
Simple and Effective VAE Training with Calibrated Decoders

A. Additional experimental results
In this section, we provide more qualitative results in Fig-
ures 7, 6, 8, 5 as well as a graph showing the convergence
properties of the variance for different models in Fig. 9. In
order to validate our method with a different architecture,
we also report performance of different decoders with a
small 5-layer convolutional architecture on the CelebA and
CIFAR dataset in Table 3. We see that the ordering of the
methods is consistent with this smaller architecture.

B. Experimental details
For the small convolutional network test on SVHN, the
encoder has 3 convolutional layers followed by a fully con-
nected layer, while the decoder has a fully connected layer
followed by 3 convolutional layers. The β was tuned from
100 to 0.0001 for β-VAE. The number of channels in the
convolutional layers starts with 32 and increases 2 times
in every layer. The dimension of the latent variable is 20.
Adam (Kingma & Ba, 2015) with learning rate of 1e-3 is
used for optimization. Batch size of 128 was used and the
models were trained for 10 epochs for the experiments with
the small convolutional network. We additionally evaluate
this small convolutional network on CelebA, CIFAR, and
Frey Face2 datasets in Table 3. Unit Gaussian prior and
Gaussian posteriors with diagonal covariance were used.
We have attempted to improve the performance of base-
lines using KL annealing, but didn’t find any significant
improvement. For the larger hierarchical VAE, we used the
official pytorch implementation of (Maaløe et al., 2019). We
use the baseline hierarchical VAE with 15 layers of latent
variables, without the top-down and bottom-up connections.
We train the models for 30 thousand steps on CIFAR and
40 thousand steps on CelebA, with batch size of 48. For
the hierarchical VAE and the SVG-LP model, we use the
default hyperparameters in the respective implementations.
We use the standard train-val-test split for all datasets. All
models were trained on a single high-end GPU. We use the
official PyTorch implementation of the Inception network
to compute FID. All methods are compared on the same
hyperparameters.

C. Empirical analyzis of approximations for
optimal σ-VAE

The optimal σ-VAE requires computing the following esti-
mate of the variance

σ∗ = arg max
σ

Ex∼DataEq(z|x)
[
ln p(x|µθ(z), σ2I)

]
= Ex∼DataEq(z|x)MSE(x, µθ(z)). (11)

2Available at https://cs.nyu.edu/˜roweis/data.
html

This requires computing two expectations, with respect to
the data in the dataset, and with respect to the encoder
distribution. We use MC sampling with one sample per
data point to approximate both expectations. Inspired by
common practices in VAEs, we use one sample per data
point to approximate the inner expectation. On SVHN, the
standard error of this approximation is 0.26% of the value
of sigma. We further approximate the outer expectation
with a single batch instead of the entire dataset. On SVHN,
the standard error of this approximation is 2% of the value
of sigma. We see that both approximations are accurate in
practice. The second approximation yields a biased estimate
of the evidence lower bound because the same batch is used
to approximate the variance and compute the lower bound
estimate. However, this bias can be corrected by using a
different batch, or with a running average of the variance
with an appropriate decay. This running average can also be
used to reduce the variance of the estimate and to achieve
convergence guarantees, but we did not find it necessary in
our experiments.

D. Variational per-image variance
The per-image σ can be interpreted as a variational estimate
as in Stirn & Knowles (2020). An additional variational
distribution for the σ parameter q(σ|x) is added as well as a
hyperprior p(σ). Our method greedily optimizes it to maxi-
mize the reconstruction term of the objective, which incurs
a penalty term in the form of an additional KL divergence.
Using this derivation it is possible to evaluate per-image
optimal σ-VAE by solving for optimal σ on test images, as
the penalty term ensures fair evaluation:

ln pθ(x) ≥ Eqφ(z,σ|x) [ln pθ (x;µθ(z), σ)] +

+ DKL(qφ(z|x)||pθ(z)) + DKL(qφ(σ|x)||pθ(σ)). (12)

Further, using this derivation, it is possible to create a better
strategy for setting the optimal sigma by optimizing it with
Eq. (12) instead of just the reconstruction loss.

E. Alternative Decoder Choices
We describe the alternative decoders evaluated in Table
2: using the bitwise-categorical, and the logistic mixture
distributions.

Bitwise-categorical VAE While the 256-way categorical
decoder described in Section 3.2 is very powerful due to
the ability to specify any possible intensity distribution, it
suffers from high computational and memory requirements.
Because 256 values need to be kept for each pixel and
channel, simply keeping this distribution in memory for

https://cs.nyu.edu/~roweis/data.html
https://cs.nyu.edu/~roweis/data.html

Simple and Effective VAE Training with Calibrated Decoders

Figure 5. Samples from the σ-VAE (left) and the Gaussian VAE (right) on the SVHN dataset. The Gaussian VAE produces blurry results
with muted colors, while the σ-VAE is able to produce accurate images of digits.

Figure 6. Samples from the σ-VAE (left) and the Gaussian VAE (right) on the CelebA dataset, images cropped to the face for clarity. The
Gaussian VAE produces blurry results with indistinct face features, while the σ-VAE is able to produce accurate images of faces.

Simple and Effective VAE Training with Calibrated Decoders

Figure 7. Samples from the σ-VAE (top) and the Gaussian VAE (bottom) on the BAIR dataset. Sampled sequences conditioned on two
initial frames are shown, and the ground truth sequence is shown at the top. The Gaussian VAE produces blurry robot arm texture and the
arm often disappears towards the end of the sequence, while the σ-VAE is able to produce sequences with realistic motion and model the
details of the arm texture, such as the gripper.

Simple and Effective VAE Training with Calibrated Decoders

Figure 8. Samples from the σ-VAE (left) and the Gaussian VAE (right) on the challenging CIFAR dataset. The Gaussian VAE produces
blurry results with muted colors, while the σ-VAE models the distribution of shapes in the CIFAR data more faithfully.

Table 3. Generative modeling performance of the proposed σ-VAE on CelebA, CIFAR, and Frey Face with a smaller model. We see
that uncalibrated decoders such as mean-only Gaussian perform poorly. β-VAE allows to calibrate the decoder but needs careful
hyperparameter tuning. Calibrated decoders such as categorical or σ-VAE perform best.

CelebA VAE CIFAR VAE Frey Face VAE

− log p ↓ FID ↓ − log p ↓ FID ↓ − log p ↓ FID ↓
Bernoulli VAE (Gregor et al., 2015) 102.7 165.1 47.7
Categorical VAE < 10195 50.45 < 10673 124.1 < 2454 50.16
bitwise-categorical VAE < 11019 56.36 < 11604 99.65 < 3173 66.77
Logistic mixture VAE < 10154 61.81 < 10648 100.2 < 2562 50.28

Gaussian VAE < 2201 144.8 < 1409 205.8 < 726.4 80.17
β-VAE (Higgins et al., 2017) < −1942 58.73 < −1318 117.9 < −420.0 37.61
Shared σ-VAE (Ours) < −1939 73.27 < −1830 137.8 < −49.78 42.86
Optimal σ-VAE (Ours) < −1951 61.27 < −1832 80.9 < −1622 53.36

Opt. per-image σ-VAE (Ours) 53.13 89.88 56.07

Simple and Effective VAE Training with Calibrated Decoders

Figure 9. Variance convergence speed on SVHN. We see that the
shared σ-VAE which optimizes the variance with gradient descent
has an initial period of convergence when the variance converges to
the region of the optimal value. In contrast, σ-VAE with analytical
(optimal) variance quickly learns a good estimate of the variance,
which leads to better performance. The unit variance Gaussian
β-VAE can be interpreted as having a constant variance determined
by β, shown here. Since the variance doesn’t change throughout
training, it achieves suboptimal performance.

Table 4. ELBO on discretized data. All distributions except cate-
gorical have scalar scale parameters. The σ-VAE performs well
on the discretized ELBO metric, performing similarly to a discrete
distribution parametrized as a discretized Gaussian or discretized
Logistic. Full categorical distribution attains highest likelihood
due to having the most statistical power.

CIFAR VAE

− log pdf ↓ − log p ↓ FID ↓
Categorical VAE < 10673 137.6
Gaussian VAE < 740.5 < 15131 212.7
Gaussian σ-VAE < −896.1 < 11120 136.7
Disc. Gaussian σ-VAE < 11117 136.9
Disc. Logistic σ-VAE < 11103 136.7

one 3-channel 1024× 1024 image would require 3 GiB of
memory, compared to 0.012 GiB for the Gaussian decoder.
Therefore, training deep neural networks with this full cate-
gorical distribution is impractical for high-resolution images
or videos. The bitwise-categorical VAE improves the mem-
ory complexity by defining the distribution over 256 values
in a more compact way. Specifically, it defines a binary dis-
tribution over each bit in the pixel intensity value, requiring
8 values in total, one for each bit. This distribution can be
thought of as a classifier that predicts the value of each bit in
the image separately. In our implementation of the bitwise-
categorical likelihood, we convert the image channels to
binary format and use the standard binary cross-entropy loss
(which reduces to binary log-likelihood since all bits in the
image are deterministically either zero or one). While in
our experiments the bitwise-categorical distribution did not
outperform other choices, it often performs on par with our
proposed method. We expect this distribution to be useful
due to its generality as it is able to represent values stored
in any digital format by converting them into binary.

Logistic mixture VAE For this decoder, we adapt the dis-
cretized logistic mixture from Salimans et al. (2017). To
define a discrete 256-way distribution, it divides the cor-
responding continuous distribution into 256 bins, where
the probability mass is defined as the integral of the PDF
over the corresponding bin. (Kingma et al., 2016) uses
the logistic distribution discretized in this manner for the
decoder. Salimans et al. (2017) suggests to make all bins
except the first and the last be of equal size, whereas the first
and the last bin include, respectively, the intervals (−∞, 0]
and [1,∞). Salimans et al. (2017) further suggests using
a mixture of discretized logistics for improved capacity.
Our implementation largely follows the one in Salimans
et al. (2017), however, we note that the original implemen-
tation is not suitable for learning latent variable models, as
it generates the channels autoregressively. This will cause
the latent variable to lose color information since it can be
represented by the autoregressive decoder. We therefore
adapt the mixture of discretized logistics to the pure latent
variable setup by removing the mean-adjusting coefficients
from (Salimans et al., 2017). In our experiments, the logistic
mixture outperformed other discrete distributions.

