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Abstract

We show that the gradient estimates used in
training Deep Gaussian Processes (DGPs) with
importance-weighted variational inference are
susceptible to signal-to-noise ratio (SNR) issues.
Specifically, we show both theoretically and via
an extensive empirical evaluation that the SNR
of the gradient estimates for the latent variable’s
variational parameters decreases as the number
of importance samples increases. As a result,
these gradient estimates degrade to pure noise if
the number of importance samples is too large.
To address this pathology, we show how doubly-
reparameterized gradient estimators, originally
proposed for training variational autoencoders,
can be adapted to the DGP setting and that the
resultant estimators completely remedy the SNR
issue, thereby providing more reliable training.
Finally, we demonstrate that our fix can lead to
consistent improvements in the predictive perfor-
mance of DGP models.

1. Introduction

Deep Gaussian Processes (DGPs) are a powerful class of
probabilistic models for supervised learning tasks (Dami-
anou & Lawrence, 2013; Bui et al., 2016; Salimbeni &
Deisenroth, 2017). They are a multi-layer hierarchical gen-
eralization of conventional Gaussian processes (GPs, Ras-
mussen & Williams (2006)), themselves flexible non-
parametric models that have seen a wide range of appli-
cations to a variety of machine learning problems (Mockus,
1994; Hensman et al., 2014; Wilson & Nickisch, 2015).
DGPs aim to retain the advantages of GPs—such as their
well-calibrated uncertainty estimates and robustness to over-
fitting—while also overcoming their limitations—such as
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Figure 1. Signal-to-noise ratio (SNRs) in IWVI for DGPs under the
standard gradient estimators (REG) and our improved estimator
(DREG) as a function of the number of importance samples (K).
The different lines show SNRs for four different variational param-
eters. As K increases, the SNR of REG decreases and the SNR of
DREG increases.

the restricted form of their predictive distribution. In
essence, DGPs are an even more general and powerful class
of models than traditional GPs (Damianou & Lawrence,
2013), allowing us to combine multi-layer function com-
position with a principled Bayesian approach to obtaining
predictive uncertainties.

Unfortunately, this modeling power comes with a caveat:
Exact inference in DGPs is intractable and one has to rely on
approximate inference schemes to train them. Typically this
is done using stochastic variational inference (SVI) meth-
ods (Hoffman et al., 2013; Salimbeni & Deisenroth, 2017),
which recast the inference problem into that of stochastic
optimization of an evidence lower bound (ELBO) with re-
spect to the parameters of an approximating distribution.
The resulting SVI-based approaches to training DGPs lead to
state-of-the-art performance on a wide range of challenging
problems requiring uncertainty quantification (Salimbeni &
Deisenroth, 2017).

Despite the successes of these approaches, Salimbeni et al.
(2019) find that they do not perform well when applied
to DGP models that have been extended to include latent
variables that allow them to represent non-Gaussianity and
multimodality in data. To address this, they propose an
importance-weighted variational inference (IWVI; Burda
et al. (2016); Mnih & Rezende (2016); Domke & Sheldon
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(2018)) approach that provides both a tighter variational
bound and lower-variance gradient updates by importance
sampling the latent variables. They show that this in turn
leads to learning improved predictive distributions.

In this paper, we highlight a potential shortcoming of such
approaches: Tightening the bound can cause a deterioration
in the signal-to-noise ratio (SNR) of the gradient estimates
associated with the variational parameters of the latent vari-
ables (see Figure 1 for a demonstration). Focusing on the
particular example of IWVI, we see that even though using
more importance samples both tightens the bound and re-
duces the variance of the gradients, it can actually increase
the relative variance of the gradients estimates compared to
the true gradient, which is itself also tending to zero as we
use more samples. This weaker gradient signal leads to diffi-
culties optimizing the variational parameters, a phenomenon
analogous to known issues in training the inference networks
of variational autoencoders (Rainforth et al., 2018b). We
demonstrate this SNR degradation both theoretically in the
limit of using a large number of samples, and empirically
for samples sizes often used in practice.

To address this degradation, we show how the doubly-
reparameterized gradient (DREG) estimator of Tucker et al.
(2019) can be adapted to the DGP IWVI bound. The theoret-
ical and empirical SNR of the resulting gradient estimator
increases for all parameters as the number of importance
samples is increased, thereby providing more accurate gra-
dient updates in the training of DGPs with latent variables.
It can be used as a drop-in replacement for the standard
estimator at no computational or other cost. Empirically,
we find that this fix can lead to improvements in predictive
performance. In particular, we show that when the quality
of latent variable variational approximation is important
for prediction, then our estimator typically improves perfor-
mance. !

To summarize, our core contributions are as follows:

e We highlight the presence of a signal-to-noise ratio
(SNR) issue in the training of DGPs with TWVT as the
number of importance samples increases;

e We nullify this SNR issue by introducing a doubly-
reparameterized gradient (DREG) estimator;

e We quantify the detrimental effect of this SNR deterio-
ration on predictive performance, and show that our fix
leads to predictive distributions conferring statistically
significant improvements.

'Our code is available at https://github.com/
timrudner/snr_issues_in_deep_gps.

2. Preliminaries & Related Work
2.1. Latent Deep Gaussian Process Models

Let X = [ml,
dimensional input data points and let Y = [y1,...,yn
denote a collection of N P-dimensional noisy observations.
A DGP model is defined as the composition

Yn = fEFEDCLFD(2))..) + en,

where ¢,, ~ N(0,021p), L is the number of layers, and
each f()(f(*~1)) in the composition denotes a GP evaluated
at the draws from the previous layer, -1 . As per (Sal-
imbeni et al., 2019), we further augment this model with
a D-dimensional latent variable ~ which extends the input
space. The resulting latent-variable DGP model is given by

Yo = FOSED (e f D ([n, 2a])) o) + s

where €, ~ N(0,0%Ip) and z, ~ N(0,Ip). For sim-
plicity of exposition, our notation here and throughout the
paper assumes a DGP with two GP layers, f(1) and f(?), but
emphasize that our results apply to DGPs of any depth (in-
cluding latent shallow GPs) and we include experiments that

use more than two layers. Assuming a Gaussian likelihood

with scalar noise o2,

p(yn | fY, FP, 25 20)
= N | fPUD ([0, 20])), o2 Ip),

the model then has joint distribution

PWn fO, f P, 25 20)

=p(un | ), FP 20s20) p(FP 1) p(F)p(20),
f(l) ~ gp(f(l) |m1,K1),
F& ~ GP(fP | ma, K),

zn ~ N(0,1p).

,zn]" denote a collection of N D-
T

where

Here, m; () and mz(-) are mean functions, and K1 (-, -) and
K>(+,) covariance functions. For simplicity of notation,
we will drop any subscripts from identity matrices in the
remainder of the paper.

2.2. Importance-Weighted Variational Inference for
Latent-Variable Deep GPs

Posterior inference in DGP models is generally intractable,
which necessitates the use of approximate inference meth-
ods. For the DGP model presented above, Salimbeni et al.
(2019) proposed an importance-weighted variational infer-
ence (IWVI) approach, inspired by Burda et al. (2016) (see
Section 2.3), to obtain a tractable evidence lower bound
(ELBO) that can be used to learn a variational approxima-
tion of the posterior. Specifically, they present a partially-
collapsed ELBO that provides both lower-variance estimates
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and a tighter bound as the number of importance samples
K increases, namely,

K (1)
def 1 -F(xnvy’na fk ,Zn7k)p(zn,k:)
n k=1 ’

- ZZ:DKL(q(f“)) H p(f"), (1)
(=1

where

f(mny Yn, fk(;l)a Zn,k)

def

= exp (EQ(ﬂ?)) [lng(yn | f(Q)’ flgl)’ Z”k)D ’

which can be calculated analytically for a Gaussian
likelihood; the expectation is over ( fl(:ll)(,zml: ), with
Znk ~ qp(2n) and p(z,) = N(0,I); and f,gl) are samples
from the variational distribution ¢( él) ). See Appendix A
for further details.

2.3. Importance Weighted Autoencoders and Their
Signal-to-Noise Ratio Issues

Burda et al. (2016) propose importance weighted autoen-
coders (IWAEs) as a means of providing a tighter variational
lower bound for VAE training given by

N

. 1 K
Liwag & anl E [log e Zk:l wnk] @

where  wy, k & P6(@n, Zn k) ,
46 (Zn.k | Tn)

K is the number of importance samples, N is the number
of data points, pg (2, 2. ) represents the generative model,
44 (#n,k | Tn) the amortized inference network, and the ex-
pectation is over H,f;l 44 (%n.k | Tr). Training is done by
optimizing Liwag With respect to both € and ¢ using stochas-
tic gradient ascent. Assuming that reparameterization of
Zn,k 10 Liwag 18 possible (Kingma & Welling, 2013), and
that it is possible to take mini-batches of the data, the gradi-
ent estimates for data point x,, are given by

AIWAE w 1 o 1 o
i (0, 0) = Vi > Vo log Ve > Wamak
m=1 k=1

where  zy, Y q¢(2n | Tn)

and M is the number of samples used for estimation of the
outer expectation. Burda et al. (2016) show that increasing
K provably tightens the variational lower bound Liwag,
and Rainforth et al. (2018a) confirm that it also reduces the
variance of the resulting estimates.

However, Rainforth et al. (2018b) show that the relative
variance of the gradient estimates with respect to ¢ actually

increases with the number of importance samples K: As
K increases, the expected gradient, E[Aiy]’\*f i (9)], tends
to zero faster than its standard deviation decreases. To
formalize this, they introduce the notion of a signal-to-noise
ratio (SNR)

SNRIVAF . (1) = = [An ()]
| Var [ANE (0]
where 1) € {¢, 0}, and show that
SNRIAF (0) = O (VME)
SNRYAE(6) = O (V/ATTK)

such that increasing K decreases the SNR of the inference
network, thereby potentially removing its ability to train
effectively. As well as being problematic in its own right,
this pathology can further have a knock-on effect on the
training of the generative network.

b

3. Signal-to-Noise Issues for Deep GPs

Given the similarity between the variational bounds in
IWAEs and IWVI for DGPs, it is natural to ask whether the
SNR issues in IWAEs also occur in IWVI for DGPs. We note
here that for IWAEs, this pathology affected the encoder
(i.e., ¢) but not the decoder (i.e., 8) and so it is not imme-
diately obvious how these results will translate; SNR issues
are not a universal for all gradients of importance-weighted
variational bounds.

Inspecting Equation (1), we see that the DGP setting shares
a number of similarities, but also features some key differ-
ences to the IWAE setting. On one hand, both L (Equa-
tion (1)) and Liwag (Equation (2)) contain expectations over
a logarithm of an importance sampling estimate and both
make use of a variational approximation. On the other
hand, Lk contains an additional KL term, preventing it
from ever achieving a tight bound even when the variational
approximation over the latent variable is optimal (Salim-
beni et al., 2019). Furthermore, it contains the function
F( Xy Yn,s flgl), Zn,k) instead of a plain likelihood function,
and the outer expectation contains additional stochasticity
from the DGP layers. More specifically, the posterior pre-
dictive distribution of each layer needs to be inferred and
the approximations produced are functions of the layer’s
hyperparameters, its variational parameters, and the previ-
ous layer’s outputs. Establishing the implications of these
differences will be key to unearthing whether DGPs suffer
from SNR issues.

To assess if SNR deterioration of the gradient estimates oc-
curs for Ly as K increases, we must first identify which
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gradients are potentially problematic. Considering Equa-
tion (1), it is relatively straightforward to see that, analo-
gously to the decoder in a VAE, the gradients for the DGP
hyperparameters will remain non-zero even as K — oo and
thus will not be susceptible to SNR issues. Similarly, it
is reasonably straightforward to show that the parameters
of g(f©®) will not be problematic. However, there is a
potential for problems to occur for the parameters of the
variational distribution over the latent variables, ¢4 (z), with
variational parameters ¢.

It turns out that such a problem does indeed occur for the
gradient estimates w.r.t. ¢. To demonstrate this, the first key
step is to reparameterize all of the stochastic quantities in the
variational bound in Equation (1). We can then express the
M -sample Monte Carlo estimate for the gradient associated
with a single data point x,, as

ADGP der 1 - 1«
n,M,K(¢) = M Z v¢ log ? Z Wn,m,k» (3)
m=1 k=1

def ]:(xnv Yn, f'r(r7,17)k7 me,k)p(zn,m,k:)
where wy, ;=
Q¢'(Zn7m,k)

Zn,m,k ™~ %(Zn), fy(yi)}g ~ Q(f(l))

)

We are now ready to present our main result which shows
that TWVT for DGPs suffers from an SNR issue analogous to
that seen in TWAEs.

Theorem 1 (Asymptotic SNR in IWVI for DGPs). Let
Wy, m,k be as defined in Equation (3). Assume that when
M = K =1, the expectation and variance of the gradients
estimates in Equation (3) are non-zero, and that the first
Sfour moments of wy, 1,1 and V s wy, 1,1 are all finite and that
their variances are also non-zero. Then the signal-to-noise
ratio of each APSGE . (¢) converges at the following rate
DGP

SNR;, a1,k (9)

Vg Var [wy1,1] + O (%) 4)

22, VE\/Var Vg w1l + 0 ()
-0 (VM/E),

where Z, < Elwy1,1] is a lower bound on the marginal
likelihood of the n'™ data point.

Proof. We start our proof by noting that the average of the
importance weights w,, ,, i for a given n and m,

g w1 K
n,m,K K kel

is an unbiased Monte Carlo estimator of Z,, as follows

Wn, m,k (5)

E[ZTLJTL,K] = E[wngm,l] = E[wn,l,l] - Zn (6)

Moreover, we also have limg o0 Zpm,x = Zn, V0, m.

The key to establishing that the SNR pathology occurs in
IWVI for DGPs, is now to show that Z,, is independent of ¢,
the parameters of the variational distribution over the latent
variable z. For IWAEs this was trivially true by construc-
tion: The expected importance weight is just the marginal
likelihood of the model. In the DGP case, however, the
dependence of Z,, on ¢ is not immediately obvious since
the dependence of F(z,,, yn, 1), z) on z is more compli-
cated than in the TWAE case. In particular, in IWVI for DGPs,
z acts as an input to the approximate posterior predictive
distribution of the DGP layer f(l), which itself needs to be
inferred and with respect to which the expectation over the
importance weight in Equation (6) is taken.

In short, we need to demonstrate that the following condition
holds despite the dependence of ¢(f(!)) on z:

Condition 1. V4 Z,, = 0 Vn.

To examine if this condition is indeed satisfied in IWVT for
DGPs, the first hurdle that we need to overcome is that f(l)
and f 2) represent stochastic functions, which means it is
difficult to reason about their gradients or concretely estab-
lish the dependency relationships between variables. To get
around this, the key step is to realize that we can reparame-
terize this stochasticity and then view the bound from the
perspective of the pushforward distribution induced by pass-
ing an input—latent pair through the resulting realizations of
the functions. Specifically, we have, for an arbitrary z,

f(l) (.’137“ Z) = f:(G,l'n, va(l))
aer  fO (1) e (1)
=u (Z‘n,Z,’(/) )+€@ by (T, 2,7 )’

(7

where f(-) is a deterministic function; e ~ A(0,1); /,Lf(l),
%/ denote the mean and covariance functions of the pre-
dictive distribution over f(1), respectively; and /(") denotes
the variational parameters associated with f(1). We thus
have

F (@, yn, fle, 20, 2,0D))p(2)
q4(2)

= EP(Z)P(e) |:‘7:(xnv Yn,s f(é, Tn, 2, 1/}(1))):| .

Zn = Eq,(2)p(e) l

From here it is now straightforward to see that V4 Z,, = 0
as the final form of Z,, above has no direct or indirect de-
pendency on ¢. We thus see that Condition 1 is satisfied.

This now allows us to invoke the proof of Rainforth et al.
(2018b, Theorem 1) because a) our gradient estimator
in Equation (3) is equivalent to that of IWAE except in the
distribution of wy, 1, and b) the only VAE-context specific
part of their proof is in showing that Condition 1 holds.
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Figure 2. Histograms of REG (a) and DREG (b) estimates for varying numbers of importance samples, K, with K = 1,10, 100. The
solid vertical lines denote the mean of the empirical distributions of gradient estimates, and the dashed vertical lines mark zero. The red
curves denote Gaussian probability densities with the same mean and standard deviation as the empirical distributions. Note that we have
truncated the histograms for X' = 1 in order to use a consistent x-axis for each row, see Figure 8 (in Appendix F) of a copy of this figure

with a separate x-axis for each value of K.

Starting from equations (29) and (31) in their proof and
using V4 Z = 0, we can now derive the mean and variance
of the gradient estimator of a single data point (i.e. for a
particular n) as

BIANS, 1 (8)) = 5tz Vo (Varfwn, 1) +O(K )
1 O(K*
Var{ AP, (6] = T B+ 20 )

Because w,, 1,1 has been reparameterized, we also have
E[(V¢wn’1,1)2] = Var [V wy,,1,1]. Substituting these into
the definition of the SNR yields

—sxzz Vo (Var[wy,11])+O(K2)

\/WZ% Var[Vd,wn’l,l] + O(KT_Q)

SNRY% k (9)

from which Equation (4) follows by straightforward manip-
ulations. 0

Remark 1. Note that the additional results of Rainforth
et al. (2018b, Section 3.2), which show that the SNR im-
proves as more data points are used in the gradient calcula-
tion for IWAEs (namely as O(v/N)), do not directly carry
over to the DGP setting because fV) induces correlations
between the different AL} 1 ().

3.1. Empirical Confirmation

We now investigate the signal-to-noise ratio of the repa-
rameterization gradient (REG) estimates in IWVI for DGPs

empirically, and show that the empirical results are consis-
tent with Theorem 1.

We begin by examining the behavior of the gradient esti-
mates for the parameters ¢ as we increase the number of
importance samples, K, when training a two-layer latent-
variable DGP using TWVI. For illustrative purposes, we start
by investigating the convergence behavior of the gradient es-
timates on an easy-to-visualize synthetic dataset specifically
designed to exhibit non-Gaussianity in the target values.
We train the DGP until the variational parameters are near
convergence and then take 10,000 gradient samples for
each parameter in ¢ using the reparameterization gradient
estimator. For further details about the experiment setup
and a visualization of the dataset, see Appendix E. In Fig-
ure 2a, we present histograms of the empirical distribution
of gradient estimates for a single (representative) variational
parameter of qg.

As we would expect by the Central Limit Theorem and
knowledge that Condition 1 is satisfied, the mean and the
standard deviation of the distributions of gradient estimates
approach zero as K increases. However, the means of
the gradient estimates appear to be approaching zero more
rapidly than their standard deviations, which would suggest
a decrease in the SNR as K increases. To assess if such
a deterioration in fact occurs, we compute the mean SNR
across parameters ¢ for varying K and multiple DGP depths
on a range of real-world datasets. We collect the resulting
mean SNRs in the top row of Figure 3, and find that—across
datasets and DGP depths—the SNR consistently approaches
zero as K increases, confirming that IWVI for DGPs does
indeed suffer from SNR deterioration.
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Figure 3. SNR of reparameterization (top row) and doubly reparameterized (bottom row) gradient estimates for shallow GPs and DGPs of
2-4 layers on a selection of real-world datasets. The labels on the x-axes correspond to the depths of the models. The bars for each depth
show the SNR for increasing numbers of importance samples, K = 1,10, 100, 1000, from left to right. In the top row, for (D)GPs of any
depth, larger K tends to correspond to lower SNRs. In the bottom row, for (D)GPs of any depth, larger K tends to correspond to higher
SNRs. Note the difference in y-axis scales across plots in the bottom row. See Appendix E for further experiment details.

4. Quantifying & Fixing the SNR Pathology

In the previous section, we demonstrated that IW VI for DGPs
suffers from SNR deterioration as the number of importance
samples is increased. This result leads to two questions: (i)
Can we construct an alternative estimator that avoids these
issues; and (ii) will fixing the SNR issue lead to improved
predictive performance?

To address the former question, we adapt the double-
reparameterized IWAE estimator of Tucker et al. (2019) to
DGP models and show that the resulting DREG estimator
completely remedies the SNR issue. We then use this estima-
tor to asses the impact SNR issues have had on the quality
of the DGP’s posterior predictive distribution. We consider
a selection of datasets used in Salimbeni et al. (2019) and
find that our fix often leads to a statistically significant
improvement in predictive performance for IWVI in DGPs.
Specifically, we find that on tasks where fitting the data
well requires a predictive distribution with non-Gaussian
marginals, such that the latent variables are necessary, fixing
the SNR deterioration improves the predictive performance.

4.1. Avoiding SNR Deterioration in Deep GPs

To avoid SNR deterioration, we extend prior work to derive
a doubly reparameterized gradient (DREG, (Tucker et al.,
2019)) estimator for IWVI in DGPs. This gradient estimator
is equal to the REG estimator (i.e. Equation (3)) in expec-
tation, but does not suffer from asymptotic deterioration of
the SNR as K increases. Assuming that reparameterization
of q(zy,) in L is possible, the DREG estimator of Ly at a

single data point x,, can be expressed as (see Appendix D
for the derivation)

ARGk (9)
M K 2
défi Z Z Wn,m,k alog Wn, m,k azmm,k
M =S Z]K:1 Wnm,j O mk o¢

®)

where w,, .,, . is as before. As we explain in Appendix D,
analogously to the results of Tucker et al. (2019), the SNR
of this gradient estimator scales as O(v/K) instead of
O(1/VK), that is, the SNR improves as K increases. The
DREG estimator can be used as a drop-in replacement of
the REG estimator and is guaranteed to be at least as good
or better without incurring additional computational cost
(Tucker et al., 2019).2

To show that the DREG estimates of the latent-variable vari-
ational parameters do not suffer from SNR deterioration
in practice, we revisit the empirical investigations carried
out in Section 3.1 and compute the SNR of the gradient
estimates for an increasing number of importance samples
across datasets and DGP depths. Figure 3 shows the resulting
SNRs. We find that the effect of increasing K for REG and
DREG is markedly different: Unlike for the REG estimator,
the DREG estimate SNR values increase with K.

The difference between the SNRs of the two gradient es-
timators is explained by the speed at which the mean and

2Our implementation of the DREG estimator follows https :
//sites.google.com/view/dregs.
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Figure 4. Comparison of predictive performance of 2-layer DGPs with a learned variational distribution over the latent variable (left of
each pair, blue) and a variational distribution over the latent variable fixed to the prior (right of each pair, green). The shaded area shows
the range of test log-likelihoods over 10 train—test splits, with the width indicating the distribution over the range. The central horizontal

lines in each plot show the mean.

standard deviation of the empirical distributions over the gra-
dient estimates converge to zero as K increases. Figure 2b
shows the empirical distribution of DREG estimates. As can
be seen in the histograms, the means for K = 1,10, 100
decrease as K increases, but the standard deviations of the
empirical distributions of DREG estimates are significantly
smaller than those of the empirical distributions of the REG
estimates shown in Figure 2a. This difference is particularly
striking for ' = 100, where the DREG estimates are so
peaked that they are difficult to visualize without changing
the z-axis range. The upshot of the results in Figures 2
and 3 is that the DREG estimator completely remedies the
SNR issue exhibited by the REG estimates.

4.2. Does the SNR Issue Affect Training and Predictive
Performance?

Armed with the DREG estimator, we are now able to investi-
gate the impact of correcting the SNR deterioration on the
training and test performance of the model. To do so, we
consider a selection of datasets for which we either expect
or do not expect the SNR issue to lead to a deterioration in
predictive performance. In particular, we assess the impact
of SNR deterioration on two datasets where fitting the data
well requires a predictive distribution with non-Gaussian
marginals (‘forest’ and ‘solar’), two datasets which can
be fit well with just Gaussian marginals (‘winewhite’ and
‘winered’), and two datasets where a predictive distribu-
tion with non-Gaussian marginals could potentially help
a modest amount (‘pol’ and ‘power’). By construction,
latent-variable DGPs are able to learn highly non-Gaussian
marginals and so learning a variational distribution over
the latent variable should positively affect predictive perfor-
mance whenever highly non-Gaussian marginals lead to a
better fit of the data. Hence, we would expect the effect of
a deterioration in the SNR of the gradient estimates to be
highest whenever this is the case.

In Figure 4, we present the plots of test log-likelihoods for
latent-variable DGPs with learned variational distributions
over the latent variable (left of each pair, in blue) and with

winewhite

forest

Figure 5. Marginal predictive distributions of 2-layer DGPs with a
learned variational distribution over the latent variable (top row,
blue) and a variational distribution over the latent variable fixed to
the prior (bottom row, green) for randomly selected test points from
the ‘forest’ and ‘winewhite’ datasets. We note that learning the
variational distribution helps fitting a better non-Gaussian marginal
distribution for ‘forest’ (as evidenced by the test log-likelihoods
shown in Figure 4), whereas for ‘winewhite’ the marginal is Gaus-
sian and fit equally well in both cases.

latent variable distributions fixed to standard Gaussian pri-
ors (right of each pair, in green). As can be seen from the
plots, the importance of learning a variational distribution
for the latents sometimes has a significant effect on predic-
tive performance, but sometimes has no noticeable effect at
all. In Figure 5, we present sample marginal distributions
of the best-performing models, which indicate that learning
a distribution over the latents, g, (z), has a larger effect the
more non-Gaussian the predictive distribution’s marginals
need to be. We thus expect our SNR fix to be helpful for
‘forest” and ‘solar’, but not for ‘winewhite’ and ‘winered.’

To test this, we train latent-variable DGPs with both REG and
DREG estimators on the six datasets shown in Figure 4 and
compare the resulting train ELBOs and test log-likelihoods.
For these experiments, we consider a two-layer DGP with the
hyperparameters that directly affect the SNR—the number
of importance samples K and the minibatch size—set to 50
and 64, respectively. Table 1 shows a summary of the results.
We see that our DREG estimator provides improvements for
the datasets where the latent variational approximation is
clearly important (‘forest’ and ‘solar’), while performing
similarly to the REG estimator when it is not.

To assess whether the differences are statistically significant,
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Table 1. Comparison of predictive performance of two-layer DGPs trained with REG and DREG estimators. We choose K = 50 to ensure
the SNR deterioration occurs, which Figure 3 shows is the case for K > 10. For each dataset, we provide the mean ELBOs on the training
dataset and log-likelihoods on the test dataset over 20 random train-test splits as well as the corresponding standard errors. Boldface
indicates higher means. The rightmost column shows p-values for one-sided Wilcoxon signed-rank hypothesis tests on the log-likelihoods,

as described in Section 4.2.

Train ELBO (K = 50)

Test log-likelihood

Dataset REG DREG REG DREG Wilcoxon Test
Mean SE Mean SE Mean SE Mean SE p-value

forest -97.56 (11.04) -92.53 (10.42) 0.59 (0.08) 0.63 (0.08) 0.1%
solar 1657.41 (27.56) 1707.75 (42.20) 2.33 (0.17) 2.57 (0.11) 2.8%

pol 34610.49 (66.18) 34665.08 (70.34) 2.99 0.01) 2.99 0.01) 24.7%

power 1510.50 (10.62) 1515.60 (10.16) 0.21 (0.0D) 0.21 (0.0 67.3%
winewhite -4701.26 4.92) -4703.14 (4.98) -1.11 0.01) -1.11 0.01) 50.0%
winered 447.91 (249.81) 314.75 (216.32) 0.57 0.27) 0.61 (0.20) 41.1%
Across Datasets: 1.2%

we perform Wilcoxon signed-rank tests for each dataset
individually as well as across datasets (Wilcoxon, 1992).
This is chosen in preference to a more conventional ¢-test
because of the highly non-Gaussian nature of the variations
across seeds, such that the criteria for a ¢-test to be represen-
tative are not met. Specifically, for each dataset and across
datasets, we test the null hypothesis that the difference in
test log-likelihoods under REG and DREG for each random
seed is zero with the alternative hypothesis that the test log-
likelihood under DREG is greater than the test log-likelihood
under REG. We present the results from this one-sided hy-
pothesis test in Table 1 (rightmost column). As can be seen
from these results, the p-values for the datasets on which
learning a variational distribution over the latent variable
resulted in a better fit of the data (see Figure 4) are 0.1% and
2.8%, indicating that we can reject the null hypothesis for
both at the standard 5% confidence level. While the statisti-
cal significance of the improvement in log-likelihood under
DREG is obfuscated by large standard errors across train-
test splits, Figure 6 shows that DREG leads to a consistent
improvement in predictive performance across splits when
the variational distribution is important. We further observe
that, as expected, when the variational distribution is not
important for obtaining a good fit, there is no statistically
significant change.

DREG I REG ~

0.0 1.0

. 0.0
Test Log-Likelihood ¢

gDREG - gREG

0.1

Figure 6. Left: Test log-likelihoods across seeds on the ‘forest’
dataset, ordered from most negative to most positive. Right: Cor-
responding absolute difference in test log-likelihood between REG
and DREG across seeds.

Finally, we find that the improvement in predictive perfor-
mance under DREG across datasets for even a moderately
small number of importance samples (KX = 50) is statisti-
cally significant at the 5% confidence level (with a p-value
of 1.2%), which is expected since, as Table 1 shows, fix-
ing the SNR issue with the DREG estimator either improves
predictive performance or does not affect it at all.

We finish by noting that that Salimbeni et al. (2019) already
provided comparisons to other inference approaches for
DGPs (Salimbeni & Deisenroth, 2017; Havasi et al., 2018)—
along with other regressors—and found that using TWVI
for DGPs with the REG estimator produced state-of-the-art
predictive performance. It thus follows that our approach
is able to further improve upon the state of the art for re-
gression modeling and in especially well-suited for data that
requires complex, highly-Gaussian predictive marginals.

5. Conclusions

We have shown that the gradient estimates used in training
DGPs with IWVI are susceptible to signal-to-noise ratio is-
sues: We demonstrated theoretically that the SNR for the
latent-variable variational parameters increases as more im-
portance samples are used, and confirmed this result em-
pirically. We have further shown how this pathology can
be remedied by adapting the doubly reparameterized ap-
proach of Tucker et al. (2019) to the DGP setting, resulting
in a gradient estimator whose SNR increases with the num-
ber of importance samples for all variables. This estimator
can be used as a drop in replacement without incurring any
significant increase in computational cost, implementation
challenges, or other negative effects. We find that it can
provide improvements in predictive performance, even for
small numbers of importance samples, when variational ap-
proximation of the latents is important, without damaging
performance when it is not.
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