to ensure parity or balance between demographic groups,
e.g. similar rates of positive predictions or similar false
positive or false negative rates (Hardt et al., 2016; Kleinberg
et al., 2016). Other works consider accuracy guarantees,
such as calibration (Dawid, 1982), for protected groups.
Protections at the level of a single group might be too weak
(Dwork et al., 2012), and recent works have studied ex-
tending these notions to the setting of multiple overlapping
groups (Hébert-Johnson et al., 2018; Kearns et al., 2018).

In this work, we focus on the setting of (supervised) agnostic
learning (Kearns et al., 1994). Given an i.i.d. training
set of labeled data, the goal is to learn a predictor & that
performs well on the underlying distribution. Performance
is measured by a loss function, and with respect to a fixed
class H: the loss incurred by the predictor /i should be
competitive with the best predictor in H. To capture a
wide variety of settings, we aim to be quite general in our
treatment of different loss functions.

With fairness in mind, the agnostic learning paradigm raises
a fundamental concern: since the predictor’s loss is mea-
sured over the entire underlying distribution, it might not re-
flect the predictor’s performance on sub-populations such as
protected demographic groups. Indeed, it has been demon-
strated that standard machine learning tools, when applied
to standard data sets, produce predictors whose performance
on protected demographic groups is quite poor (Buolamwini
& Gebru, 2018).

Motivated by these concerns, we study multi-group agnostic
learning. For a rich collection G of (potentially) overlapping
groups, our goal is to learn a single predictor ki, such that
the loss experienced by every group ¢ € G (when classified
by h) is not much larger than the loss of the best predictor
for that group in the class 7. We emphasize that this should
hold for all groups in G simultaneously.

To see how this objective is different from the usual agnos-
tic PAC, consider the simple example in which H is the
class of hyperplanes and we have two subgroups S, T C X.
Suppose that the data is generated such that every group g
has a hyperplane hg that has very low error on it (but that
these are different, so e.g. it has large loss on S and vice
versa). This means that there is no classifier 1 € H that
perfectly labels the data. If S is small compared to T, then
the agnostic learning objective could be satisfied by /i, the
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optimal classifier for T. For multi-group agnostic PAC, the
fact that there is some other classifier in H that perfectly
labels S serves to disqualify i1 (more generally, it could be
the case that no i € H will be multi-PAC). This also high-
lights that the multi-group objective becomes challenging
when the groups in question are intersecting (if the groups
are disjoint, we can combine the optimal classifiers for each
group (Dwork et al., 2017)).

A recent work by Blum and Lykouris (Blum & Lykouris,
2019) studied this question in an online setting with sequen-
tial predictions. Our focus is on the batch setting. They
showed that (for every collection of groups and every bench-
mark hypothesis class) it is possible to achieve competitive
loss for all groups, so long as the loss function is decompos-
able: the loss experienced by each group is an average of
losses experienced by its members (this result also applies
to the batch setting). On the other hand, they showed a loss
function (the average of false negative and false positive
rates), for which the objective is infeasible even in the batch
setting. Since this loss is non-decomposable (the false posi-
tive rate of a classifier depends on the negative rate, which is
a property of the entire distribution in question), one might
conjecture that the multi-group objective is only possible for
decomposable losses. However, this conjecture is false: For
example, calibration (Dawid, 1982) is a non-decomposable
loss that is compatible with the multi-group objective. In-
deed, (Hébert-Johnson et al., 2018) propose an algorithm
that guarantees predictions are calibrated across groups (in
other words, the calibration loss for each ¢ € G is close to
zero). In particular, the output of this algorithm would sat-
isfy the multi-group agnostic PAC requirement (with respect
to the calibration loss, and for every hypothesis class.

1.1. Our contributions

Motivated by these observations, in this work we formalize
two main questions:

1. We define a loss function as (multi-group) compatible
if it is “appropriate” to use with our objective, in the
sense that for every hypothesis class H and collection
of groups G, there exists a hypothesis / that is compet-
itive with H for every group in G. What makes a loss
function compatible? Previous works provide several
positive and negative results, but there was no clear
characterization of compatibility.

2. Is it always the case that for such “compatible” losses,
a multi-group predictor can also be found using a finite
number of samples? In other words, is there a sepa-
ration between multi-group compatibility and multi-
group learnability?

Our main technical contributions answer both questions:

1. We prove a partial information-theoretic characteriza-
tion of the compatible loss functions.

2. For any such loss function that also satisfies a natural
uniform convergence property, we show an algorithm
that, for any specified finite collection G and finite
hypothesis class H, learns a multi-group agnostic pre-
dictor from labeled data. The sample complexity is
logarithmic in the sizes of G and H. Our algorithm
is derived by a reduction to outcome indistinguisha-
bility (OI), a learning objective recently introduced by
Dwork et al. (Dwork et al., 2020), drawing a new con-
nection between OI and agnostic learning. This shows
that (under minimal assumptions on the loss function),
multi-group compatibility implies multi-group learn-
ability.

In slightly more detail, we characterize the compatible loss
functions assuming an additional unambiguity property (we
refer to the characterization as “partial” because of this
assumption): we assume that once we fix a single individual
and specify the distribution of their label, there is a unique
prediction that minimizes the loss for that individual. We
view this as a very natural assumption on the loss function,
see the discussion following Definition 2.2. We show that
if a loss function is compatible and unambiguous, then for
each individual, the optimal prediction can be obtained by a
fixed “local” function f, whose output only depends on the
features and on the marginal distribution of that individual’s
label. The point is that the function f doesn’t depend on
the global distribution, but the predictions that it specifies
still minimize the loss for that distribution. We call loss
functions that satisfy this property f-proper, and we show
that (under the unambiguity assumption) being f-proper is
equivalent to multi-group agnostic PAC compatibility.

We then construct a universal multi-group agnostic PAC
learning algorithm for any f-proper loss function that also
satisfies a minimal uniform convergence property (this is
necessary for finite sample complexity). The learning algo-
rithm works for any specified finite hypothesis class H and
any finite collection of groups G, and its sample complexity
is logarithmic in || and |G|. The algorithm is obtained
via a reduction from multi-group agnostic PAC learning to
the recently studied task of outcome indistinguishable learn-
ing (Dwork et al., 2020). Beyond unifying previous work
in multi-group fairness, this result can be thought of as a
multi-group analogue for the known result that every PAC
learnable class is learnable via empirical risk minimization.

1.2. Related work

The literature on algorithmic fairness is broad and grow-
ing. Most pertinent to our work is the literature on fair-
ness notions that aim to stake a middle-ground between
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the strong, individual-level semantics of individual fair-
ness notion (Dwork et al., 2012) and the weaker but useful
group fairness notions (Hardt et al., 2016; Kleinberg et al.,
2016). We broadly refer to such notions as multi-group
notions. Some of these works are geared towards guaran-
teeing parity: equalizing some statistic across the (possibly
exponentially-many) subgroups in G. For example, (Kearns
et al., 2018) study multi-group versions of both Equality of
Opportunity and Demographic Parity notions (Hardt et al.,
2016). We note however, that as the collection G becomes
richer and richer, it might be the case multi-group parity
can only be obtained via trivial predictions or otherwise
undesirable behaviour, such as intentionally making worse
predictions on some groups to achieve parity (Chen et al.,
2018). A different line of works consider guarantees that
are not inherently in conflict with accuracy, e.g. because
the Bayes optimal predictor always satisfies multi-group
fairness (regardless of G). Notable examples include multi-
calibration (Hébert-Johnson et al., 2018) and multi-accuracy
(Kim et al., 2019), with subsequent works studying exten-
sions in ranking (Dwork et al., 2019), regression (Jung et al.,
2020) and online learning (Gupta et al., 2021). As discussed
above, Blum and Lykouris (Blum & Lykouris, 2019) study
multi-group agnostic PAC learning (which, depending on
the loss function, is often similarly aligned with accuracy)
in the online setting. In the batch setting, their approach
for learning a multi-PAC predictor is via the mixture of ex-
perts approach (Jacobs et al., 1991), where the “experts” in
question are a set of |G| predictors, with each /; being the
optimal predictor for group g; € G in the class 7. However,
this approach fails to produce a multi-PAC predictor when
the loss is non-decomposable, such as calibration (this hap-
pens even though, by (Hébert-Johnson et al., 2018), such
multi-fair predictors exist and can be found in sample com-
plexity that scales with log |G|).

2. Preliminaries

Setup and notation. We consider binary classification
problems, where X C R? denotes a feature space and
Y = {0,1} the target labels. As a general convention,
we use D to denote distributions over X X Y and Dy for
the marginal distribution of D over X'. The support of a
distribution (w.r.t X) is supp(D) = supp(Dx). We will
sometimes be interested in distributions over X X Y for
which |supp(D)| = 1, i.e. distributions that are supported
on a single element x € X. We refer to these as “sin-
gleton distributions”. For a distribution D and an element
x € X, we use Dy to denote the singleton distribution on
X X Y obtained by restricting D to X = x. A predictor is
amapping h : X — [0, 1], where h(x) is an estimate for
the probability that the label of x is 1. We will sometimes
consider the special case of classifiers (binary predictors),
whose range is {0,1}. A hypothesis class is a collection of

predictors, and is denoted by . A subgroup is some subset
of X. A collection of subgroups is denoted by G. For this
work we generally assume 7 and G are finite (but possibly
exponentially large in d). For a distribution D and a group
g € X, we use Dy to denote the distribution on X' X Y
obtained by restricting D to x € g.

2.1. General loss functions

A loss function L is some mapping from a distribution D
and a predictor 1 (technically, its’ restriction to D) to [0, 1].
We are typically interested in how L changes as we keep
the first argument (the distribution) fixed, and only change
the second argument (the predictor in question). We thus
typically use Lp (k) to denote the loss of k w.r.t. a distri-
bution D. For a sample S = {(x;,v;)};-; we use Lg(h)
to denote the empirical loss, calculated as Lf) (h), where D
is the empirical distribution defined by the sample S. Note
that this setup is extremely general, and assumes nothing
about the loss (except that it is bounded and can’t depend on
what happens outside D). In machine learning it is common
to consider more structured losses, in which Lp (k) is the
expected loss of 1 on a random example drawn according
to D. We refer to such structured losses as decomposable
losses.

Definition 2.1 (Decomposable losses). A loss function L
is decomposable if there exists a function £ : X X Y X
[0,1] — [0, 1] such that for every distribution D and classi-

fier h, Lp(h) = E(x,y)~D[£(x/ylh(x))]'

For example, for binary classifiers a standard decomposable
loss is the 0-1 loss, in which £(x,y, h(x)) = 1[h(x) # y].
For predictors, an example of a standard decomposable loss
is the squared loss, in which £(x,y, h(x)) = (h(x) —y)2.

Beyond decomposable losses. While decomposable
losses are standard and common, there are many loss func-
tions of interest that don’t have this form — especially in the
literature on algorithmic fairness. For this reason, we focus
on a general notion of loss functions (which does not ex-
plicitly assume losses are decomposable) in our exploration
of multi-group agnostic PAC learning. Notable examples
of such losses, as used in the algorithmic fairness literature,
include the following notions:

Calibration (Chouldechova, 2017; Hébert-Johnson et al.,
2018; Kleinberg et al., 2016; Shabat et al., 2020): A predic-
tor is calibrated if for every value v € [0, 1], conditioned
on p(x) = v, the true expectation of the label is close to
v. Intuitively, this means that the outputs of the predictor
can reasonably be thought of as probabilities, and hence
is a fundamental requirement in the literature on forecast-
ing (Dawid, 1982; Foster & Vohra, 1998). For example, in
weather prediction, calibrated forecasts ensure that, out of
all the days on which the forecaster predicted say 0.8, it
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really rained on 80% of them. Calibration loss measures
the extent to which a predictor is miscalibrated; e.g., the
expected calibration error (Kumar et al., 2018) measures
the deviation from calibration w.r.t a value v drawn from
the distribution induced by the prediction in questions. This
loss is not decomposable because it is a global function of
the predictions, not a property of the prediction for a single
xeX.

One-sided error rates (Blum & Lykouris, 2019; Blum
& Stangl, 2019; Chouldechova, 2017; Hardt et al., 2016;
Kearns et al., 2018): The false positive rate (similarly, false
negative rate) measures the probability of a random example
being labeled as /i(x) = 1, conditioned on the true label
being ¥ = 0. This isn’t a decomposable loss because the ex-
act contribution of a single misclassification depends on the
frequency of the negative labels, which is a global property.

Individual fairness (Dwork et al., 2012; Rothblum & Yona,
2018): Individual fairness (IF) requires that individuals
that are considered similar w.r.t the task at hand are treated
similarly by the classifier. Similarity is specified by a metric
d: X xX — [0,1]. Ifd(x,x") ~ 0 (x,x" are similar),
then it should be the case that 1(x) & h(x’). AnIF loss may
quantify the expected violation of this requirement, e.g. over
a draw of a pair (x,x’) i.i.d from D. This objective isn’t
decomposable because the requirement w.r.t a single x € X
depends on the extent to which there are other similar x’ in

supp(D).

We note that both the latter two losses (false positive rate
and Individual fairness) are typically not interesting on their
own — e.g. because the constant classifier # = 0 minimizes
them. Typically we are interested in these losses as either
an additional constraint on an existing objective, or paired
with an additional loss (e.g. IF + accuracy based loss, or
false positive rate + false negative rate)

In the rest of this section we continue to specify two mini-
mal conditions for the losses we consider. We will use the
notation L for the class of losses that satisfy both condi-
tions. The first condition is unambiguity. It guarantees that
distributions over a single example x have a unique loss
minimizer.

Definition 2.2 (Unambiguity). A loss L is unambiguous if
for every singleton distribution Dy over X X Y, there is
a unique prediction h(x) that minimizes the loss. That is,

arg miny,y)c(o,1] pr(h)’ =1.

Standard decomposable losses satisfy this condition because
the function ¢(h(x),y) typically has a unique minimum
w.r.t its first argument. For example when £ corresponds to
the squared loss the optimal labeling is #(x) = E [y|x]
and when ¢ corresponds to the expected 0-1 loss it is
h(x) = 1[E[y|x] > 0.5]. With respect to the fairness-
motivated losses mentioned above, unambiguity fails w.r.t

individual fairness and the one-sided error rates (exactly
because they can both be minimized by the constant all-
zeroes classifier, regardless of the true distribution). But
as mentioned above, these losses are rarely interesting on
their own, and combined losses (individual fairness with an
unambiguous loss, or an average of false positive rate and
false negative rate) are unambiguous. In other words, all
losses that are of practical interest to us are unambiguous.

The second condition we will require is that the empirical
risk Lg(-) can really be used to approximate the true risk
Lp(+), for a sufficiently large sample S. To build up to
this notion we first recall the standard definition of uniform
convergence for hypotheses classes.

Definition 2.3 (Uniform Convergence for hypotheses
classes). We say that a hypothesis class H has the uniform
convergence property (w.r.t. a domain X X Y and a loss
function L) if there exists a function m%c : (0, 1)2 — N
such that for every ¢,8 € (0,1) and for every probability dis-
tribution D over X X Y, if S is a sample of m > m%c (¢,0)
examples drawn i.i.d. according to D, then, with probability
ofatleast1 —6,Yh € H: |Ls(h)—Lp(h)| <e

In our context, we will be interested in uniform convergence
as a property of the loss function. We will say that a loss
L has uniform convergence (w.r.t finite classes) with sam-
ple complexity mgc : (0,1)2 x N — IN if every finite
class H has the uniform convergence property w.r.t L with
sample complexity m%c (¢,6) < mWC(e, 8, |H]). Specifi-
cally, we will be interested in losses that have the uniform
convergence property with sample complexity that depends
polynomially on 1/¢,1/6 and log |#|. This gives rise to
the following definition:

Definition 2.4 (Uniform convergence for loss functions).
A loss L has the uniform convergence property (w.r.t finite
classes) with sample complexity mt© : (0,1)? x N if there
exists a polynomial f R3® — N such that for every e,6 €
(0,1) andk € N,

mHC (e, 6,k) £ o km%_llc(s,d) < f(1/¢,1/6,10g(k))

The uniform convergence property is satisfied by any de-
composable loss function. This follows by a combination
of Heoffding’s bound (for a single /) and a union bound to
get a simultaneous guarantee for every h € H. Out of the
fairness-motivated losses we discussed above, only the loss
Lp(h) = a-FPRp(h) + b -FNRp(h) doesn’t have uniform
convergence, as we prove in Appendix A. For calibration,
uniform convergence follows as a special case of the bounds
in (Shabat et al., 2020); for individual fairness, the argument
is similar to the standard argument for decomposable losses,
only this time the concentration argument is w.r.t pairs of
samples from D (Rothblum & Yona, 2018).
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loss notation in L?
decomposable L5 (h) v
calibration LS (h)

v
IF + decomposable  a - L¥ (h) +b - L5 (h) v
X

error rates a- LFDPR(h) +b- L%‘R(h)

Figure 1. Summary: loss functions and the set £ (all losses that
are unambiguous and have the uniform convergence property.)

To summarize, we have defined a collection of “reasonable*
losses L as all loss functions that are both unambiguous and
have the uniform convergence property. We have argued
that of the loss functions we discussed, this only rules out
the one-sided error rate loss; see Figure 1 for an overview.

2.2. Learning paradigms

In this work we draw a connection between an extension
of the classic notion of agnostic PAC learnability in the
presence of multiple groups and the recently introduced
complexity-theoretic inspired framework of Outcome Indis-
tinguishability (Dwork et al., 2020), which builds on pre-
vious work in algorithmic fairness (Hébert-Johnson et al.,
2018). In this section we review both of these learning
paradigms, starting with agnostic PAC learnability. For
consistency, we give the definition w.r.t finite classes.

Definition 2.5 (Agnostic-PAC learnability). A hypothesis
class H is agnostic PAC learnable with respect to a set
X XY and a loss function L if there exist a function
my : (0,1)> — N and a learning algorithm with the
following property: For every ¢,6 € (0,1) and for every
distribution D over X X Y, when running the learning al-
gorithm on m > my (¢, 6) i.i.d. examples generated by D,
the algorithm returns h such that, with probability of at least
1 — 4 (over the choice of the m training examples),

Lp(h) < Lp(H)+¢ (1)

Additionally, the sample complexity my; should be polyno-
mialin1/¢,1/8 and in log(|H|).

Outcome indistinguishability. A predictor § : X —
[0,1] can be viewed as providing a generative model for
outcomes, where for x € X a binary outcome is sampled as
y ~ Ber(f(x)). Given a distribution D and a predictor p,
we define the “modeled distribution” D = D(p) as the dis-
tribution over X X Y obtained by first drawing x according
to the marginal distribution of D on X" and then labeling
itas y ~ Ber(p(x)). The framework of Outcome Indistin-
guishability (OI) aims to guarantee that outcomes produced
by p are indistinguishable from the true outcomes under

D. This guarantee is formulated with respect to a fixed
class A of distinguishers, and the requirement is that every
distringuisher A € A behaves similarly on samples from
the real distribution D and on samples from the “modeled

distribution” D.

As discussed and studied in (Dwork et al., 2020), there are
several different ways to instantiate this framework based
on the power of the distinguishers. In particular, two axes
of variation are (i) the input to the distinguisher (single
sample vs multi-sample) and (ii) the access level it receives
to the predictor p in question. In this work, we focus on
multi-sample Sample-Access Ol distinguishers, where the
inputs to each distinguisher A € AF are k—tuples of the
form {(x;,v;, ﬁi)}le, where for every i € [k], (x;,y;) is
sampled from either D or D:

Definition 2.6 (Outcome Indistinguishability (Dwork et al.,
2020)). Fix a distribution D, a collection of distinguishers
A¥ and T > 0. A predictor  : X — [0,1] satisfies
(AK, T)-Ol if for every A € AF,

P A ey, 5(x ) ) = 11—
(gt e A iy P Yima) = 1

| A s, B Ky 1)) <
{(xiryi)}?:1““@k[ ({(x Yi p(xl)}lfl) <t

Much like the definition of (regular) PAC learning, we say
that an algorithm learns multi-sample OI if on receiving
sufficiently many i.i.d samples from the distribution, it is
guaranteed to return a predictor that is “probably approxi-
mately” OL.

Definition 2.7 (Ol learnability). A family of k-sample dis-
tinguishers AF is multi-sample OI learnable if with respect
to a set X x Y if there exists a function m 4 : (0,1)> — N
and a learning algorithm with the following property: For
every T,11 € (0,1) and for every distribution D, when run-
ning the learning algorithm on m > m 4 (T, 1) i.i.d example
generated by D, the algorithm returns h such that with prob-
ability at least 1 — 1 (over the choice of the m training
examples), h satisfies (T, AX)-OL

Additionally, the sample complexity m 4 should be polyno-
mial in 1/7,1/1 and in log(A¥).

Dwork et al. (Dwork et al., 2020) showed that every distin-
guisher class A¥ is Ol-learnable. In our analysis we use the
following theorem, which bounds the sample complexity of
this algorithm and follows from (Dwork et al., 2020).

Theorem 2.8 (from (Dwork et al., 2020)). Fix a class of
k—sample distinguishers AK. There exists an algorithm
0T 4« that satisfies the requirement of Definition (2.7), and

k-log\Ak\/Il)
—L .

whose sample complexity is O ( =
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3. Agnostic PAC with multiple groups

The objective of agnostic PAC learning is to output a predic-
tor & that satisfies Lp(h) < Lp(H) (Equation 1). Putting
aside questions of computational complexity and sample
complexity, this objective is itself always feasible. In other
words, regardless of the loss in question, it can always be
obtained using a learner who has full knowledge of the
distribution D and is not constrained in runtime. From an
information-theoretic perspective, this makes the interesting
question the question of what can be done in finite samples
— hence the focus on agnostic PAC learnability.

A multi-group extension of agnostic PAC asks for a predictor
that satisfies the above, but simultaneously for every group
ginacollection G: Lp, (1) < Lp, (), where Dy denotes
the restriction of D to samples from g.

When G consists of intersecting groups, however, it is not
immediately clear that this objective is always feasible: it
might not be satisfied by any predictor h : X — [0,1].
For a simple (but contrived) example, let 1O, Kl denote the
all-zeroes and all-ones predictors, and consider a loss L that
specifies that Lp, (k%) = 0 and Lp,.(h!) = 0 (and for any
other classifier /i, the loss of every distribution is always 1).
Then the multi-group objective w.r.t G = {S, T} requires
that we label the intersection S N T as both 1 and 0, which
is impossible. The following lemma proves that this can be
the case even for seemingly natural losses, that are in L.

Proposition 3.1. There exists L € L for which some prob-
lem instances (corresponding to a distribution D, class H,
subgroups G and € > Q) don’t admit a multi-group agnostic
PAC solution. In other words, there is no classifier h for
which Lp, (h) < Lp, (M) for every group g € G.

The loss in question is a weighted combination of an in-
dividual fairness loss with an accuracy loss. We construct
two intersecting groups S and T and a similarity metric d
that specifies d(x,x’) = O if and only if x € S — T and
x' € SN T. However, the true labels of these individuals
are different: for x € S — T the label is y = 0 but for
x € SN T the label is y = 1. This creates a situation in
which group T is optimizing strictly for accuracy (and so
it wants the intersection to be labeled as = 1) whereas
for the group S the dominating term is IF (and so it wants
everyone, and in particular the intersection, to be labeled as
7 = 0). Thus, any classifier that is simultaneously multi-
PAC w.r.t both T and S must label the intersection as both
0 and 1, which is impossible. See Appendix B for the full
proof.

We note that (Blum & Lykouris, 2019) already demonstrated
that this impossibility occurs in the batch setting. This
motivated them to focus on the 0-1 loss. However, their
counter example is for the error-rate type loss we discussed
earlier, which is a fixed combination of the false positive rate

and false negative rate of a classifier. As noted in Section
2.1, this loss doesn’t have the uniform convergence property
and is therefore not in £. Proposition 3.1 clarifies that
uniform convergence is not the issue, and there are natural
(and otherwise reasonable) losses that are not “appropriate”
to use with the multi-group objective (in the sense that even
an approximate solution is not guaranteed to exist).

In light of this discussion, we proceed to explicitly sep-
arate the question of feasibility (whether it’s always the
case that some multi-group solution is guaranteed to exist)
from learnability (whether we can find it with a “reasonable”
number of samples). Formally, we define two notions — com-
patibility and learnability — that formalize these concepts.
Importantly, both are properties of the loss function in ques-
tion, taking a universal quantifier over the class A and the
groups G (and the other aspects of the problem instance).

Definition 3.2 (Multi-PAC compatibility). We say that
a loss L is multi-PAC compatible if for every distribu-
tion D, class H, subgroups G and ¢ > 0, there ex-
ists h :+ X — [0,1] such that for every group § € G,
LDg(h) < Lpg (H) +e

Multi-PAC learnability strengthens the above requirement
by asking that such a solution can also be found by a learn-
ing algorithm whose sample complexity is constrained to
depend inverse-polynomially on the parameters in question
and logarithmically on the sizes of H and G.

Definition 3.3 (Multi-PAC learnability). We say that a loss
L is multi-PAC learnable with sample complexity m‘EPAC :
(0,1)2 x N? — IN if there exists a learning algorithm
with the following property: For every ¢,6,v € (0,1),
for every finite hypothesis class H, for every finite col-
lection of subgroups G C 2% and for every distribu-
tion D over X X Y, when running the learning algorithm
onm > mipAC(s, 3,7, |H|,|G|) iid. examples gener-
ated by D, the algorithm returns h such that, with prob-
ability at least 1 — 6 (over the choice of the m train-
ing examples and the coins of the learning algorithm)
§ € Gy Lp,(h) < Lp,(H) +e where G, C G is
the subset of groups whose mass under D is at least y:

G, ={g€G:Prplxecg] >}

Additionally, the sample complexity m‘%PAC should be poly-
nomial in1/¢,1/6,1/7 and log(|H|),log(|G|).

4. Compatibility <= Learnability via OI

In this section we prove our main result: that for loss func-
tions in £, multi-PAC compatibility implies also multi-PAC
learnability.

Theorem 4.1. [fa loss L € L is multi-group compatible
(Definition 3.2), then it is also multi-group learnable (Defi-
nition 3.3).
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Towards proving Theorem 4.1, we introduce an additional
property of loss functions, which we define below.

Definition 4.2 (f-proper). For a function f : X X
[0,1] — [0,1], we say that a loss L is f-proper if for
every distribution D on X X Y, the classifier hp given
by hp(x) = f(x,Eply|x]) minimizes the loss w.rt D:
hp € argminy, Lp(h).

Recall that proper losses (or proper scoring functions) are
losses that are minimized by the conditional expectation
predictor x — Ep[y|x] (Buja et al., 2005). Definition 4.2
is a weaker requirement that says that for every distribution
a minimizer can be obtained as some /ocal transformation
of this predictor (i.e. that does not depend on the rest of the
distribution).

Recalling that we defined L as precisely all loss functions
that satisfy both uniform convergence and unambiguity, we
see that Theorem 4.1 follows as a direct corollary of the
following two lemmas.

Lemma 4.3. If L is unambiguous (Definition 2.2) and multi-
group compatible (Definition 3.2), then L is f-proper (Defi-
nition 4.2).

Lemma 4.4. If L is f-proper (Definition 4.2) and has the
uniform convergence property (Definition 2.4), then L is
multi-group learnable (Definition 3.3).

We note that the other direction of Lemma 4.3 is also true
(if a loss is f-proper, it is also multi-group compatible): this
follows immediately, since labeling everyone in supp(D)
according to f is optimal — and in particular satisfies the
multi-group requirement for every H. This means that the
notion of f—proper provides a partial characterization of
compatibility (up to unambiguity).

The full proofs of Lemmas 4.3 and 4.4 can be found in Ap-
pendices C and D, respectively. In the rest of this section we
give an overview of both proofs, and end with a discussion
of the implications of the equivalence.

4.1. Overview of Lemma 4.3

Let L € L be a loss function that is multi-group compatible
and unambiguous (we do not use the uniform convergence
property here). We show that L is also f-proper, where the
function f maps a singleton distribution (specified by an
input x and the conditional probability that the label is 1) to
whatever prediction minimizes the loss on that distribution.
In more detail: for an input x € X’ and a value z € [0, 1],
let Dy, be the singleton distribution over {x} x {0,1},
where the label is drawn by the Bernoulli distribution Ber(z).
Let hy, be the predictor that minimizes the loss on this
distribution, i.e. hy, = argminy, LDx,z(h)’ and recall that
by unambiguity, the prediction that minimizes the loss is
unique, and so the value hy 7 (x) is well defined. We take

f(x,z) = hyz(x).

It remains to prove that L is an f-proper loss function. Sup-
pose for contradiction that it is not: i.e., there exists a dis-
tribution D for which hp(x) = f(x,Eply|x]) does not
minimize the loss, i.e. there exists some predictor /' s.t.
Lp(h') < Lp(hp). We show this contradicts the multi-
group compatibility of L. To see this, define a collection of
sets that includes all the singletons in the support of D, as
well as the global set comprised of the entire support of D.
By unambiguity, the singletons all “want” to be labeled by
hp. On the other hand, the global set wants to be labeled
by h'. Whatever predictor we pick, the loss on either the
global set or of one of the singletons will not be optimal.
Thus, for the above collection of groups G (comprised of
all singletons plus the global set), and for the hypothesis
class H that includes hp and I/, it is impossible to obtain
predictions that are competitive with # for all groups in G
simultaneously.

4.2. Overview of Lemma 4.4

Given a loss function L that is f-proper and has the uniform
convergence property, we want to construct a multi-group
agnostic PAC learning algorithm that works for any (finite)
hypothesis class H and (finite) collection of groups G. The
algorithm will work by a reduction to the task of OI learn-
ing (see above): namely, we construct a collection A of
distinguishers, and show that any predictor p that is OI w.r.t
this collection can be used to derive a multi-group agnostic
predictor k. In particular, we show that if § is OI (w.r.t A),
then /1(x) = f(x, p(x)) is a multi-group agnostic predictor
(recall that f is the local transformation for the f-proper
loss function L). The collection of distinguishers depends
on the loss function L, on the hypothesis class 7 and on the
collection of groups G. This reduction, together with the
Ol learning algorithm of Theorem 2.8 (from (Dwork et al.,
2020)), gives a “universal” multi-group agnostic learning
algorithm for any f-proper loss function. The algorithm is
described in Figure 1.

It remains to construct the family of distinguishers A, and to
prove the reduction. Towards this, fix a group ¢ € G and fix
a hypothesis 1 € H. We want to guarantee that the loss of
the hypothesis /1(x) = f(x, f(x)) is competitive with the
loss of h, where both losses are measured on the distribution
D¢ over members of the group g. We begin by observing
that this is true when the labels are drawn by 7 (x) (as in
the distribution D). We will use OI (with an appropriately
constructed distinguisher) to ensure that it is also true for
the “real” distribution Dy.

In more detail, since L is an f-proper loss function, we have:
Lp,(h) < Lp, (h),

because in D the labels are indeed generated by P, i.e.
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p(x) = Eply|x]. By uniform convergence, this will re-
main true even if we consider the empirical loss over a
(sufficiently large) i.i.d. sample from ﬁg. With this in mind,
we define a distinguisher Ag,h,a’ which takes as input k

samples {(x;,y;, p;)} and checks whether, for the samples
where x; € g, it is true that the loss obtained by predicting
f(x;, p;) for each x; is competitive with the loss obtained
by & on those samples (up to an additive factor of &). By the
above discussion, when the labels y; values are drawn by
Ber(p(x;)), and assuming that there are sufficiently many
samples in g to guarantee uniform convergence for the loss
L, the distinguisher will accept with high probability. See
Figure 2 for a full description of the distinguisher.

Now, if p is OI w.r.t. a class that includes the distinguisher

A;‘, 1o then the distinguisher should accept with similar

probabilities when the labeled examples are drawn by D or
by D (where in both cases p; = p(x;)). Le., Ag,h,a should
also accept w.h.p. when the labeled examples are drawn by
D. This can only happen if the predictor /1 is competitive
with the hypothesis i w.r.t. the distribution Dg, which is
exactly the guarantee we wanted from /!

The class A of distinguishers includes such a distinguisher
for each ¢ € G and h € H, and thus if § is OI w.r.t. A,
we conclude that the loss of / is competitive with every
h € H for every group in G simultaneously. Note that
the distinguishers in .4 use multiple samples, and the num-
ber of samples must be sufficiently large so that (for any
sufficiently-large group ¢) w.h.p. enough of them fall in ¢
to guarantee uniform convergence.

The sample complexity of the learning algorithm is gov-
erned by the sample complexity of OI learning, which is
logarithmic in the number of distinguishers. Since the class
Aincludes |G| - |H| distinguishers, the resulting learning
algorithm has sample complexity that is logarithmic in |G|
and in |H|. We note that we need G and H to be finite
because the known OI learning algorithm works for finite
collections of distinguishers.
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