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Appendix

A. Proofs and Derivations
A.1. Proof of Theorem 2

Lemma 2. (Change of measure inequality) Let f be a random variable taking values in a set A and let X1, ..., Xl be
independent random variables, with Xk ∈ A with distribution µk. For functions gk : A × A → R, k = 1, ..., l, let
ξk(f) = EXk∼µk [gk(f,Xk)] denote the expectation of gk under µk for any fixed f ∈ A. Then for any fixed distributions
π, ρ ∈M(A) and any λ > 0, we have that

Ef∼ρ

[
l∑

k=1

ξk(f) − gk(f,Xk)

]
≤ 1

λ

(
DKL(ρ||π) + lnEf∼π

[
eλ
(∑l

k=1 ξk(f)−gk(f,Xk)
)])

. (10)

To prove the Theorem 2, we need to bound the difference between transfer error L(Q, T ) and the empirical multi-task error
L̂(Q, S1, ..., Sn). To this end, we introduce an intermediate quantity, the expected multi-task error:

L̃(Q,D1, ...,Dn) = EP∼Q

[
1

n

n∑
i=1

ES∼Dmii [L(Q(S, P ),Di)]
]

(11)

In the following we invoke Lemma 2 twice. First, in step 1, we bound the difference between L̃(Q,D1, ...,Dn) and
L̂(Q, S1, ..., Sn), then, in step 2, the difference between L(Q, T ) and L̃(Q,D1, ...,Dn). Finally, in step 3, we use a union
bound argument to combine both results.

Step 1 (Task specific generalization) First, we bound the generalization error of the observed tasks τi = (Di,mi),
i = 1, ..., n, when using a learning algorithm Q :M×Zmi →M, which outputs a posterior distribution Qi = Q(Si, P )
over hypotheses h, given a prior distribution P and a dataset Si ∼ Dmii of size mi. In that, we define m̃ := (

∑n
i=1m

−1
i )−1

as the harmonic mean of sample sizes.

In particular, we apply Lemma 2 to the union of all training sets S′ =
⋃n
i=1 Si with l =

∑n
i=1mi. Hence, each Xk

corresponds to one data point, i.e. Xk = zij and µk = Di. Further, we set f = (P, h1, ..., hn) to be a tuple of one prior and
n base hypotheses. This can be understood as a two-level hypothesis, wherein P constitutes a hypothesis of the meta-learning
problem and hi a hypothesis for solving the supervised task τi. Correspondingly, we take π = (Q, Qn) = P ·∏n

i=1 P and
ρ = (Q, Qn) = Q ·∏n

i=1Qi as joint two-level distributions and gk(f,Xk) = 1
nmi

l(hi, zij) as summand of the empirical
multi-task error. We can now invoke Lemma 2 to obtain that (12) and (15)

1

n

n∑
i=1

EP∼Q [L(Qi, Di)] ≤
1

n

n∑
i=1

EP∼Q [L(Qi, Si)] +
1

γ

(
DKL [(Q, Qn)||(P, Pn)]

+ lnEP∼PEh∼P
[
e
γ
n

∑n
i=1(L(h,Di)−L̂(h,Si)

]) (12)

Using the above definitions, the KL-divergence term can be re-written in the following way:

DKL [(Q, Qn)||(P, Pn)] = EP∼Q
[
Eh∼Qi

[
ln
Q(P )

∏n
i=1

∏
Qi(h)

P(P )
∏n
i=1 P (h)

]]
(13)

= EP∼Q
[
ln
Q(P )

P(P )

]
+

n∑
i=1

EP∼Q
[
Eh∼Qi

[
ln
Qi(h)

P (h)

]]
(14)

= DKL(Q||P) +

n∑
i=1

EP∼Q [DKL(Qi||P )] (15)
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Using (12) and (15) we can bound the expected multi-task error as follows:

L̃(Q,D1, ...,Dn) ≤ L̂(Q, S1, ..., Sn) +
1

γ
DKL(Q||P) +

1

γ

n∑
i=1

EP∼Q [DKL(Qi||P )]

+
1

γ
lnEP∼PEh∼P

[
e
γ
n

∑n
i=1(L(h,Di)−L̂(h,Si))

]
︸ ︷︷ ︸

ΥI(γ)

(16)

Step 2 (Task environment generalization) Now, we apply Lemma 2 on the meta-level. For that, we treat each task as
random variable and instantiate the components as Xk = τi, l = n and µk = T . Furthermore, we set ρ = Q, π = P ,
f = P and gk(f,Xk) = 1

nL(Qi,Di). This allows us to bound the transfer error as

L(Q, T ) ≤ L̃(Q,D1, ...,Dn) +
1

λ
DKL(ρ||π) + ΥII(λ) (17)

wherein ΥII(λ) = 1
λ lnEP∼P

[
e
λ
n

∑n
i=1 E(D,S)∼T [L(Q(P,S),D)]−L(Q(P,Si),Di)

]
.

Combining (16) with (17), we obtain

L(Q, T ) ≤ L̂(Q, S1, ..., Sn) +

(
1

λ
+

1

γ

)
DKL(Q||P)

+
1

γ

n∑
i=1

EP∼Q [DKL(Qi||P )] + ΥI(γ) + ΥII(λ)

(18)

Step 3 (Bounding the moment generating functions)

e(ΥI(γ)+ΥII(λ)) =EP∼P
[
e
λ
n

∑n
i=1 E(D,S)∼T [L(Q(P,S),D)]−L(Q(P,Si),Di)

]1/λ
·

EP∼PEh∼P
[
e
γ
n

∑n
i=1(L(h,Di)−L̂(h,Si)

]1/γ
=EP∼P

[
n∏
i=1

e(
λ
nE(D,S)∼T [L(Q(P,S),D))]−L(Q(P,Si),Di)

]1/λ

·

EP∼PEh∼P

[
n∏
i

mi∏
i

e
γ

nmi
(L(h,Di)−l(hi,zij))

]1/γ

(19)

Case I: bounded loss

If the loss function l(hi, zij) is bounded in [a, b], we can apply Hoeffding’s lemma to each factor in (19), obtaining:

eΥI(γ)+ΥII(λ) ≤ EP∼P
[
e
λ2

8n (b−a)2
]1/λ

· EP∼PEh∼P
[
e
γ2

8nm̃ (b−a)2
]1/γ

(20)

= e(
λ
8n+ γ

8nm̃ )(b−a)2 (21)

Next, we factor out
√
n from γ and λ, obtaining

eΥI(γ)+ΥII(λ) =
(
eΥI(γ

√
n)+ΥII(λ

√
n)
) 1√

n
(22)

Using

ET ED1
...EDn

[
eΥI(γ

√
n)+ΥII(λ

√
n)
]
≤ e

(
λ

8
√
n

+ γ
8
√
nm̃

)
(b−a)2 (23)
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we can apply Markov’s inequality w.r.t. the expectations over the task distribution T and data distributions Di to obtain that

ΥI(γ) + ΥII(λ) ≤ λ

8n
(b− a)2︸ ︷︷ ︸
ΨI(λ)

+
γ

8nm̃
(b− a)2︸ ︷︷ ︸

ΨII(γ)

− 1√
n

ln δ (24)

with probability at least 1− δ.

Case II: sub-gamma loss

First, we assume that, ∀i = 1, ..., n the random variables V I
i := L(h,Di)− l(hi, zi,j) are sub-gamma with variance factor

s2
I and scale parameter cI under the two-level prior (P, P ) and the respective data distribution Di. That is, their moment

generating function can be bounded by that of a Gamma distribution Γ(s2
I , cI):

Ez∼DiEP∼PEh∼P
[
eγ(L(h,Di)−l(h,z))

]
≤ exp

(
γ2s2

I

2(1− cIγ)

)
∀γ ∈ (0, 1/cI) (25)

Second, we assume that, the random variable V II := E(D,S)∼T [L(Q(P, S),D)] − L(Q(P, Si),Di) is sub-gamma with
variance factor s2

II and scale parameter cII under the hyper-prior P and the task distribution T . That is, its moment generating
function can be bounded by that of a Gamma distribution Γ(s2

II, cII):

E(D,S)∼T EP∼P
[
eλ E(D,S)∼T [L(Q(P,S),D)]−L(Q(P,S),D)

]
≤ exp

(
λ2s2

II

2(1− cIIλ)

)
∀λ ∈ (0, 1/cII) (26)

These two assumptions allow us to bound the expectation of (19) as follows:

E
[
eΥI(γ)+ΥII(λ)

]
≤ exp

(
γs2

I

2nm̃(1− cIγ/(nm̃)

)
· exp

(
λs2

II

2n(1− cIIλ/n)

)
(27)

Next, we factor out
√
n from γ and λ, obtaining

eΥI(γ)+ΥII(λ) =
(
eΥI(γ

√
n)+ΥII(λ

√
n)
) 1√

n
(28)

Finally, by using Markov’s inequality we obtain that

ΥI(γ) + ΥII(λ) ≤ γs2
I

2nm̃(1− cIγ/(nm̃)︸ ︷︷ ︸
ΨI(γ)

+
λs2

II

2n(1− cIIλ/n)︸ ︷︷ ︸
ΨII(λ)

− 1√
n

ln δ (29)

with probability at least 1− δ.

To conclude the proof, we choose γ = nβ for β > 0.

A.2. Proof of Corollary 1

When we choose the posterior Q as the optimal Gibbs posterior Q∗i := Q∗(Si, P ), it follows that

L̂(Q, S1, ..., Sn) +
1

n

n∑
i=1

1

β
EP∼Q [DKL(Q∗i ||P )] (30)

=
1

n

n∑
i=1

(
EP∼QEh∼Q∗i

[
L̂(h, Si)

]
+

1

β
(EP∼Q [DKL(Q∗i ||P )])

)
(31)

=
1

n

n∑
i=1

1

β

(
EP∼QEh∼Q∗i

[
βL̂(h, Si) + ln

Q∗i (h)

P (h)

])
(32)

=
1

n

n∑
i=1

1

β

(
EP∼QEh∼Q∗i

[
βL̂(h, Si) + ln

P (h)e−βL̂(h,Si)

P (h)Zβ(Si, P )

])
(33)

=
1

n

n∑
i=1

1

β
(−EP∼Q [lnZβ(Si, P )]) . (34)
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This allows us to write the inequality in (4) as

L(Q, T ) ≤ − 1

n

n∑
i=1

1

β
EP∼Q [lnZβ(Si, P )] +

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, n, m̃) . (35)

According to Lemma 1, the Gibbs posterior Q∗(Si, P ) is the minimizer of (32), in particular ∀P ∈M(H),∀i = 1, ..., n :

Q∗(Si, P ) =
P (h)e−βL̂(h,Si)

Zβ(Si, P )
= arg min
Q∈M(H)

Eh∼Q
[
L̂(h, Si)

]
+

1

β
DKL(Q||P ) . (36)

Hence, we can write

L(Q, T ) ≤− 1

n

n∑
i=1

1

β
EP∼Q [lnZβ(Si, P )] +

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β) (37)

=
1

n

n∑
i=1

EP∼Q
[

min
Q∈M(H)

L̂(Q,Si) +
1

β
DKL(Q||P )

]
(38)

+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, n, m̃) (39)

≤ 1

n

n∑
i=1

EP∼Q
[
L̂(Q,Si) +

1

β
DKL(Q||P )

]
(40)

+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β) (41)

= L̂(Q, S1, ..., Sn) +

(
1

λ
+

1

nβ

)
DKL(Q||P) (42)

+
1

n

n∑
i=1

1

β
EP∼Q [DKL(Qi||P )] + C(δ, λ, β) , (43)

which proves that the bound for Gibbs-optimal base learners in (35) and (5) is tighter than the bound in Theorem 2 which
holds uniformly for all Q ∈M(H).

A.3. Proof of Proposition 1: PAC-Optimal Hyper-Posterior

An objective function corresponding to (5) reads as

J(Q) = −EQ
[

λ

nβ + λ

n∑
i=1

lnZ(Si, P )

]
+DKL(Q||P) . (44)

To obtain J(Q), we omit all additive terms from (5) that do not depend onQ and multiply by the scaling factor λnβ
nβ+λ . Since

the described transformations are monotone, the minimizing distribution of J(Q), that is,

Q∗ = arg min
Q∈M(M(H))

J(Q) , (45)

is also the minimizer of (5). More importantly, J(Q) is structurally similar to the generic minimization problem in (3).
Hence, we can invoke Lemma 1 with A = M(H), g(a) = −∑n

i=1 lnZ(Si, P ), β = 1√
nm̃+1

, to show that the optimal
hyper-posterior is

Q∗(P ) =
P(P ) exp

(
λ

nβ+λ

∑n
i=1 lnZβ(Si, P )

)
Z II(S1, ..., Sn,P)

, (46)

wherein

Z II(S1, ..., Sn,P) = EP∼P

[
exp

(
λ

nβ + λ

n∑
i=1

lnZβ(Si, P )

)]
.
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Technically, this concludes the proof of Proposition 1. However, we want to remark the following result:

If we chooseQ = Q∗, the PAC-Bayes bound in (5) can be expressed in terms of the meta-level partition function Z II, that is,

L(Q, T ) ≤ −
(

1

λ
+

1

nβ

)
lnZ II(S1, ..., Sn,P) + C(δ, λ, β) . (47)

We omit a detailed derivation of (47) since it is similar to the one for Corollary 1.

B. Gaussian process regression
In GP regression, each data point corresponds to a feature-target tuple zi,j = (xi,j , yi,j) ∈ Rd × R. For the i-th dataset, we
write Si = (Xi,yi), where Xi = (xi,1, ..., xi,mi)

> and yi = (yi,1, ..., yi,mi)
>. GPs are a Bayesian method in which the

prior Pφ(h) = GP (h|mφ(x), kφ(x, x′)) is specified by a positive definite kernel kφ : X × X → R and a mean function
mφ : X → R.

The empirical loss under the GP posterior Q∗ coincides with the negative log-likelihood of regression targets yi, that
is, L̂(Q∗, Si) = − 1

mi
ln p(yi|Xi). Under a Gaussian likelihood p(y|h) = N (y;h(x), σ2I), the marginal log-likelihood

lnZ(Si, Pφ) = ln p(yi|Xi, φ) can be computed in closed form as

ln p(y|X, φ) =− 1

2
(y −mX,φ))

>
K̃−1

X,φ (y −mX,φ)− 1

2
ln |K̃X,φ| −

mi

2
ln 2π , (48)

where K̃X,φ = KX,φ + σ2I , with the kernel matrix KX,φ = (kφ(xl, xk))mil,k=1, observation noise variance σ2, and mean
vector mX,φ = (mφ(x1), ...,mφ(xmi))

>.

Previous work on Bayesian model selection in the context of GPs argues that the log-determinant 1
2 ln |K̃X,φ| in the marginal

log-likelihood (48) acts as a complexity penalty (Rasmussen & Ghahramani, 2001; Rasmussen & Williams, 2006). However,
we suspect that this complexity regularization is only effective if the class of considered priors is restrictive, for instance if
we only optimize a small number of parameters such as the length- and output scale of a squared exponential kernel. If we
consider expressive classes of GP priors (e.g., our setup where the mean and kernel function are neural networks), such a
complexity penalty could be insufficient to avoid meta-overfitting. Indeed, this is what we also observe in our experiments
(see Sec. 5.3).

C. PACOH-GP: Meta-Learning of GP priors
In this section, we provide further details on PACOH-GP, introduced in Section 5 of the paper and employed in our
experiments. Following Section 5.3, we instantiate our framework with GP base learners. Since we are interested in
meta-learning, we define the mean and kernel function both as parametric functions. Similar to Wilson et al. (2016) and
Fortuin & Rätsch (2019), we instantiate mφ and kφ as neural networks, where the parameter vector φ can be meta-learned.
To ensure the positive-definiteness of the kernel, we use the neural network as feature map Φφ(x) on top of which we apply
a squared exponential (SE) kernel. Accordingly, the parametric kernel reads as kφ(x, x′) = 1

2 exp
(
−||Φφ(x)− Φφ(x′)||22

)
.

Both mφ(x) and Φφ(x) are fully-connected neural networks with 4 layers with each 32 neurons and tanh non-linearities.
The parameter vector φ represents the weights and biases of both neural networks. As hyper-prior we choose a zero-mean
isotropic Gaussian, that is, P(φ) = N (0, σ2

PI). Further, we choose λ = n and βi = mi

C.1. Meta-training with PACOH-GP

SVGD (Liu & Wang, 2016) approximates Q∗ as a set of particles Q̂ = {P1, ..., PK}. In our described setup, each particle
corresponds to the parameters of the GP prior, that is, Q̂ = {φ1, ..., φK}. Initially, we sample random priors φk ∼ P from
our hyper-posterior. Then, the SVGD iteratively transports the set of particles to matchQ∗, by applying a form of functional
gradient descent that minimizes DKL(Q̂|Q∗) in the reproducing kernel Hilbert space induced by a kernel function k(·, ·).
We choose a squared exponential kernel with length scale (hyper-)parameter `, that is, k(φ, φ′) = exp

(
− ||φ−φ

′||22
2`

)
. In
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each iteration, the particles are updated by

φk ← φk + ηtψ
∗(φk) , with ψ∗(φ) =

1

K

K∑
l=1

[k(φl, φ)∇φl lnQ∗(φl) +∇φlk(φl, φ)] .

Here, we can again estimate∇φl lnQ∗(φl) with a mini-batch of H datasets S1, ..., SH :

∇φl lnQ∗(φl) =
n

H
·
H∑
h=1

1

mh + 1
∇φl lnZ(Sh, Pφl) +∇φl lnP(φl) .

Importantly,∇φl lnQ∗(φl) does not depend onZ II which makes SVGD tractable. Algorithm 2 summarizes the meta-training
method for GP priors.

Algorithm 2 PACOH-GP: mini-batched meta-training

Input: hyper-prior P , datasets S1, ..., Sn
Input: SVGD kernel function k(·, ·), SVGD step size η, number of particles K
{φ1, ..., φK} ∼ P // Initialize prior particles
while not converged do
{T1, ..., Tnbs} ⊆ [n] // sample nbs tasks uniformly at random
for k = 1, ...,K do

for i = 1, ..., nbs do
lnZmi(Si, Pφk)← − 1

2 (yi −mXi,φk)
>
K̃−1

Xi,φk
(yi −mXi,φk)− 1

2 ln |K̃Xi,φk | − mi
2 ln 2π // compute MLL

∇φk ln Q̃∗(φk)← ∇φk lnP(φk) + n
nbs

∑nbs
i=1

1
mi+1∇φk lnZmi(Si, Pφk) // compute score

φk ← φk + η
K

∑K
k′=1

[
k(φk′ , φk)∇φk′ ln Q̃∗(φk′) +∇φk′k(φk′ , φk)

]
∀k ∈ [K] // SVGD update

Output: set of GP priors {GP (mφ1
(x), kφ1

(x, x′)) , ...,GP (mφK (x), kφK (x, x′))}

C.2. Meta-Testing / Target-Training with PACOH-GP

Meta-learning with PACOH, as described above, gives us an approximation of Q∗. In target-testing (see Figure 1), the
base learner is instantiated with the meta-learned prior Pφ, receives a dataset S̃ = (X̃, ỹ) from an unseen task D ∼ T and
outputs a posterior Q as product of its inference. In our GP setup, Q is the GP posterior and the predictive distribution
p̂(y∗|x∗, X̃, ỹ, φ) is a Gaussian (for details see Rasmussen & Williams, 2006).

Since the meta-learner outputs a distribution over priors, that is, the hyper-posterior Q, we may obtain different predictions
for different priors Pφ ∼ Q, sampled from the hyper-posterior. To obtain a predictive distribution under our meta-learned
hyper-posterior, we empirically marginalize Q. That is, we draw a set of prior parameters φ1, ..., φK ∼ Q from the
hyper-posterior, compute their respective predictive distributions p̂(y∗|x∗, X̃, ỹ, φk) and form an equally weighted mixture:

p̂(y∗|x∗, X̃, ỹ,Q) = Eφ∼Q
[
p̂(y∗|x∗, X̃, ỹ, φ)

]
≈ 1

K

K∑
k=0

p̂(y∗|x∗, X̃, ỹ, φk) , φk ∼ Q (49)

Since we are concerned with GPs, (49) coincides with a mixture of Gaussians. As one would expect, the mean prediction
under Q (i.e., the expectation of (49)), is the average of the mean predictions corresponding to the sampled prior parameters
φ1, ..., φK . In case of PACOH-VI, we sample K = 100 priors from the variational hyper-posterior Q̃. For PACOH-SVGD,
samples from the hyper-posterior correspond to the K = 10 particles. PACOH-MAP can be viewed as a special case of
SVGD with K = 1, that is, only one particle. Thus, p̂(y∗|x∗, X̃, ỹ,Q) ≈ p̂(y∗|x∗, X̃, ỹ, φMAP ) is a single Gaussian.

D. PACOH-NN: Meta-Learning BNN priors
In this section, we summarize and further discuss our proposed meta-learning algorithm PACOH-NN. An overview of our
proposed framework is illustrated in Figure 1. Overall, it consists of two stages meta-training and meta-testing which we
explain in more details in the following.
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D.1. Meta-training

The hyper-posterior distribution Q that minimizes the upper bound on the transfer error is given by

Q∗(P ) =
P(P ) exp

(∑n
i=1

λ
nβi+λ

ln Z̃(Si, P )
)

Z II(S1, ..., Sn,P)
(50)

In that, we no longer assume that m = mi ∀i = 1, ..., n which was done in the theory section to maintain notational brevity.
Thus, we use a different βi for each och the tasks as we want to set βi = mi or βi =

√
mi. Provided with a set of datasets

S1, ..., Sn, the meta-learner minimizes the respective meta-objective, in the case of PACOH-SVGD, by performing SVGD
on the Q∗. Algorithm 3 outlines the required steps in more detail.

Algorithm 3 PACOH-NN: meta-training

Input: hyper-prior P , datasets S1, ..., Sn, kernel k(·, ·), step size η, number of particles K
{φ1, ..., φK} ∼ P // Initialize prior particles
while not converged do

for k = 1, ...,K do
{θ1, ..., θL} ∼ Pφk // sample NN-parameters from prior
for i = 1, ..., n do

ln Z̃(Si, Pφk)← LSELl=1

(
−βiL̂(θl, Si)

)
− lnL // estimate generalized MLL

∇φk ln Q̃∗(φk)← ∇φk lnP(φk) +
∑n
i=1

λ
nβi+λ

∇φk ln Z̃(Si, Pφk) // compute score

∀k ∈ [K] : φk ← φk + η
K

∑K
k′=1

[
k(φk′ , φk)∇φk′ ln Q̃∗(φk′) +∇φk′k(φk′ , φk)

]
// SVGD update

Output: set of priors {Pφ1
, ..., PφK}

Alternatively, to estimate the score of∇φkQ̃∗(φk) we can use mini-batching at both the task and the dataset level. Specifically,
for a given meta-batch size of nbs and a batch size of mbs, we get Algorithm 4.

Algorithm 4 PACOH-NN-SVGD: mini-batched meta-training

Input: hyper-prior P , datasets S1, ..., Sn
Input: kernel function k(·, ·), SVGD step size η, number of particles K
{φ1, ..., φK} ∼ P // Initialize prior particles
while not converged do
{T1, ..., Tnbs} ⊆ [n] // sample nbs tasks uniformly at random
for i = 1, ..., nbs do
S̃i ← {z1, ..., zmbs} ⊆ STi // sample mbs datapoints from STi uniformly at random

for k = 1, ...,K do
{θ1, ..., θL} ∼ Pφk // sample NN-parameters from prior
for i = 1, ..., nbs do

ln Z̃(S̃i, Pφk)← LSELl=1

(
−βiL̂(θl, S̃i)

)
− lnL // estimate generalized MLL

∇φk ln Q̃∗(φk)← ∇φk lnP(φk) + n
nbs

∑nbs
i=1

λ
nβi+λ

∇φk ln Z̃(Si, Pφk) // compute score

φk ← φk + η
K

∑K
k′=1

[
k(φk′ , φk)∇φk′ ln Q̃∗(φk′) +∇φk′k(φk′ , φk)

]
∀k ∈ [K] // SVGD update

Output: set of priors {Pφ1
, ..., PφK}

D.2. Meta-testing

The meta-learned prior knowledge is now deployed by a base learner. The base learner is given a training dataset S̃ ∼ D
pertaining to an unseen task τ = (D,m) ∼ T . With the purpose of approximating the generalized Bayesian posterior
Q∗(S, P ), the base learner performs (normal) posterior inference. Algorithm 5 details the steps of the approximating
procedure referred to as target training when performed via SVGD. For a data point x∗, the respective predictor outputs a
probability distribution given as p̃(y∗|x∗, S̃)← 1

K·L
∑K
k=1

∑L
l=1 p(y

∗|hθkl (x∗)). We evaluate the quality of the predictions

on a held-out test dataset S̃∗ ∼ D from the same task, in a target testing phase (see Appendix E.2).
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Algorithm 5 PACOH-NN: meta-testing

Input: set of priors {Pφ1
, ..., PφK}, target training dataset S̃, evaluation point x∗

Input: kernel function k(·, ·), SVGD step size ν, number of particles L
for k = 1, ...,K do
{θk1 , ..., θkL} ∼ Pφk // initialize NN posterior particles from k-th prior
while not converged do

for l = 1, ..., L do
∇θkl Q

∗(θkl ))← ∇θkl lnPφk(θkl )) + β ∇θkl L(l, S̃) // compute score

θkl ← θkl + ν
L

∑L
l′=1

[
k(θkl′ , θ

k
l )∇θk

l′
lnQ∗(θkl′) +∇θk

l′
k(θkl′ , θ

k
l )
]
∀l ∈ [L] // update particles

Output: a set of NN parameters
⋃K
k=1{θk1 ..., θkL}

D.3. Properties of the score estimator

Since the marginal log-likelihood of BNNs is intractable, we have replaced it by a numerically stable Monte Carlo estimator
ln Z̃β(Si, Pφ) in (9), in particular

ln Z̃β(Si, Pφ) := ln
1

L

L∑
l=1

e−βL̂(θl,Si) = LSELl=1

(
−βL̂(θl, Si)

)
− lnL , θl ∼ Pφ . (51)

Since the Monte Carlo estimator involves approximating an expectation of an exponential, it is not unbiased. However, we
can show that replacing lnZβ(Si, Pφ) by the estimator ln Z̃β(Si, Pφ), we still minimize a valid upper bound on the transfer
error (see Proposition 2).

Proposition 2. In expectation, replacing lnZβ(Si, Pφ) in (5) by the Monte Carlo estimate ln Z̃β(Si, P ) :=

ln 1
L

∑L
l=1 e

−βL̂(θl,Si), θl ∼ P still yields an valid upper bound of the transfer error. In particular, it holds that

L(Q, T ) ≤ − 1

n

n∑
i=1

1

β
EP∼Q [lnZ(Si, P )] +

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, n, m̃) (52)

≤ − 1

n

n∑
i=1

1

β
EP∼Q

[
Eθ1,...,θL∼P

[
ln Z̃(Si, P )

]]
+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, λ, β).

(53)

Proof. Firsts, we show that:

Eθ1,...,θL∼P
[
ln Z̃β(Si, P )

]
= Eθ1,...,θL∼P

[
ln

1

L

L∑
l=1

e−βL̂(θl,Si)

]

≤ ln
1

L

L∑
l=1

Eθl∼P
[
e−βL̂(θl,Si)

]
= lnEθ∼P

[
e−βL̂(θ,Si)

]
= lnZβ(Si, P ) (54)

which follows directly from Jensen’s inequality and the concavity of the logarithm. Now, Proposition 2 follows directly
from (54).

In fact, by the law of large numbers, it is straightforward to show that as L→∞, the ln Z̃(Si, P )
a.s.−−→ lnZ(Si, P ), that is,

the estimator becomes asymptotically unbiased and we recover the original PAC-Bayesian bound (i.e. (53) a.s.−−→ (52)). Also
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it is noteworthy that the bound in (53) we get by our estimator is, in expectation, tighter than the upper bound when using
the naive estimator

ln Ẑβ(Si, P ) := −β 1

L

L∑
l=1

L̂(θl, Si) θl ∼ Pφ

which can be obtained by applying Jensen’s inequality to lnEθ∼Pφ
[
e−βL̂(θ,Si)

]
. In the edge case L = 1 our LSE estimator

ln Z̃β(Si, P ) falls back to this naive estimator and coincides in expectation with E[ln Ẑβ(Si, P )] = −β Eθ∼P L̂(θl, Si). As
a result, we effectively minimize the looser upper bound

L(Q, T ) ≤ 1

n

n∑
i=1

Eθ∼P
[
L̂(θ, Si)

]
+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, n, m̃). (55)

= Eθ∼P

 1

n

n∑
i=1

1

mi

mi∑
j=1

− ln p(yij |xij , θ)

+

(
1

λ
+

1

nβ

)
DKL(Q||P) + C(δ, n, m̃) (56)

As we can see from (56), the boundaries between the tasks vanish in the edge case of L = 1, that is, all data-points are
treated as if they would belong to one dataset. This suggests that L should be chosen greater than one. In our experiments,
we used L = 5 and found the corresponding approximation to be sufficient.

E. Experiments
E.1. Meta-Learning Environments

In this section, we provide further details on the meta-learning environments used in Section 5.3. Information about the
numbers of tasks and samples in the respective environments can be found in Table S1.

Sinusoid Cauchy SwissFEL Physionet Berkeley
n 20 20 5 100 36
mi 5 20 200 4 - 24 288

Table S1. Number of tasks n and samples per task mi for the different meta-learning environments.

E.1.1. SINUSOIDS

Each task of the sinusoid environment corresponds to a parametric function

fa,b,c,β(x) = β ∗ x+ a ∗ sin(1.5 ∗ (x− b)) + c , (57)

which, in essence, consists of an affine as well as a sinusoid function. Tasks differ in the function parameters (a, b, c, β) that
are sampled from the task environment T as follows:

a ∼ U(0.7, 1.3), b ∼ N (0, 0.12), c ∼ N (5.0, 0.12), β ∼ N (0.5, 0.22) . (58)

Figure S1a depicts functions fa,b,c,β with parameters sampled according to (58). To draw training samples from each task,
we draw x uniformly from U(−5, 5) and add Gaussian noise with standard deviation 0.1 to the function values f(x):

x ∼ U(−5, 5) , y ∼ N (fa,b,c,β(x), 0.12) . (59)

E.1.2. CAUCHY

Each task of the Cauchy environment can be interpreted as a two dimensional mixture of Cauchy distributions plus a function
sampled from a Gaussian process prior with zero mean and SE kernel function k(x, x′) = exp

(
||x−x′||22

2l

)
with l = 0.2.

The (unnormalized) mixture of Cauchy densities is defined as:

m(x) =
6

π · (1 + ||x− µ1||22)
+

3

π · (1 + ||x− µ2||22)
, (60)
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Figure S1. Depiction of tasks (i.e., functions) sampled from the Sinusoid and Cauchy task environment, respectively. Note that the Cauchy
task environment is two-dimensional (dim(X ) = 2), while (b) displays a one-dimensional projection.

with µ1 = (−1,−1)> and µ2 = (2, 2)>.

Functions from the task environments are sampled as follows:

f(x) = m(x) + g(x) , g ∼ GP(0, k(x, x′)) . (61)

Figure S1b depicts a one-dimensional projection of functions sampled according to (61). To draw training samples from
each task, we draw x from a truncated normal distribution and add Gaussian noise with standard deviation 0.05 to the
function values f(x):

x := min{max{x̃, 2},−3} , x̃ ∼ N (0, 2.52) , y ∼ N (f(x), 0.052) . (62)

E.1.3. SWISSFEL

Free-electron lasers (FELs) accelerate electrons to very high speed in order to generate shortly pulsed laser beams with
wavelengths in the X-ray spectrum. These X-ray pulses can be used to map nanometer scale structures, thus facilitating
experiments in molecular biology and material science. The accelerator and the electron beam line of a FEL consist of
multiple magnets and other adjustable components, each of which has several parameters that experts adjust to maximize the
pulse energy (Kirschner et al., 2019a). Due do different operational modes, parameter drift, and changing (latent) conditions,
the laser’s pulse energy function, in response to its parameters, changes across time. As a result, optimizing the laser’s
parameters is a recurrent task.

Overall, our meta-learning environment consists of different parameter optimization runs (i.e., tasks) on the SwissFEL, an
800 meter long laser located in Switzerland (Milne et al., 2017). A picture of the SwissFEL is shown in Figure S2. The
input space, corresponding to the laser’s parameters, has 12 dimensions whereas the regression target is the pulse energy
(1-dimensional). For details on the individual parameters, we refer to Kirschner et al. (2019b). For each run, we have around
2000 data points. Since these data-points are generated with online optimization methods, the data are non-i.i.d. and get
successively less diverse throughout the optimization. As we are concerned with meta-learning with limited data and want
to avoid issues with highly dependent data points, we only take the first 400 data points per run and split them into training
and test subsets of size 200. Overall, we have 9 runs (tasks) available. 5 of those runs are used for meta-training and the
remaining 4 runs are used for meta-testing.

E.1.4. PHYSIONET

The 2012 Physionet competition (Silva et al., 2012) published an open-access dataset of patient stays on the intensive care
unit (ICU). Each patient stay consists of a time series over 48 hours, where up to 37 clinical variables are measured. The
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Figure S2. Accelerator of the Swiss Free-Electron Laser (SwissFEL).

original task in the competition was binary classification of patient mortality, but due to the large number of missing values
(around 80 % across all features), the dataset is also popular as a test bed for time series prediction methods, especially
using Gaussian processes (Fortuin et al., 2019).

In this work, we treat each patient as a separate task and the different clinical variables as different environments. We use
the Glasgow coma scale (GCS) and hematocrit value (HCT) as environments for our study, since they are among the most
frequently measured variables in this dataset. From the dataset, we remove all patients where less than four measurements
of CGS (and HCT respectively) are available. From the remaining patients we use 100 patients for meta-training and 500
patients each for meta-validation and meta-testing. Here, each patient corresponds to a task. Since the number of available
measurements differs across patients, the number of training points mi ranges between 4 and 24.

E.1.5. BERKELEY-SENSOR

We use data from 46 sensors deployed in different locations at the Intel Research lab in Berkeley (Madden, 2004). The
dataset contains 4 days of data, sampled at 10 minute intervals. Each task corresponds to one of the 46 sensors and requires
auto-regressive prediction, in particular, predicting the next temperature measurement given the last 10 measurement values.
In that, 36 sensors (tasks) with data for the first two days are use for meta-training and whereas the remaining 10 sensors
with data for the last two days are employed for meta-testing. Note, that we separate meta-training and -testing data both
temporally and spatially since the data is non-i.i.d. For the meta-testing, we use the 3rd day as context data, i.e. for target
training and the remaining data for target testing.

E.2. Experimental Methodology

In the following, we describe our experimental methodology and provide details on how the empirical results reported
in Section 5.3 were generated. Overall, evaluating a meta-learner consists of two phases, meta-training and meta-testing,
outlined in Appendix D. The latter can be further sub-divided into target training and target testing. Figure 1 illustrates
these different stages for our PAC-Bayesian meta-learning framework.

The outcome of the training procedure is an approximation for the generalized Bayesian posterior Q∗(S, P ) (see Appendix
), pertaining to an unseen task τ = (D,m) ∼ T from which we observe a dataset S̃ ∼ D. In target-testing, we evaluate
its predictions on a held-out test dataset S̃∗ ∼ D from the same task. For PACOH-NN, NPs and MLAP the respective
predictor outputs a probability distribution p̂(y∗|x∗, S̃) for the x∗ in S̃∗. The respective mean prediction corresponds to the
expectation of p̂, that is ŷ = Ê(y∗|x∗, S̃). In the case of MAML, only a mean prediction is available. Based on the mean
predictions, we compute the root mean-squared error (RMSE):

RMSE =

√√√√ 1

|S̃∗|
∑

(x∗,y∗)∈S∗
(y∗ − ŷ)2 . (63)

and the calibration error (see Appendix E.2.1). Note that unlike e.g. Rothfuss et al. (2019a) who report the test log-likelihood,
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we aim to measure the quality of mean predictions and the quality of uncertainty estimate separately, thus reporting both
RMSE and calibration error.

The described meta-training and meta-testing procedure is repeated for five random seeds that influence both the initialization
and gradient-estimates of the concerned algorithms. The reported averages and standard deviations are based on the results
obtained for different seeds.

E.2.1. CALIBRATION ERROR

The concept of calibration applies to probabilistic predictors that, given a new target input xi, produce a probability
distribution p̂(yi|xi) over predicted target values yi.

Calibration error for regression. Corresponding to the predictive density, we denote a predictor’s cumulative density
function (CDF) as F̂ (yj |xj) =

∫ yj
−∞ p̂(y|xi)dy. For confidence levels 0 ≤ qh < ... < qH ≤ 1, we can compute the

corresponding empirical frequency

q̂h =
|{yj | F̂ (yj |xj) ≤ qh, j = 1, ...,m}|

m
, (64)

based on dataset S = {(xi, yi)}mi=1 of m samples. If we have calibrated predictions we would expect that q̂h → qh as
m → ∞. Similar to (Kuleshov et al., 2018), we can define the calibration error as a function of residuals q̂h − qh, in
particular,

calib-err =
1

H

H∑
h=1

|q̂h − qh| . (65)

Note that we while (Kuleshov et al., 2018) reports the average of squared residuals |q̂h − qh|2, we report the average of
absolute residuals |q̂h−qh| in order to preserve the units and keep the calibration error easier to interpret. In our experiments,
we compute (65) with M = 20 equally spaced confidence levels between 0 and 1.

Calibration error for classification. Our classifiers output a categorical probability distribution p̂(y = k|x) for k = 1, ..., C
where Y = {1, ..., C} with C denoting the number of classes. The prediction of the classifier is the most probable class label,
i.e., ŷj = arg maxk p̂(yj = k|xj). Correspondingly, we denote the classifiers confidence in the prediction for the input
xj as p̂j := p̂(yj = ŷj |xj). Following, the calibraton error definition of Guo et al. (2017), we group the predictions into
H = 20 interval bins of size 1/H depending on their prediction confidence. In particular, let Bh = {j | pj ∈

(
h−1
H , hH

]
} be

the set of indices of test points {(xj , yj)}mj=1 whose prediction fall into the interval
(
h−1
H , hH

]
⊆ (0, 1]. Formally, we define

the accuracy of within a bin Bh as

acc(Bh) =
1

|Bh|
∑
j∈Bh

1(ŷi = yj) (66)

and the average confidence within a bin as

conf(Bh) =
1

|Bh|
∑
j∈Bh

p̂j . (67)

If the classifier is calibrated, we expect that the confidence of the classifier reflects it’s accuracy on unseen test data, that
is, acc(Bh) = conf(Bh) ∀h = 1, ....,H . As proposed of Guo et al. (2017), we use the expected calibration error (ECE)
to quantify how much the classifier deviates from this criterion: More precisely, in Table 2, we report the ECE with the
following definition:

calib-err = ECE =

H∑
h=1

|Bh|
m

∣∣acc(Bh)− conf(Bh)
∣∣ (68)

with m denoting the overall number of test points.

E.3. Hyper-Parameter Selection

For each of the meta-environments and algorithms, we ran a separate hyper-parameter search to select the hyper-parameters.
In particular, we use the hyperopt4 package (Bergstra et al., 2013) which performs Bayesian optimization based on

4http://hyperopt.github.io/hyperopt/
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Allele A-0202 A-0203 A-0201 A-2301 A-2402
mi 1446 1442 3088 103 196

Table S2. MHC-I alleles used for meta-training and their corresponding number of meta-training samples mi.

regression trees. As optimization metric, we employ the average log-likelihood, evaluated on a separate validation set of
tasks.

The scripts for reproducing the hyper-parameter search for PACOH-GP are included in our code reposi-
tory5. For the reported results, we provide the selected hyper-parameters and detailed evaluation results under
https://tinyurl.com/s48p76x.

E.4. Meta-Learning for Bandits - Vaccine Development

In this section, we provide additional details on the experiment in Section 6.3.

We use data from Widmer et al. (2010) which contains the binding affinities (IC50 values) of many peptide candidates to
seven different MHC-I alleles. Peptides with IC50 > 500nM are considered non-binders, all others binders. Following
Krause & Ong (2011), we convert the IC50 values into negative log-scale and normalize them such that 500nM corresponds
to zero, i.e. r := − log10(IC50) + log10(500) with is used as reward signal of our bandit.

We use 5 alleles to meta-learn a BNN prior. The alleles and the corresponding number of data points, available for
meta-training, are listed in Table S2. The most genetically dissimilar allele (A-6901) is used for our bandit task. In each
iteration, the experimenter (i.e. bandit algorithm) chooses to test one peptide among the pool of 813 candidates and receives
r as a reward feedback. Hence, we are concerned with a 813-arm bandit wherein the action at ∈ {1, ..., 813} = A in
iteration t corresponds to testing at-th peptide candidate. In response, the algorithm receives the respective negative log-IC50

as reward r(at).

As metrics, we report the average regret

Ravg.T := max
a∈A

r(a)− 1

T

T∑
t=1

r(at)

and the simple regret
RsimpleT := max

a∈A
r(a)− max

t=1,...,T
r(at)

To ensure a fair comparison, the prior parameters of the GP for GP-UCB and GP-TS are meta-learned by minimizing the
GP’s marginal log-likelihood on the five meta-training tasks. For the prior, we use a constant mean function and tried various
kernel functions (linear, SE, Matern). Due to the 45-dimensional feature space, we found the linear kernel to work the best.
So overall, the constant mean and the variance parameter of the linear kernel are meta-learned.

E.5. Further Experimental Results

Meta-overfitting In order to investigate whether the phenomenon of meta-overfitting, which we have observed consistently
for PACOH-MAP and MLL, is also relevant to other meta-learning methods (MAML and NPs), we also report the meta-train
test error and the meta-test test error across different numbers of tasks. The results, analogous to Figure 4, are plotted in
Figure S3, showing a significant difference between the meta-train and meta-test error that vanishes as the number of tasks
becomes larger. Once more, this supports our claim that meta-overfitting is a relevant issue and should be addressed in a
principled manner.

5https://github.com/jonasrothfuss/meta learning pacoh

https://tinyurl.com/s48p76x
https://github.com/jonasrothfuss/meta_learning_pacoh
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Figure S3. Test RMSE measured on the meta-training tasks and the meta-testing tasks as a function of the number of meta-training tasks
for MAML and NPs. The performance gap between the meta-train and meta-test tasks clearly demonstrates overfitting on the meta-level
for both methods.


