Monte Carlo Bits-Back Coding

A. Monte Carlo Bits-Back Coders
A.1. Notation
* T(A) is the indicator function of the event A, i.e., I (A) = 1 if A holds and 0 otherwise.

» P(A) is the probability of the event A.

A.2. Assumptions

* We assume that, if ¢(z | 2) > 0, then p(z, z) > 0.

A.3. General Framework

Algorithm 2: Encode Procedure of McBits Coders Algorithm 3: Decode Procedure of McBits Coders
Procedure Encode (symbol x, message m) Procedure Decode (message m)
decode Z with Q(Z | x) decode x and Z with P(z, Z)
encode x and Z with P(z, Z) encode Z with Q(Z | x)
return m’ return z, m’

As discussed in the main body, given the extended space representation of an unbiased estimator of the marginal likelihood,
we can derive the general procedure of McBits coders as Alg. 2. The decode procedure could be easily derived from the
encode procedure by simply reverse the order and switch ‘encode’ with ‘decode’, as in Alg. 3. Therefore, we do not
tediously present the decode procedure for each McBits coder in the following subsections.

A 4. Bits-Back Importance Sampling (BB-IS)

Importance sampling (IS) samples N particles z; ~ ¢(z; | ) i.i.d. and uses the average importance weight to estimate p(z).
The corresponding variational bound (IWAE, Burda et al., 2015) is the log-average importance weight which is given in
equation (3). For simplicity, we denote importance weight as w; = p(x, z;)/q(z; | ) and normalized importance weight as
w; = w;/ Y, w;. The basic importance sampling estimator of p(x) is given by

N
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Extended latent space representation The extended latent space representation of the importance sampling estimator is
presented in Alg. 1, from which we can derive the proposal and target distribution as followed:
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which exactly gives us the IS estimator.

BB-IS Coder Based on the extended latent space representation, the Bits-Back Importance Sampling (BB-IS) coder is
derived in Alg. 4 and visualized in Fig. 4a. The expected net bit length for encoding a symbol x is:
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Ignoring the dirty bits issue, i.e., z; ~ ¢(z; | ) i.i.d., the expected net bit length exactly achieves the negative IWAE bound.
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Algorithm 4: Encode Procedure of BB-IS

Procedure Encode (symbol x, message m)
decode {z;} ¥, with Hf\il q(z; | x)
decode j with Cat (w,)

encode {z; }i2j with [ [, q(2: | z)
encode = with p(z | z;)

encode z; with p(z;)

encode j with Cat(1/N)

L return m’

A.5. Bits-Back Coupled Importance Sampling

The basic idea behind Bits-Back Coupled Importance Sampling is to couple the randomness that generates the particles z;.
We assume that ¢(z | «) has been discretized to precision . In particular, we assume that for all z € S/

9z

o (13)

q(z|x) =
where ¢, is an integer. Note that this assumption is also required for ANS, so this is not an additional assumption. Assume

that S’ is totally ordered (any ordering works) and w € {0 .. 2" — 1}. Define the unnormalized cumulative distribution
function Fy, of ¢ as well as the following related objects:

Foz) =3 g (14)

2'<z
F M (u) = argmin{z € S : Fy(2) > u} (15)
U(z) ={u: E;l(u) =z} (16)

Notice that |U(z)| = g,. Thus, if u ~ unif{0 .. 2" — 1}, then

P(F; ' (u) =2) =P(ueU(z))
U(2)]

27"
3
o

Therefore we can reparameterize the sampling process of z as uniform sampling over {0 .. 2" — 1} followed by the
deterministic mapping F,~ L. This is a classical approach in non-uniform random variate generation, specialized to this
discrete setting. This is visualized in Fig. 5.

Coupled importance sampling (CIS) samples the latent variables by coupling their underlying uniforms. Let 7; : {0 .. 2" —
1} — {0 .. 2" — 1} be bijective functions. If u ~ unif{0 .. 2" — 1}, then

P(T;(u) =u') =P (u= Tfl(u'))

I(T;'(w) € {0..2" —1})
27“

1

2r

Thus, if u ~ unif{0 .. 2" — 1}, then T;(u) < wand F;Y(T;(u)) ~ q(z | z). For example, simple bijective operators T; can
be defined as applying fixed “sampling shift” @; € {0,1,...,2" — 1} to u:

T;(u) = (u+ @;) mod 2"
T, (u) = (u— @;) mod 2.

K3
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Algorithm 5: Extended Latent Space Representation of Coupled Importance Sampling

Process Q(Z | z) Process P(x, Z)
sample uy ~ unif{0,...,2" — 1} sample j ~ Cat(1/N)
fori=1,...,Ndo sample z; ~ p(z;)

assign u; = Tj(uq) sample x ~ p(x|z;)
L assign z; = F,; ' (uy) sample u; ~ unif{u : F; ' (u) = z;}
compute W; x p(x, z;)/q(z | x) for i # j do
sample j ~ Cat(10;) assign u; = T;(T; " (u;))
| return {2} {u;}N ] assign z; = F,; ' (u;)
L return z, {Zi}g\il’ {ul}i\]:lvj

For simplicity, we define T} to employ the zero shift 4; = 0, i.e., T7(u) = u. We now have the definitions that we
need to analyze the extended space construction for coupled importance sampling. Let u; ~ unif{0 .. 271}. As with IS,
we denote importance weight as w; = p(x, Fy ' (T;(u1))) /q(F; ' (T;(u1)) | ) and the normalized importance weight as
w; = w;/ Y, w;. The coupled importance sampling estimator of p(z) is given

Nowi Q81 pla B (T ()
25" gﬁ (B2 (Tu) |2) a7

Extended latent space representation The extended latent space representations of the coupled importance sampling
estimator is presented in Alg. 5. The @@ and P processes have the following probability mass functions. For convenience, let

U={0..2"—1}and z; = F; ' (Ti(u1)).
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i#]
where we used the fact that q., = 2"q(z; | ) = |U(2;) |. Because each T; is a bijection, we have that the range of T (u1)
is all of U, as u; ranges over U. Thus,
I(u; € U) & I(u; € U)
1 j _
o 1@ =) = = T (7 ) = ). 20)

Moreover, for any (u,z) € U x §,
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Algorithm 6: Encode Procedure of BB-CIS

Procedure Encode (symbol x, message m)
decode w; with unif{0,1,...,2" — 1}
assign u; = Tj(u) and z; = F; ' (u;) fori € {1,...,N}
decode j with Cat (w,)
encode u; with unif{u : F; ! (u) = 2;}
encode z with p(z | z;)
encode z; with p(z;)
encode j with Cat(1/N)
L return m’

From this it directly follows that

P(x7{zi}i]\;17{ui}zz\;1’j) o 1 Z =1 W; p(m Zj) o al % _ al lp(vaq_l(Ti(ul)))
QI (I d[e) N my alaTe) 2= N 2 N b Do) 2) 2

which is exactly the CIS estimator.

BB-CIS coder Based on the extended latent space representation, the Bits-Back Coupled Importance Sampling (BB-CIS)
coder is derived in Alg. 6 and visualized in Fig. 4b. The expected net bit length for encoding a symbol x is:

[ P w0 SLAIE 1sz T(um)
B [0 o g a ] = B [1g<ZN)] [bg(Z >>|x>)]'

(26)

The convergence of BB-CIS’s net bitrate to — log p(x) will depend on the T;. There are many possibilities, but one
consideration is that both sender and receiver must share the 75 (or a procedure for generating them). Another consideration
is that the number of particles should never exceed 2", N < 27. This is because we can execute numerical integration with a
budget of 2" particles. Assuming T;(u) =i fori € {0 .. 2" — 1}:

N x,F 2"—1
Z%p(F,1 = Z 2i - Z )) = p(x). 27

i Valfy (“1 zes’

We briefly mention two possibilities:

1. Let T;(u) = (u + k;) mod 2" where k; ~ unif{0 .. 2" — 1} i.i.d. generated by a pseudorandom number generator
where the sender and receiver share the seed. This will enjoy a convergence rate similar to BB-IS, because {(u +
k;) mod 27}, will be i.i.d. uniform on {0 .. 2" — 1} for u ~ unif{0 .. 2" — 1}.

2. Inspired by the idea of numerical integration, let T;(u) = (v + k;) mod 2" where k; is the ith element of a random
permutation of {0 .. 2" — 1}. With this scheme, BB-CIS is performing numerical integration on a random permutation
of {0 .. 2" — 1}. The rate at which the net bitrate converges to — log p(x) could clearly be made worse by inefficient
permutations. Randomizing the order may help avoid such inefficient permutations. We did not experiment with this.

A.6. Bits-Back Annealed Importance Sampling

Annealed importance sampling (AIS) generalizes importance sampling by introducing a path of intermediate distributions
between the tractable base distribution ¢(z | ) and the unnormalized target distribution p(x, z). For AIS with N steps, for
i €{0,..., N}, define annealing distributions

mi(2) o fi(2) = q(z | 2) P ip(x, 2)P (28)
Bi €10,1],80 =0, 8; < Bit1,8n = 1. (29)
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Algorithm 7: Extended Latent Space Representation of Annealed Importance Sampling

Process Q(Z | z) Process P(z, Z)
sample z1 ~ q(z1 | z) = 7o(21) sample zy ~ p(zn)
fori=1,...,N —1do forio=N—1,...,1do
| sample z;11 ~ Ti(zi+1 | 2i) | sample z; ~ T3 (2 | 2is1)

return {z;} ¥, sample x ~ p(z | zy)

return z, {2}V,

Note that 7o(z) = fo(2) = ¢(2 | x). Then define the MCMC transition operator 7; that leave the intermediate distribution
7; invariant and its reverse 7;:

/7;(2/ | 2)mi(2)dz = 7Ti(21> 30)
e 19 = T 1T = e DS, a1

Note, 7; is a normalized distribution. AIS samples a sequence of latents {2z}, from base distribution and the MCMC
transition kernels (see the Q process in Alg. 7) and obtains an unbiased estimate of p(x) as the importance weight over the
extended space.

fi(z1)fa(22) - - [n(2n)

pn(x) = . 32
V) = F e fiea) - (o) 62

The corresponding variational bound is the log importance weight:
~Ex |log f1(21) fa(z2) ... fn(2n) > _logp(x). (33)

fo(z1) fi(z2) ... fn—1(2n)

Extended latent space representation The extended space representation of AIS is derived in (Neal, 2001), as presented
in Alg. 7. The extended latent variables contain all the latents {z;} . Briefly, given =, the distribution () first samples
21 from the base distribution q(2; | *) and then sample {z;}}, sequentially from the transition kernel 7;(z;+1 | z;). The
distribution P first samples z from the prior p(zy ), then samples {z; }1__, from the reverse transition kernel 7; (2; | zi1 1)
in the reverse order, and finally samples x from p(z | zx ). The proposal distribution and the target distribution can be
derived as followed:

QUzYL)) = q(z1 | 2)Ti(z2 | 21) Ta(2s | 22) ... Tv—1 (2w | 2n-1) (34)

= fo(z1)Ti(z2] 21)Ta(23 | 22) . .. Tv—1(2n | 2N —1) (35)

Pz, {zi}N0) = pla, 2n) Tv—1(env—1 | 2n) Tv—a(zn—2 | 2n—1) .. T (21 | 22) (36)
= fn(en)Tv—1(en—1 | 2n) Tn—a(zn—a | 2n—1) ... Ta(21 | 22). 37

Now note

Pz, {zi}1) _ () Tv-1(en-alon) Tv—a(zn—2lon-1) - Ti(z1]22) (38)
QU{z}Y) fo(z1)Ti(22]21)T2(z3]22) - .. Tv—1(2n|2n—-1)
fi(z1) fa(z2) - fn(2n)

" folz) fi(z2) - Fnoi(en)

(39)

which exactly gives us the AIS estimator. Note that we have used equation (31) above.
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Algorithm 8: Encode Procedure of BB-AIS
Procedure Encode (symbol x, message m)
decode z; with ¢(z1 | z) = mo(21)
fori=1,...,N —1do
L decode Zit1 with 7;(21‘4_1 | Z,)
encode z with p(z | zx)
fori=1,...,N—1do
L encode z; with ’73(21 | zit1)
encode zy with p(zy)
L return m’

Algorithm 9: Encode Procedure of BB-AIS with BitSwap

Procedure Encode (symbol x, message m)
decode z; with ¢(z1 |2) = mo(21)
fori=1,...,N —1do

decode Zit1 with 7;(21‘+1 | Z,)
L encode z; with 7;(2; | zi1)
encode z with p(z | zi)
encode zy with p(zy)
L return m/’

BB-AIS coder Based on the extended space representation of AIS, the Bits-Back Annealed Importance Sampling coder is
derived in Alg. 8 and visualized in Fig. 11a. The expected net bit length for encoding a symbol z is:

log P(z, {2 ivzl) _ f1(z1) fa(22) ... fn(2w)
P g Q)Y x>] = Fean, [l‘)g folz) fi(z2) - fn—1(zn)

(40)

Ignoring the dirty bits issue, i.e., {2}, ~ Q({z:}Y, | z), the expected net bit length exactly achieves the negative AIS
bound.

The BB-AIS coder has several practical issues. First is the computational cost. Since the intermediate distributions are
usually not factorized over the latent dimensions, it is very inefficient to encode and decode the latents with entropy coders
for high dimensional latents. Second is the increased initial bit cost as with BB-IS. More precisely, the initial bits that
BB-AIS requires is as followed:
N-1
—logq(z1|x) = > log Ti(zis1 | 2), (41)

i=1

which scales like O(V). However, because the structure of BB-AIS is very similar to the hierarchical latent variable modelss
with Markov structure in (Kingma et al., 2019), the BitSwap trick can be applied with BB-AIS to reduce the initial bit cost.
The BB-AIS coder with BitSwap is derived in Alg. 9 and visualized in 11b. In particular, note that the latents {2;}%¥ , in
BB-AIS are encoded and decoded both in the forward time order, we can interleave the encode/decode operations such
that z; are encoded with z;1 1 as soon as z;11 are decoded. Thus there are always at least — log 7{(2, | zi+1) available for
decoding z;. o at the next step, and the initial bit cost is bounded by:

N—-2

—logq(z1|z) —log Ti(z2| 21) + Y max(0, —log Tiy1(ziya | 2zig1) +log Ti(2i | zi11)). (42)
i=1

Although BitSwap helps to reduce the initial bit cost, we find that it suffers more from the dirty bits issue than the naive
implementation and affects the expected net bit length (see Fig. 8b for an empirical study). Therefore, using BB-AIS with
BitSwap leads to a trade-off between net bitrate distortion and inital bit cost that depends on the number of symbols to be
encoded.
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decode z; with g(z1|x) decode z; with g(z1|x)
decode zo with T7(z221) decode zo with T7(z2|21)
decode z3 with T5(z3|22) encode z; with '7~'1(z1|22)
encode z with p(z|z3) decode z3 with T3(z3|22)
encode z; with 71(21‘22) encode zo with 7—2(z2|23)
encode zy with T5(2a|23) encode 2 with p(z|z3)

encode z3 with p(z3) encode z3 with p(z3)

(a) Bits-Back Annealed Importance Sampling (b) Bits-Back Annealed Importance Sampling with BitSwap

Figure 11. The encoding schemes of BB-AIS and BB-AIS with BitSwap both with N = 3 steps. Encoding a symbol = with BB-AIS
incurs a very large initial bit cost that scales like O(N). This can be significantly reduced by applying the BitSwap trick.

A.7. Bits-Back Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a particle filtering method that combines importance sampling with resampling, and its
estimate of marginal likelihood typically converges faster than importance sampling for sequential latent variable models
(Cérou et al., 2011; Bérard et al., 2014). Suppose the observations are a sequence of 7" random variables x € ST, where
@y := x1.¢. Sequential latent variable models introduce a sequence of T (unobserved) latent variables zp € S’ T associated
with &, where z; := z1.;. We assume the joint distribution p(xr, z7) can be factored as:

i~

p(mTa ZT) = f(zt | Li—1, ztfl)g(wt ‘ Lt—1, Zt)a (43)

t=1

where f and g are (generalized) transition and emission distributions, respectively. For the case t = 1, f(21 |0,0) = p(z1)
reduces to the prior distribution and g(z; | @, z1) only conditions on z;. We also assume the approximate posterior ¢(z7 | zr)
can be factorized as:

T
q(zr |2r) = [[ a2t |21, 2e1). (44)
t=1
For the case t = 1, q(21 | z1, 0) only conditions on 7.
SMC maintains a population of particle states Z; := 21, Here we use subscript for indexing timestep t and superscript for

indexing particle ¢. In this appendix we describe the version of SMC that resamples at every iteration. Adaptive resampling
schemes are possible (Doucet et al., 2001), but we omit them for clarity.

At each time step ¢, each particle independently samples an extension 2! ~ q(z} |z, T} ;) where T{_; is the ancestral
trajectory of the ith particle at timestep ¢ (will be described in details later). The sampled extension 2} is appended to 7;_;
to form the trajectory of ith particle as (7/_,, z}). Then the whole population is resampled with probabilities in proportion
to importance weights defined as followed:

fe e, ) g( e, (1), 7))
Q(Z§\$t7TZ—1)

(45)

i
Wy

Wl = -~ (46)
i1 Wi
In particular, each particle samples a ‘parent’ index A% ~ Cat(«w}). At the next timestep ¢ + 1, the ith particle ‘inherits’ the
ancestral trajectory of the A’th particle. More precisely,

i i

; Al A
T = (T2 47
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Algorithm 10: Tracing Back the Ancestral Trajectory 7;_; for the ith Particle at Timestep ¢

Procedure TraceBack (41, A o, Ai,l)
assign B _; = A}_,
fork:t—27...,1d0

. ; Bj,
t assign Bj, = A, """

. ; Bi B Bi_,
assign Ttlfl = (Zl 1722 2a cees Rl )
return 7;_;
Ancestral indices (2,3,1,4) from A =2 Ancestral trajectory 7}
3 2 2 Z
/ 4 Al \ / z5
1 Eh

A4 ZS

Figure 12. Trace back the ancestral trajectory 7/_; for the particle i = 1 at timestep ¢ = 6.

Thus, at timestep ¢ + 1, given the parent index A?, as well as the collection of particle states Z; and previous ancestral
indices A; 1 := A}:]V |, one can trace back the whole ancestral trajectory 7/ by recursively applying equation (47).

For brevity and consistency, we provide the pseudocode (Alg. 10) and visualization (Fig. 12) for_ tracing back the ancestral
trajectory 1,_; for the ith particle at timestep ¢. In particular, we first obtain the ancestral index Bj, at each previous timestep
k by using the fact

Bi = AD (48)

Thus we can obtain a series of ancestral indices (Bi, ..., B! ;) in the backward time order and then obtain the ancestral
trajectory by indexing Z;_;. Note that Alg. 10 is only for helping understand the SMC algorithm, in practice, typically the
ancestral trajectories are book-kept and updated along the way using equation (48).

SMC obtains an unbiased estimate of p(xr) using the intermediate importance weights (Del Moral, 2004, Proposition
7.4.1):

1L
pv(@r) =[] (N Zwi> : (49)
t=1 =1

The corresponding variational bound (FIVO, Maddison et al., 2017; Naesseth et al., 2018; Le et al., 2018) is

T N
1 .
7]EZT7AT—1 [5 log (N § ’wZ)] > *10gp(-'13T)~ (50)
t=1 =1

Extended latent space representation The extended space representation of SMC is derived in (Andrieu et al., 2010), as
presented in Alg. 11. The extended latent space variables contain the particle states Z, ancestral indices Ap_1, and a
particle index j used to pick one special particle trajectory. Briefly, the @ distribution samples Z7 and Ap_1 in the same
manner as SMC, with an additional step that samples the particle index j with probability proportional to the importance

weight wp. The P distribution selects the ancestral indices of the special particle (B, . . ., Br) uniformly, and samples the
special particle trajectory 2z} = (le oo, ZTB 7) and the observations @ jointly with the underlying model distribution.

The remaining particle states and ancestral indices are sampled with the same distribution as (). Note that the special particle
trajectory z}. = TraceBack(Zrp, Ar_1,j).
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Algorithm 11: Extended Latent Space Representation of Sequential Monte Carlo
Process Q(Z | x7)
fort=1,...,T do
if ¢ # 1 then
fori=1,...,Ndo
B sample At 1 ~ Cat(y_1)
| assign A1 = [Ay_o, APY]
fori=1,...,Ndo _
assign 7,_; = TraceBack(Z;—1, At—2,4;_,)
| sample z; ~ q(2; | ®¢, T{_)

| assign Z; = [Z; 1, 27|
sample j ~ Cat(wr)
| return ZT, AT,17j

Process P(xr, 2)
fort=1,...,T do
sample B; ~ Cat(1/N)
if ¢ # 1 then
assign APt = B,
for i # B; do
| sample A] | ~ Cat (1)
assign A, = [A;_2, AF]

assign Tfi‘l = TraceBack(Z;_1,A¢—2,Bi—1)

sample zf’" ~ f(zf‘ |:ct7177'tB,"1)

sample x; ~ g(zy | ®4—1, (’Tthl, th))

for i # B, do ‘

assign 'rt 1 = TraceBack(Z;—1, A¢—2, 4} )

L sample 2! ~ q(z{ | z¢, T 1)

| assign Z; = [Z;_1, 27|

assign j = Br

| return xrT, ZT, AT_1,j

From Alg. 11, the proposal distribution and the target distribution and be derived as followed:

Q(Zr,Ar—1,j|xT) = wTHq (21]21) HH@ t11q (21 | @4, (1) 1)
t=21i=1
1 T
P(xr, Zr, Ar-1,j) = Wﬂ(zfl)g(%\zfl) H f(sz |-’Bt71,7'£t1)9(33t | @1, (Tt]ituztBt))
t=2
H Q(Zﬂxl H H wt Zt|wt’Tt 1) (52)
i#B1 t=2i#B,
1 T A}
= yrp@r.zp) [T aGilen) [T [T @i atei [, mi), (53)

i#B; t=2i#£B,
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Algorithm 12: Encode Procedure of BB-SMC

Procedure Encode (symbol xr, message m)
fort=1,...,Tdo
if t # 1 then

fori=1,...,Ndo

| decode A, with Cat (1)

| assign Ay = [Ay_o, APN]
fori=1,...,Ndo

assign 7/_, = TraceBack(Z; 1, A; o, Al )
| decode z} with q(z{ | &, T/ ;)

| assign Z; = [Z;_1, 2]
decode j with Cat(wr)

set the ancestral lineage By = j and By = Aft“ fort=T-1,...,1
fort=1T,...,1do
for i # B; do

| encode z{ with q(z] | @, 7/} _,)
encode x; with g(z; | @1, (774, 2P))
encode 2t with f(27" | i1, 7PY)
if t # 1 then

for i # B; do
L | encode A, with Cat (1)

| encode B; with Cat(1/N)

L return m’
Now note,
P(mTaZTvAT—lhj) _ 1 (mTa ) (54)
Zr, Ar_1,7 TONTGY
QZr Ar-vjler) N qu( 1|9Cl)1_[t th (Z |wt’Tt “)
NTqu( Bl|5€1)Ht 2@511%1( tlxtaTt “)
B 1 u(z) gl Ty F(P @1, 72 g |eor, (72, 20)) 56)
- T 7y t t
NTHt:lth q(z 11|=’51)Ht=2‘I(Zt ‘337&,7'51)
T B
— Ht 1w ' (57)
NT T, o/

— H(%Zwi), (58)
t=1 =1

which exactly gives us the SMC estimator. Note that we have used equation (48) and By = j in the above derivation.

BB-SMC coder Based on the extended space representation of SMC, the Bits-Back Sequential Monte Carlo coder
is derived in Alg. 12 and visualized in Fig. 13. Intuitively, BB-SMC first decodes all the extended latent variables
Z ={Zp,Ar_1,j} in the forward time order. Then it picks a special particle and traces its trajectory z;. backward in
time. The distribution of the special trajectory can be seen as a non-parametric approximation of the true posterior. The
special trajectory 27, is used to encode the sequential observations @7 and is itself encoded with with the model distribution.
The special trajectory’s ancestral indices are encoded using a uniform distribution. All other extended latent variables
are encoded back with the same distribution as decoding and in the backward time order. The expected net bit length for
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o T-1 ) T
N .
J
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Figure 13. The visualization of the encode procedure of BB-SMC.
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Algorithm 13: Encode Procedure of BB-CSMC

Procedure Encode (symbol xr, message m)
fort=1,...,Tdo
if t # 1 then
decode v;_; with unif{0,--- ,2" — 1}
assign p;—1 = Cat(w_1)
fori=1,...,Ndo

assign v;_; = Ri_l(vt—;)

assign A}_; = Fp:L (vi_y)
| assign Ay_; = [Ai_o, AIN]
ecode u; with unif{0,--- ,2" — 1}
fori=1,...,Ndo
assign 7/, = TraceBack(Z; 1, A; o, Al ;)
assign up = T} (ur), q; = q(2f | e, 7/_4)
assign z} = Fq:l(ug)

o

| assign Z; = [Z;_1, 27|
decode j with Cat(wr)

set the ancestral lineage By = j and B; = Aft“ fort=T-1,...,1
fort=1T,...,1do
encode up" with unif{u : F 7 (u) = 2/
q

encode z; with g(z; | @1, (174, 2P))
encode 2zt with f(25" |z¢_1,72Y)
if t # 1 then
L encode v/, with unif {v : Ft(v) = APy
| encode B; with Cat(1/N)
L return m’

encoding a symbol 7 is:
. T N
log P(xp, Z7r, Ar_1,]) 1 .
—E j =-E > log | — - 59
Zr,Ar_1,j IOgQ(ZT,ATfhj | wT) Zp,Ar_1 — og N ;wt ( )

Ignoring the dirty bits issue, the expected net bit length exactly achieves the negative FIVO bound.

Note that our BB-SMC scheme can be easily extended to adaptive resampling setting where the particles are only resampled
when a certain resampling criteria is satisfied. In adaptive schemes, the importance weights accumulate multiplicatively over
time (between resampling events). One typical adaptive resampling criteria is applying resampling if the effective sample
size (ESS) of the particles drops below N/2. Details can be found in (Doucet et al., 2001).

Adaptive resampling is possible, because the same resampling decisions made at encode time by the sender can be exactly
recovered by the receiver. The encoding process of the sender produces the SMC state in the forward direction of time.
The receiver also reconstructs the the SMC state in the forward direction of time. Thus, if the receiver has the same
resampling criteria as the sender, they can recover exactly the SMC forward pass of the sender. Thus, we can make two
major modifications to incorporate adaptive resampling to BB-SMC. First is that the parent indices A% ; are only decoded
(and then encoded back) when the resampling criteria is satisfied at each timestep ¢, otherwise each particle inherits itself,
i.e., set Ai_; =i. Second is that when resampling is not performed, the importance weights need to be accumulated and
used for resampling next time. After resampling, the accumulated importance weights are reset to uniform for all particles.

BB-CSMC coder As with BB-IS, BB-SMC also suffers from a increased initial bits cost equal to — log Q(Zr, Ar_1, )
that scales like O(NT'), in contrast to the O(T’) initial bit cost of BB-ELBO. Similarly, we can derive a coupled variant of
BB-SMC which is called Bits-Back Coupled Sequential Monte Carlo (BB-CSMC).
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BB-CSMC reparameterizes the particle states z; as deterministic functions of uniform random variables u{ which are
coupled by a common uniform u;. At each timestep ¢, instead of directly decoding z{ with their approximate posterior
qi, BB-CSMC first decodes u; and then obtain u! with bijective functions 77, i.e., ui = T} (u;). Then the particle states
2! are obtained as 2! = Fqgl (ul), where the functions Fqgl are defined as equation (4). This is not enough to sufficiently

reduce the O(NT) initial bit cost since the parent indices A!_; are also decoded (and thus require some initial bits) for each
particle. Therefore, similarly for Ai_l, we also need to introduce the common uniform v;_; and the bijective functions
R} j toobtainvj ; = R} ;(v;—1). Af_, are obtained as A} , = F,;* (vj_;) where p;_, is the categorical distribution
defined by normalized importance weights w;_1. This reduces the initial bit cost to (27" — 1)r — log(wr). Note that r is
lower bounded by log N because 2" should be larger than N, the initial bit cost roughly scales like O(T log N).

The encoding process of BB-CSMC should also be calibrated to match the modified decoding process, as with BB-CIS. In
particular, after decoding the special particle index j, BB-CSMC only encodes (x¢, By, vtB_tl, uf ‘ ztB *) associated with the
special particle trajectory. The uniform vtB_tl and uf ¢ are encoded using uniform distributions over restricted sets mapped

from Ai‘Djl = B;_1 and zf ‘. respectively.

One can easily compute the net bitrate of BB-CSMC is:

T 1 N .
B o [Z toe (N 2 wgﬂ v
=1 =1

which is comparable to BB-SMC but uses only O(T log N) initial bits.

B. Computational Cost

The computational requirements of our McBits coders can be distilled into two components: calculation of the distributions
used (which usually involves neural network computation) and the actual encoding/decoding operations themselves. In our
implementations of McBits the neural network computations tend to dominate.

For most McBits coders (e.g., BB-IS and BB-AIS), the computational complexity scales like O(N'), where N is the number
of particles or AIS steps. In BB-IS for example, the neural network for the approximate posterior needs to be computed once
for each encoded symbol, while the neural net for the conditional likelihood is executed NV times, once for each particle, in
order to compute the weights for the categorical sampler.

In BB-SMC, we are required to decode/encode N times from a categorical distribution of alphabet size N at each timestep.
Naively implemented, this has computational complexity O(T'N?) (in contrast to the O(T") computational complexity of
BB-ELBO), but we believe that this can be reduced to O(T'N) by applying the alias method (Walker, 1974). We have not
implemented the alias method, because the computational cost of decoding/encoding ancestral indices only accounted for a
small fraction of the overall cost in our experiments.

The neural net computation and the encoding/decoding operations in BB-IS and BB-SMC can also be parallelized over
particles, which in an ideal implementation would result in O(1) and O(T') time for the two methods, respectively. However,
BB-AIS is not easily parallelizable due to its sequential nature. To test parallel performance, we have written an end-to-end
parallelized version of BB-IS, using the JAX framework (Bradbury et al.), results are shown in Figure 7.

C. Experimental Details
C.1. Lossless Compression on Synthetic Data

Mixture Model We used a mixture model with 1-dimensional observation and latent variables. The alphabet sizes of the
observation and the latent were 64 and 256 respectively. The data generating distribution (prior and conditional likelihood
distributions) counts were i.i.d. sampled random integers from the range [1, 20] and then normalized. All the coders got
access to the true data generating distribution of the model and used a uniform approximate posterior distribution. All
coders were evaluated using a message consisting of 5000 symbols i.i.d. sampled from the model to compute the total and
net bitrates. The ideal bitrate of each coder was computed by its corresponding (empirical) negative variational bound by
resampling the N particle system 100 times and averaging (except for the ELBO bound, which can be computed exactly).
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Hidden Markov Model We used a hidden Markov model (HMM) with 1-dimensional observation and latent variables.
The alphabet sizes of the observation and the latent were 16 and 32 respectively. The number of timesteps was set to 10.
The data generating distribution (prior/transition/emission distributions) counts were i.i.d. sampled random integers from
the range [1, 20] and then normalized. All the coders got access to the true data generating distribution of the model and
used a uniform approximate posterior distribution. All coders were evaluated using a message consisting of 5000 sequences
i.i.d. sampled from the model to compute the total and net bitrates. The ideal bitrate of each coder was computed by its
corresponding (empirical) negative variational bound of the sampled message, as with the mixture model. The entropy of
the model was also computed empirically by the negative marginal likelihood of the sampled message which was computed
by the forward algorithm.

Additional Results We include the cleanliness plots of all evaluated coders on the toy mixture and the toy HMM model
in Fig. 14.
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BB-AIS-BitSwap suffers from the dirty bits issue. suffer from dirty bits issue.

Figure 14. (a) & (b): The cleanliness plots of all evaluated coders on the toy mixture model and the toy hidden Markov model. The
experimental setups were the same as with Fig. 8b. and Fig, 9, respectively.

C.2. Lossless Compression on Images

Datasets We used two datasets for benchmarking lossless image compression: EMNIST (Cohen et al., 2017) and CIFAR-
10. EMNIST dataset extends the MNIST dataset to handwritten digits. There are 6 different splits provided in the dataset
and we used two of them in our experiments: MNIST and Letters. The EMNIST-MNIST split mimics the original MNIST
dataset which contains 60,000 training and 10,000 test examples. The EMNIST-Letters split contains 124800 training and
20800 test examples. Both two splits were dynamically binarized following Salakhutdinov & Murray (2008). Specifically,
the observations were randomly sampled from the Bernoulli distribution with expectations equal to the real pixel values. For
the CIFAR-10 dataset, no additional preprocessing was applied.

Model For the EMNIST datasets, we used the VAE model with 1 stochastic layer as in Burda et al. (2015). The VAE model
had 50 latents with a standard Gaussian prior and factorized Gaussian approximate posterior. The conditional likelihood
distribution was modeled by the Bernoulli distribution which fit with the binarized observations. The training procudure was
the same as Burda et al. (2015). For the CIFAR-10 dataset, we used the VQ-VAE model (Oord et al., 2017) with discrete
latent variables. Categorical distributions were used for both the latents and the observations. We followed the experimental
setup in Sgnderby et al. (2017) and used the VQ-VAE model with 8 latent vairables per spatial dimension. The VQ-VAE
model was trained with Gumbel-Softmax (Jang et al., 2016; Maddison et al., 2016) relaxation with a tempreture of 0.5
and a minibatch size of 32. The ADAM optimizer was used for training the model and the learning rate was tuned over
{1x1074,5x1074,1 x 1073}.

Discretization To perform bits-back coding with continuous latent variables, we need to discretize the latent space and
approximate the continuous prior and the approximate posterior with their discretized variants using the same set of bins. In
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MacKay (2003) and Townsend et al. (2019), they showed that the continuous latents could be discretized up to an arbitrary
precision ., without affecting the net bitrate as we could also get those extra bits due to discretization “back”. The notable
effect is for the toral bitrate since the initial bit cost would scale with the — log 4., which means that we prefer to use a
reasonably small precision in practice. In our EMNIST experiments, continuous latent variables were used for the VAE
model and need to be discretized for compression. We used the maximum entropy discretization in Townsend et al. (2019)
and discretized the latent space into bins that had equal mass under the standard Gaussian prior for all the coders.

Baselines We included amortized-iterative inference method (Yang et al., 2020) which also improved the compression rate
by bridging the gap of the ELBO bound and the marginal likelihood as a baseline in our experiments. When compressing
a data example, it first initializes the local variational parameters (e.g., the mean and variance for factorized Gaussian
approximate posterior in our experiments) from the trained VAE inference model. Then it optimizes the ELBO objective
over the local variational parameters with stochastic gradient decent and uses the optimized variational parameters for
compression. This method introduces expensive computation at the compression stage. In our experiments, we kept the
number of optimization steps equal to the number of particles N to roughly match the computation budget in terms of
the number of quries to the VAE model. However, even so the computation cost of this method is more expensive than
our BB-IS/BB-CIS coders because 1) BB-IS/BB-CIS coders with IV particles introduce N queries to the VAE generative
model and 1 query to the VAE inference model, while amortized-iterative inference with /N optimization steps requires
N quiries to the whole VAE model and IV back-propagation steps; 2) the computation of the BB-IS/BB-CIS coders can
be potentially parallelized over the particles, but the computation of amortized-iterative inference needs to be done in [V
sequential optimization steps. In our experiments, we used ADAM optimizer for optimizing the local variational parameters
and the learning rate was tuned in the range {5 x 10741 x 1073,5 x 1073,1 x 1072,5 x 10~2}.

Additional Results We include some additional results for lossless compression on images here.

Coupling does not hurt net bitrates  To study the potential trade-off of applying our BB-CIS coder, we compared the
compression performance of BB-IS and BB-CIS with 50 particles on EMNIST datasets in Table 5. Although the BB-CIS
coder adopts a near-random sampling strategy, its ideal bitrate and net bitrate match those of the BB-IS coder. And it is
effective for reducing the initial bit cost, as the gap between the total bitrate and the net bitrate is much smaller than that of
the BB-IS coder. These observations illustrate that we can use BB-CIS as a drop-in replacement for BB-IS nearly for free.

Table 5. BB-CIS is better than BB-IS in terms of total bitrate while matching the ideal and net bitrates. Comparison was done on the
EMNIST-MNIST and EMNIST-Letters test sets. All bitrates were measured in bits/dim.

MNIST Letters
Ideal Net Total Ideal Net Total

BB-IS (50) 0.227 0.228 0.230 0.238 0.239 0.241
BB-CIS (50) 0.227 0.228  0.228 0.238 0.239  0.239

Method

Combine BB-IS with amortized-iterative inference  The compression performance of our BB-IS coder can be further
improved by applying amortized-iterative inference at the compression stage. Similar to the original amortized-iterative
inference, one can initialize the local variational parameters from the trained VAE inference model and optimize the IWAE
objective with N particles (as opposed to the ELBO objective) over them. In Table 6, we compared the net bitrate of
combining the BB-IS coder and the amortized-iterative inference method. We observed that the amortized-iterative inference
method could further boost the compression rate of our BB-IS coder.

Table 6. The compression performance of BB-IS can be improved by combining with amortized-iterative inference method. The net
bitrates (bits/dim) are shown in the table.

MNIST Letters
w/IF  w/loIF w/IF w/olIF

BB-IS (1) 0.236  0.233 0250 0.246
BB-IS (5) 0.231 0229 0243  0.241
BB-IS (50) 0.228 0.226 0.239  0.237
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Comparison with amortized-iterative inference in OOD settings ~ We also compare the out-of-distribution (OOD) compres-
sion performance of BB-IS with amortized-iterative inference, as shown in Table 7. We observed that with roughly the same
computation budget, BB-IS outperforms the amortized-iterative inference method in OOD compression settings. The most
improved compression rates can be achieved when BB-IS is combined with it (denoted as BB-IS (50)-IF (50)).

Table 7. BB-IS outperforms amortized-iterative inference in OOD compression setting. The net bitrates (bits/dim) are shown in the table.

Trained on MNIST Letters
Compressing MNIST  Letters MNIST Letters
BB-ELBO 0.236 0.310 0.257 0.250
BB-ELBO-IF (50) 0.233 0.294 0.252 0.246
BB-IS (50) 0.228 0.280 0.244 0.239

BB-IS (50)-IF (50) 0.227 0.272 0.241 0.237

Comparison with other existing methods ~ We include the comparison of BB-IS with existing neural lossless compression
baselines on CIFAR-10, as shown in Table 8. Note that our McBits coders are not directly comparable with these methods
since all of these assume different computational regimes or exploit distinct model classes from ours (e.g., VQ-VAE), but
we still include the comparison to provide context for readers.

Table 8. The comparison of total bitrates of BB-IS with other neural compression baselines on CIFAR-10. We emphasize that these
methods are not directly comparable since the model classes used are very different, and the comparison between BB-IS and BB-ELBO
within the same model class (i.e., VQ-VAE) is meaningful.

Method CIFAR-10
gzip 7.37
bzip2 6.98
Izma 6.09
PNG 5.89
JPEG 5.20
WebP 4.61
FLIF 4.37
REC (Flamich et al., 2020) 4.18

BitSwap (Kingma et al., 2019) 3.82
IDF (Hoogeboom et al., 2019) 3.34

BB-ELBO 4.90
BB-IS (10) 4.81

C.3. Lossless Compression on Sequential Data

Datasets We used 4 polyphonic music datasets to evaluate the compression performance of the BB-SMC coder on
sequential datasets: Nottingham folk tunes, the JSB chorales, the MuseData library of classical piano and orchestral music,
and the Piano-midi.de MIDI archive (Boulanger-Lewandowski et al., 2012). All datasets were composed of sequences
of binary 88-dimensional vectors representing active musical notes at one timestep. For all datasets, we imitated the
experimental setup presented in Maddison et al. (2017). We used the same train/validation/test split and echoed their data
preprocessing. The only difference was that we used a chuncked version of these datasets where each sequence was chunked
to sub-sequences with maximum length of 100. We found it slightly improved the model performance and significantly
reduced the initial bit cost (as the original maximum sequence length was very large).

Models All models were based on the variational RNN architecture (Chung et al., 2015). All distributions over latent
variables were factorized Gaussians, and the output distributions were factorized Bernoullis for binary observations on
4 polyphonic music datasets. JSB models were trained with 32 hidden units, Muse-data with 256, and all other models
with 64 units. For each aforementioned dataset, there was one model trained with the ELBO, IWAE, and FIVO objectives,
respectively. All models were trained with 4 particles, a batch size of 4 and the Adam optimizer with learning rate 3 x 10~°.
All models were initially evaluated on the validation set, which allowed for early stopping. In Table 9, we present our
models’ performance in nats and bits to allow for easy comparison of generative modelling and compression literature.



Monte Carlo Bits-Back Coding

Table 9. Sequential model evaluation: we trained VRNN models on the Nottingham, JSB, Musedata and piano-midi.de datasets. For each
dataset, we trained 3 VRNN models with the ELBO, IWAE and FIVO objectives, respectively. All models were trained with 4 particles.
Our models were trained in an identical fashion as with Table 5 in Maddison et al. (2017). For comparison, we include the estimated data
log-likelihood as model evaluation metric. We estimated the log-likelihood by computing the maximum of the ELBO, IWAE and FIVO
bound with 128 particles. We include this metric for better comparison to other work. However for this work, this bound is not relevant.
Relevant metrics include the respective bounds in nats or bits per time step.

Training  Evaluation Unit Notingham JSB Musedata Piano-midi.de
Objective  Metric Train  Test Train  Test Train  Test Train  Test
—logp(z) nats/step 349 4.06 8.05  8.67 6.50  7.33 730  7.92
ELBO —ELBO nats/step  3.50 4.07 8.07 8.67 6.53 7.38 7.31 7.93
—ELBO bits/step  5.05 5.87 11.64 1251 9.41 10.65 10.55 11.44
—logp(z) nats/step 251 3.03 7.50  8.13 6.40 733 725  7.88
IWAE —IWAE nats/step  2.63 3.24 7.65 8.36 6.42  7.38 7.89  7.89
—IWAE bits/step  3.79 4.67 11.04 12.06 9.26  10.65 11.38  11.38
—logp(z) nats/step  2.50 3.02 6.41 7.24 582 646 6.94  7.70
FIVO —FIVO nats/step  2.60 3.20 6.59  7.50 597 6.64 699  7.76
—FIVO bits/step  3.75 4.62 9.51 10.82 8.61 9.58 10.08 11.20

Additional Results We include some additional results for lossless compression on sequential data here.

We compared our coders with benchmark lossless compression schemes in Table 10. Our coders were comparable with those
baselines and the BB-SMC coder outperformed all the baselines on the JSB dataset. Note that the compression performance
of our coders is bottlenecked by the simple VRNN architecture that we used in our experiments. And we suppose that
with more powerful and better trained VRNN models, our coders could outperform those benchmark schemes. However,
our main focus is to compare the compression performance of our BB-SMC coder and the BB-ELBO/BB-IS coders with
the same VRNN architectures to show the effectiveness of BB-SMC for compressing sequential data, and this is clearly
illustrated by the results.

Table 10. The comparison of net bitrate (bits/timestep) with benchmark lossless compression schemes on sequential data benchmarks.

Method Musedata  Nottingham  JSB  Piano-midi.de

gzip 11.01 3.86 13.94 9.46

b2 11.25 2.95 11.97 10.67
Izma 8.4 3.12 12.78 7.27
BB-ELBO 10.66 5.87 12.53 11.43
BB-IS (4) 10.66 4.86 12.03 11.38
BB-SMC (4)  9.58 476 10.92 11.20

Discussion of Initial Bit Cost The initial bit cost of compressing sequential data using (Monte Carlo) bits-back algorithms
scales linearly with both the sequence length and the number of particles, i.e., O(NT'). The original four polyphonic music
datasets have a special characteristic that the average and maximum sequence lengths are large but the number of sequences
is small, which means that the initial bit cost is huge but cannot be sufficiently amortized. Thus, if we compress the original
datasets without chunking sequences, the fotal bitrate will be much larger than the ner bitrate. For example, there are only
124 sequences in the Musedata test set but the average length is 519 and the maximum length is 4273. As a result, the
total bitrates of the BB-ELBO coder and the BB-SMC coders for compressing the original dataset are 136.81 and 544.40
bits/timestep respectively and much larger than their net ones. Therefore, we chose to chunk long sequences to short ones of
a predefined maximum length (100) and compress them independently, which could effectively decrease and amortize the
initial bit cost. When compressing the chunked dataset, the total bitrates of BB-ELBO and BB-SMC reduce to 12.83 and
21.39 bits/timestep respectively. As for the initial bit cost caused by the particles, we can also use the coupled variant of
BB-SMC (aka BB-CSMC) for compressing sequential data.
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C.4. Lossy Compression on Images

Lossy Compression Setup We used the binarized EMNIST datasets to benchmark the lossy compression performance. We
considered the lossy compression setup with hierarchical VAE models (Ballé et al., 2018; Minnen et al., 2018). Specifically,
the compressing data x is transformed by trained hierarchical inference models f; and f; with parameters ¢; and ¢y, to
produce discretized latent y and hyperlatent z as y = [ ] and z = |/, where uf = fi(z;¢y) and pf = fi(y; ¢n) are
their continuous representations. In our experiments, the latent is rounded to the nearest integer and the hyperlatent is
discretized by the maximum entropy discretization scheme introduced in C.2 for lossless compression. Then the latent y
and the hyperlatent z are compressed with bits-back coding as in lossless compression. On the decoder side, both y and 2
can be losslessly recovered and the reconstructed data 2 is transformed from y using the generative models g; and g, with
parameters 6; and 6},.

Model We used the VAE model with 2 stochastic layers in Burda et al. (2015) with several modifications based on Ballé
et al. (2018) for adapting to the lossy compression setup. Specifically, the approximate posterior distribution of the latent was

a uniform distribution centered at 1, i.e., ¢(y|2) = unif (u£ -3 u{; + 1), which is a differentiable substitute for rounding
during training. The conditional likelihood distribution of the latent should also support quantization which was a factorized
Gaussian distribution convolved with a standard uniform p(y|z) = N (u, 052) s unif(—3, §), where (19, 09) = gn(2; 0n).

The convolved distribution agrees with the discretized distribution on all integers (Ballé et al., 2016; 2018). This is important
because the discretization of the latent would affect the compression rate which should be taken into account during training.
In contrast, the disretization of the hyperlatent does not affect the compression rate as a result of getting bits back (see
the discussion in C.2), we kept the distribution over the hyperlatent unchanged as in Burda et al. (2015). Specifically, its
approximate posterior distribution g(z|y) was a factorized Gaussian distribution centered at ;¢ and its prior distribution p(z)
was a standard Gaussian. The conditional likelihood distribution was kept as a factorized Bernoulli for binary observations.

Training The loss function of training the hierarchical VAE model is a relaxed rate-distortion objective:

, 2

Lx(01,0n, 01, 0n) = Eqyla)a(zly) | —Mog(z]y) —log ply. 2) + log ¢(yiT) (61)
—_ q(zly)  ~——
weighted distortion 0

rate as ELBO

The distortion is measured as the negative log likelihood of the Bernoulli observations and the rate is measure as the negative
ELBO marginalized over the hyperlatent. ) is the hyperparameter that controls the rate-distortion trade-off. The last term is
measured as 0 since ¢(y|x) is a uniform distribution. The above rate-distortion objective is very similar to the objective
function in 5-VAE (Higgins et al., 2016) and can be optimized with the reparameterization trick. Note that the ELBO rate
term can be changed to the IWAE objective with multiple particles.

In our experiments, we trained the models on the binarized EMNIST-MNIST dataset and evaluated on both EMNIST-MNIST
and EMNIST-Letters test sets (for evaluating the performance in the transfer setting). we trained the model with the above
loss function using the IWAE objective with M € {1,5,50} particles as the rate term. For each setup, we trained models
with different A values in the range {1.0, 1.5, 2.0, 2.5, 3.0,4.0,5.0,6.0,7.0,7.5,8.0,9.0,10.0, 12.5,15.0, 17.5,20.0}. For
training each model, we tuned the learning rate in the range {5 x 1072,2.5 x 1072,1 x 1073, 7.5 x 1074,5 x 1074}.

Additional Results We include some additional results for lossy image compression here.

We include the rate-distortion curve and the rate saving curve evaluated on the EMNIST-MNIST test set in Fig. 15a and Fig.
15b, respectively. We found that BB-IS achieved better rate-distortion trade-off than BB-IS and achieved more than 15 %
rate savings in some setups.

We also evaluated the performance of applying amortized -iterative inference (Yang et al., 2020) in lossy compression in Fig.
15¢ & 15d. The main purposes were to: 1) compare the amortized-iterative inference and our BB-IS coder with similar
computation budget; 2) illustrate the potential of combining amortized-iterative inference with our BB-IS coder. Specifically,
we used 50 optimization steps for amortized-iterative inference to roughly match the computation budget (see discussion in
C.2) with our BB-IS coder with 50 particles (denoted as BB-IS (50)). We used a 2-stage amortized-iterative inference similar
to Yang et al. (2020) and each stage contained 25 optimization steps. In the first stage, both the local variational parameters
of the latent and the hyperlatent were optimized with the rate-distortion objective. In the second stage, the local variational
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parameters of the latent were fixed while those of the hyperlatent were optimized with the rate term (i.e., negative ELBO) of
the rate-distortion objective. The learning rate was tuned in the range {1 x 10725 x 1073, 1 x 1072}, This method is
denoted as BB-ELBO-IF (50). We observed that BB-ELBO-IF (50) improved over BB-ELBO but underperformed our BB-IS
(50) in terms of rate-distortion trade-off. We also combined BB-IS (50) with 50 optimization steps of amortized-iterative
inference using negative IWAE as the rate term (denoted as BB-IS (50)-IF (50)), which we found to further improve the
performance and achieved more than 20% rate savings in some setups.
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Figure 15. The lossy compression performance on EMNIST-MNIST test set with models trained on EMNIST-MNIST training set. (a)
& (b): The rate-distortion curve and the rating saving curve for comparing BB-IS and BB-ELBO. Our BB-IS coder achieves better
rate-distortion trade-off than BB-ELBO. (c) & (d): The rate-distortion curve and the rating saving curve with amortized-iterative inference.
With fixed computation budget, BB-1S outperforms amortized-iterative inference and can be combined with it to further improve the
performance. We measure the rate savings (%) relative to BB-ELBO for fixed distortion values.

We also evaluated the lossy compression performance in a transfer setting where we used models trained on the EMNIST-
MNIST to compress EMNIST-Letters test set, as in Fig. 16. We observed that the improvement of BB-IS was not as
significant as on the EMNIST-MNIST test set. This might be due to that although BB-IS could improve the rate term over
BB-ELBO more on the EMNIST-Letters test set (as shown in Table 2 for lossless compression), the distortion term of the
model trained with IWAE might not generalize well on the dataset of a slightly different distribution.



Monte Carlo Bits-Back Coding

—e— BB-ELBO 101 —e— BB-ELBO
0351 —+— BBIS (5) —— BB-IS (5)
—=— BB-IS (50) 8] =@ BB-IS (50)
0.30 )
8 @ 6]
= g
30251 2
4 Co iy
[a) 2
0.201 &
2..
0.15
0..
0.05 0.10 0.15 0.20 025 0.125 0150 0.75 0200 0225 0250 0275 0.300
Net Bitrate (bits/dim) Distortion
(@) ()
16
0.35 1 —e— BB-ELBO _{F\ A —e— BB-ELBO
—e-- BB-ELBO-IF (50) 144 = Y \\ —e-- BB-ELBO-IF (50)
030 N —=— BB-IS (50) 1] S —#— BB-IS (50)
' y =m- BB-IS (50)-IF (50) IS a3 4 =—®= = BB-IS (50)-IF (50)
£ % 104 B
= 0.25 1 '5 8
2 *
o] P 61
0.20 s,
0.15 2
04
0.05 0.10 0.15 0.20 025 0.125 0150 0175 0200 0225 0250 0275 0.300
Net Bitrate (bits/dim) Distortion
(©) (Y]

Figure 16. The lossy compression performance on EMNIST-Letters test set with models trained on EMNIST-MNIST training set. We
observe similar results as Fig. 15, but the improvement of BB-IS is not as significant as Fig. 15 in this transfer setting. (a) & (b): The
rate-distortion curve and the rating saving curve for comparing BB-IS and BB-ELBO. (c) & (d): The rate-distortion curve and the rating
saving curve with amortized-iterative inference.



